Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Новые функции белков семейства Noggin: ингибирование сигнальных каскадов Activin/Nodal и Wnt в эмбриональном развитии

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Одной из важнейших задач современной биологии развития является поиск и изучение факторов, обеспечивающих индукционные взаимодействия клеток и тканей в ходе эмбриогенеза. Секретируемый белок Noggin (Nogginl) является первым идентифицированным белковым фактором, участвующим в первичной эмбриональной индукции. Он был открыт Ричардом Харландом в 1992 г. у шпорцевой лягушки Xenopus как нейральный… Читать ещё >

Содержание

  • 1. Введение
  • 2. Обзор литературы
    • 2. 1. Общие принципы эмбриональной индукции. Нейральная индукция
    • 2. 2. Сигнальный каскад TGF-P
      • 2. 2. 1. Суперсемейство TGF-J
      • 2. 2. 2. Каскад Activin/Nodal
      • 2. 2. 3. Внеклеточная регуляция Activin-каскада
      • 2. 2. 4. Рецепторы Activin
      • 2. 2. 5. Регуляция рецепторов Activin
      • 2. 2. 6. Регуляция сигнального каскада Activin через белки Smad
      • 2. 2. 7. Гены-мишени Smad2 каскада
      • 2. 2. 8. Smad-независимый сигнальный путь Activin и перекрестное действие рецепторов
      • 2. 2. 9. Роль Activin и TGF-|3 в канцерогенезе
      • 2. 2. 10. Activin и стволовые клетки
      • 2. 2. 11. Каскад BMP
      • 2. 2. 12. Функции BMP
      • 2. 2. 13. Внеклеточная регуляция ВМР-каскада
      • 2. 2. 14. Внутриклеточная регуляция ВМР-каскада
      • 2. 2. 15. Гены-мишени Smadl- (BMP-) каскада
    • 2. 3. Сигнальный каскад Wnt
      • 2. 3. 1. Классификация активностей Wnt лигандов
      • 2. 3. 2. Канонический путь Wnt (Wnt/(3-Catenin)
      • 2. 3. 3. Планарная клеточная полярность (PCP)
      • 2. 3. 4. Неканонический Wnt/Ca2+ путь
      • 2. 3. 5. Секреция Wnt и внеклеточные регуляторы
      • 2. 3. 6. Wnt-индуцированные клеточные ответы
    • 2. 4. Эволюционное происхождение сигнальных каскадов TGF-(3 и Wnt
    • 2. 5. Взаимодействие сигнальных каскадов в раннем развитии Xenopus
    • 2. 6. Регионализация нервной трубки в ходе эмбриогенеза
    • 2. 7. Семейство белков Noggin
      • 2. 7. 1. Функциональная роль Noggin
      • 2. 7. 2. Структура Noggin
      • 2. 7. 3. Noggin как ингибитор BMP
      • 2. 7. 4. Белок Noggin человека (HNoggin)
      • 2. 7. 5. Мутации гена Noggin
  • 3. Полученные результаты
    • 3. 1. Клонирование и анализ последовательностей новых белков семейства Noggin
    • 3. 2. Изучение локализации экспрессии генов Noggin в раннем развитии шпорцевой лягушки
    • 3. 3. Изучение эффектов эктопической экспрессии генов Nogginl и -2 в раннем развитии шпорцевой лягушки
    • 3. 4. Изучение эффективности трансляции мРНК генов Nogginl и -2 в эмбрионах шпорцевой лягушки
    • 3. 5. Изучение лиганд-связывающих свойств белков Nogginl и
    • 3. 6. Nogginl и Noggin2 способны ингибировать активность Activin/Nodal- и Wnt-каскадов в живых эмбрионах
    • 3. 7. Nogginl и Noggin2 способны влиять на онтогенетические процессы, контролируемые Activin/Nodal- и Wnt- каскадами в эмбрионах
    • 3. 8. Активность Noggin2, но не Nogginl, необходима для нормального эмбрионального развития Xenopus
    • 3. 9. Ингибирование Activin-каскада посредством Noggin2 необходимо для развития переднемозговых структур
  • 4. Обсуждение результатов
    • 4. 1. TGF-p лиганды (помимо BMP) и Wnt являются мишенями белков семейства Noggin
    • 4. 2. Ингибирование Activin-, BMP- и Wnt-каскадов посредством Noggin2 необходимо для развития переднемозговых структур
  • 5. Выводы
  • 6. Материалы и методы
    • 6. 1. Материалы
      • 6. 1. 1. Реактивы
      • 6. 1. 2. Ферментные препараты
      • 6. 1. 3. Лабораторное оборудование
      • 6. 1. 4. Лабораторные животные
      • 6. 1. 5. Буферы и растворы
      • 6. 1. 6. Микробиологические среды
      • 6. 1. 7. Предоставленные штаммы
      • 6. 1. 8. Предоставленные плазмиды
    • 6. 2. Методы
      • 6. 2. 1. Амплификация ДНК при помощи полимеразной цепной реакции (ПЦР)
      • 6. 2. 2. Электрофорез в агарозном геле
      • 6. 2. 3. Элюция ДНК из агарозного геля
      • 6. 2. 4. Расщепление ДНК эндонуклеазами рестрикции
      • 6. 2. 5. Достройка 3"-конца двухцепочечных молекул ДНК
      • 6. 2. 6. Отщепление выступающего 3″ - конца двухцепочечных молекул ДНК
      • 6. 2. 7. Лигирование молекул ДНК
      • 6. 2. 8. Трансформация клеток Escherichia col
      • 6. 2. 9. Выделение плазмидной ДНК из бактерий Escherichia col
      • 6. 2. 10. Изготовление плазмидных ДНК конструкций
      • 6. 2. 11. Транскрипция in vitro
      • 6. 2. 12. Получение зародышей шпорцевой лягушки Xenopus laevis
      • 6. 2. 13. Синтез белков в ооцитах или зародышах Xenopus laevis
      • 6. 2. 14. Электрофоретическое разделение белков в денатурирующих условиях в ПААГ
      • 6. 2. 15. Иммуноблот (Western Blotting)
      • 6. 2. 16. Изучение белок-белковых взаимодействий в системе in vivo с помощью метода коиммунопреципитации
      • 6. 2. 17. Блокирование трансляции эндогенных мРНК при помощи микроинъекций синтетических антисмысловых олигонуклеотидов
      • 6. 2. 18. Фиксация зародышей
      • 6. 2. 19. Гибридизация in situ на целых эмбрионах шпорцевой лягушки
      • 6. 2. 20. Синтез дигоксигенин-меченной антисмысловой РНК для проведения гибридизации in situ
      • 6. 2. 21. Экстракция тотальной РНК из зародышей шпорцевой лягушки
      • 6. 2. 22. Обратная транскрипция и полимеразная цепная реакция (ОТ-ПЦР)
      • 6. 2. 23. Обратная транскрипция и полимеразная цепная реакция (ОТ-ПЦР) в реальном времени
      • 6. 2. 24. Измерение люциферазной активности специфических репортеров
  • 8. Список сокращений
  • 7. Благодарности

Новые функции белков семейства Noggin: ингибирование сигнальных каскадов Activin/Nodal и Wnt в эмбриональном развитии (реферат, курсовая, диплом, контрольная)

Одной из важнейших задач современной биологии развития является поиск и изучение факторов, обеспечивающих индукционные взаимодействия клеток и тканей в ходе эмбриогенеза. Секретируемый белок Noggin (Nogginl) является первым идентифицированным белковым фактором, участвующим в первичной эмбриональной индукции. Он был открыт Ричардом Харландом в 1992 г. у шпорцевой лягушки Xenopus как нейральный индуктор, продуцируемый шпемановским организатором. Nogginl способен связывать белки одной из субгрупп цитокинов TGF-(3, а именно Bone Morphogenetic Proteins (BMP) (Smith and Harland, 1992). Действуя вне клетки, BMP индуцирует ассоциацию специфических рецепторных серин-треониновых киназ I и II типа, что приводит к внутриклеточному фосфорилированию цитоплазматических белков Smadl/5/8, которые в паре со Smad4 мигрируют в ядро и регулируют ранскрипцию специфических генов-мишеней (Shi and Massague, 2003). Так как Noggin препятствует связыванию BMP с рецепторами (Groppe et al., 2002), это приводит к ингибированию сигнального пути, опосредованного Smadl/5/8. Благодаря этой функции, Nogginl, будучи эктопически экспрессирован в вентральной части эмбриона Xenopus, способен индуцировать вторичные оси, лишенные голов. В нормальном развитии Nogginl играет ключевую роль в различных процессах, включая индукцию нервной ткани и скелетной мускулатуры в раннем эмбриогенезе (Smith and Harland, 1992), развитие хрящей (Botchkarev et al., 1999) и дифференцировку волосяных фолликулов (Brunei et al., 1998; Botchkarev et al., 1999; Shi and Massague, 2003). Во многих экспериментальных системах, например, при изучении стволовых или раковых клеток, Nogginl используется в качестве искусственного ингибитора BMP-каскада. Считается общепризнанным, что Nogginl не является антагонистом для другой субгруппы лигандов TGF-J3, Activin/Nodal/TGFbeta, которые связываются с другими серин-треонин киназными рецепторами и регулируют транскрипцию другого набора генов-мишеней через внутриклеточный белок-посредник Smad2/3 (Branford and Yost, 2002). Известно, что ингибирование этого сигнального пути необходимо для правильной разметки мезодермы при гаструляции (Piccolo et al., 1999), развития переднего мозга (Meno et al., 2001) и установления право-левой ассимметрии (Grande and Patel, 2009).

Помимо «классического» Noggin 1, у позвоночных были найдены две других группы белков семейства Noggin, Noggin2 и Noggin4 (Furthauer et al., 1999; Fletcher et al., 2004; Eroshkin et al., 2006). Биологическая функция была показана в экспериментах только для Noggin2, который экспрессируется специфически в зачатке конечного мозга эмбрионов Xenopus и Danio. На основании этих данных было предположено, что Noggin2 может, по большей части, дублировать ВМР-антагонистическую функцию Nogginl (Furthauer et al., 1999). Однако, по нашему предположению, значительные различия в первичной структуре белков Noggin, которые принадлежат к разным белковым подсемействам (Eroshkin et al., 2006), и различающиеся паттерны их экспрессии указывают на возможные различия в репертуаре связываемых ими белков и предполагают различную биологическую функцию.

В связи с этим, задача настоящей работы — изучение механизмов функционирования данных белков и их роли в ранней тканевой дифференцировке — представляется весьма актуальной, как с точки зрения получения новых фундаментальных знаний, так и ввиду необходимости создания новых генно-инженерных продуктов для специфичного управления процессами жизнедеятельности и дифференцировки клеток.

Особенностью данной работы является использование в качестве основной экспериментальной модели эмбрионов шпорцевой лягушки Xenopus. Данная модель признается одной из наиболее перспективных для изучения механизмов реализации генетической информации в раннем эмбриогенезе и, кроме этого, представляет собой удобную тест-систему, позволяющую исследовать процессы in vivo.

2. Обзор литературы.

1. Adamska, M., Degnan, S.M., Green, K.M., Adamski, M., Craigie, A., Larroux, C., and Degnan, B.M. 2007. Wnt and TGF-beta Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning. PloS one 2(10).

2. Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C., and De Robertis, E.M. 2000. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development (Cambridge, England) 127(6): 1173−1183.

3. Amaya, E., Musci, T.J., and Kirschner, M.W. 1991. Expression of a Dominant Negative Mutant of the Fgf Receptor Disrupts Mesoderm Formation in Xenopus Embryos. Cell 66(2): 257−270.

4. Arendt, D. and Nubler-Jung, K. 1994. Inversion of dorsoventral axis? Nature 371(6492): 26.

5. Attisano, L., Wrana, J.L., Montalvo, E., and Massague, J. 1996. Activation of signalling by the activin receptor complex. Molecular and cellular biology 16(3): 1066−1073.

6. Avsian-Kretchmer, O. and Hsueh, A.J. 2004. Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Molecular endocrinology (Baltimore, Md 18(1): 1−12.

7. Aybar, M.J., Nieto, M.A., and Mayor, R. 2003. Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development (Cambridge, England) 130(3): 483−494.

8. Bacchelli, C., Goodman, F.R., Scambler, P.J., and Winter, R.M. 2001. Cenani-Lenz syndrome with renal hypoplasia is not linked to FORMIN or GREMLIN. Clinical genetics 59(3): 203−205.

9. Baker, N.E. 1987. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. The EMBO journal 6(6): 1765−1773.

10. Balaskas, N., Ribeiro, A., Panovska, J., Dessaud, E., Sasai, N., Page, K.M., Briscoe, J., and Ribes, V. 2012. Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube. Cell 148(1−2): 273−284.

11. Bartscherer, K., Pelte, N., Ingelfmger, D., and Boutros, M. 2006. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125(3): 523−533.

12. Bassi, D.E., Fu, J., Lopez de Cicco, R., and Klein-Szanto, A.J. 2005. Proprotein convertases: «master switches» in the regulation of tumor growth and progression. Molecular carcinogenesis 44(3): 151−161.

13. Bauer, H., Meier, A., Hild, M., Stachel, S., Economides, A., Hazelett, D., Harland, R.M., and Hammerschmidt, M. 1998. Follistatin and noggin are excluded from the zebrafish organizer. Developmental biology 204(2): 488−507.

14. Beddington, R.S. and Robertson, E.J. 1999. Axis development and early asymmetry in mammals. Cell 96(2): 195−209.

15. Bell, E., Munoz-Sanjuan, I., Altmann, C.R., Vonica, A., and Brivanlou, A.H. 2003. Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development (Cambridge, England) 130(7): 1381−1389.

16. Belo, J.A., Bachiller, D., Agius, E., Kemp, C., Borges, A.C., Marques, S., Piccolo, S., and De Robertis, E.M. 2000. Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26(4): 265−270.

17. Belyavsky, A., Vinogradova, T., and Rajewsky, K. 1989. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells. Nucleic acids research 17(8): 2919−2932.

18. Bertocchini, F. and Stern, C.D. 2002. The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Developmental cell 3(5): 735−744.

19. Bhat, R.A., Stauffer, B., Komm, B.S., and Bodine, P.V. 2007. Structure-function analysis of secreted frizzled-related protein-1 for its Wnt antagonist function. Journal of cellular biochemistry 102(6): 1519−1528.

20. Blumberg, B., Bolado, J., Moreno, T.A., Kintner, C., Evans, R.M., and Papalopulu, N. 1997. An essential role for retinoid signaling in anteroposterior neural patterning. Development (Cambridge, England) 124(2): 373−379.

21. Bouwmeester, T., Kim, S., Sasai, Y., Lu, B., and De Robertis, E.M. 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382(6592): 595−601.

22. Brunei, L.J., McMahon, J.A., McMahon, A.P., and Harland, R.M. 1998. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science (New York, AT 280(5368): 1455−1457.

23. Chan, T.C., Ariizumi, T., and Asashima, M. 1999. A model system for organ engineering: transplantation of in vitro induced embryonic kidney. Die Naturwissenschaften 86(5): 224−227.

24. Chang, C. and Harland, R.M. 2007. Neural induction requires continued suppression of both Smadl and Smad2 signals during gastrulation. Development (Cambridge, England) 134(21): 3861−3872.

25. Chen, C.H. and Shen, M.M. 2004. Two modes by which lefty proteins inhibit Nodal signaling. Current Biology 14(7): 618−624.

26. Chen, X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G., and Whitman, M. 1997. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389(6646): 85−89.

27. Chen, Y.G., Lui, H.M., Lin, S.L., Lee, J.M., and Ying, S.Y. 2002. Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Experimental biology and medicine (Maywood, NJ 227(2): 75−87.

28. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry 162(1): 156−159.

29. Clevers, H. 2000. Axin and hepatocellular carcinomas. Nature genetics 24(3): 206−208.

30. Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H., and Young, R.A. 2008. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes & development 22(6): 746−755.

31. Cooke, J., Smith, J.C., Smith, E.J., and Yaqoob, M. 1987. The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor. Development (Cambridge, England) 101(4): 893−908.

32. Cox, W.G. and HemmatiBrivanlou, A. 1995. Caudalization of neural fate by tissue recombination andbFGF. Development (Cambridge, England) 121(12): 4349−4358.

33. Dann, C.E., Hsieh, J.C., Rattner, A., Sharma, D., Nathans, J., and Leahy, D.J. 2001. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412(6842): 86−90.

34. Darras, S., Gerhart, J., Terasaki, M., Kirschner, M., and Lowe, C.J. 2011. beta-Catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii. Development (Cambridge, England) 138(5): 959−970.

35. De Robertis, E.M. and Kuroda, H. 2004. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annual review of cell and developmental biology 20: 285−308.

36. Depew, M.J., Simpson, C.A., Morasso, M., and Rubenstein, J.L. 2005. Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. Journal of anatomy 207(5): 501−561.

37. Derynck, R., Zhang, Y., and Feng, X.H. 1998. Smads: transcriptional activators of TGF-beta responses. Cell 95(6): 737−740.

38. Dickmeis, T., Aanstad, P., Clark, M., Fischer, N., Herwig, R., Mourrain, P., Blader, P., Rosa, F., Lehrach, H., and Strahle, U. 2001. Identification of nodal signaling targets by array analysis of induced complex probes. Dev Dyn 222(4): 571−580.

39. Dionne, M.S., Skarnes, W.C., and Harland, R.M. 2001. Mutation and analysis of Dan, the founding member of the Dan family of transforming growth factor beta antagonists. Molecular and cellular biology 21(2): 636−643.

40. Djiane, A., Riou, J., Umbhauer, M., Boucaut, J., and Shi, D. 2000. Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development (Cambridge, England) 127(14): 3091−3100.

41. Duboc, V. and Lepage, T. 2008. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. Journal of experimental zoology 310(1): 41−53.

42. Duboc, V., Rottinger, E., Lapraz, F., Besnardeau, L., and Lepage, T. 2005. Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Developmental cell 9(1): 147−158.

43. Dyson, S. and Gurdon, J.B. 1998. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93(4): 557−568.

44. Echelard, Y., Epstein, D.J., St-Jacques, B., Shen, L., Mohler, J., McMahon, J.A., and McMahon, A.P. 1993. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7): 1417−1430.

45. Eimon, P.M. and Harland, R.M. 2001. Xenopus Dan, a member of the Dan gene family of BMP antagonists, is expressed in derivatives of the cranial and trunk neural crest. Mechanisms of development 107(1−2): 187−189.

46. Ekker, S.C., Ungar, A.R., Greenstein, P., Vonkessler, D.P., Porter, J.A., Moon, R.T., and Beachy, P.A. 1995. Patterning Activities of Vertebrate Hedgehog Proteins in the Developing Eye and Brain. Current Biology 5(8): 944−955.

47. Ernsberger, U. 2008. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell and Tissue Research 333(3): 353−371.

48. Faure, S., Lee, M.A., Keller, T., ten Dijke, P., and Whitman, M. 2000. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development (Cambridge, England) 127(13): 2917−2931.

49. Feng, X.H. and Derynck, R. 2005. Specificity and versatility in tgf-beta signaling through Smads. Annual review of cell and developmental biology 21: 659−693.

50. Ferguson, E.L. and Anderson, K.V. 1992. Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71(3): 451−461.

51. Finnerty, J.R., Pang, K., Burton, P., Paulson, D., and Martindale, M.Q. 2004. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science (New York, NY 304(5675): 1335−1337.

52. Fu, G. and Peng, C. 2011. Nodal enhances the activity of Fox03a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells. Oncogene 30(37): 3953−3966.

53. Garcia Abreu, J., Coffmier, C., Larrain, J., Oelgeschlager, M., and De Robertis, E.M. 2002. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene 287(1−2): 39−47.

54. Gerhart, J., Pfautz, J., Neely, C., Elder, J., DuPrey, K., Menko, A.S., Knudsen, K., and George-Weinstein, M. 2009. Noggin producing, MyoD-positive cells are crucial for eye development. Developmental biology 336(1): 30−41.

55. Glinka, A., Delius, H., Blumenstock, C., and Niehrs, C. 1996. Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium. Mechanisms of development 60(2): 221−231.

56. Glinka, A., Dolde, C., Kirsch, N., Huang, Y.L., Kazanskaya, O., Ingelfmger, D., Boutros, M., Cruciat, C.M., and Niehrs, C. 2011. LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-Catenin and Wnt/PCP signalling. EMBO reports 12(10): 1055−1061.

57. Glinka, A., Wu, W., Delius, H., Monaghan, A.P., Blumenstock, C., and Niehrs, C. 1998. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391(6665): 357−362.

58. Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C., and Niehrs, C. 1997. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389(6650): 517−519.

59. Godsave, S.F. and Slack, J.M. 1989. Clonal analysis of mesoderm induction in Xenopus laevis. Developmental biology 134(2): 486−490.

60. Gordon, M.D. and Nusse, R. 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. The Journal of biological chemistry 281(32): 2 242 922 433.

61. Grande, C. and Patel, N.H. 2009. Nodal signalling is involved in left-right asymmetry in snails. Nature 457(7232): 1007−1011.

62. Gray, P.C., Harrison, C.A., and Vale, W. 2003. Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proceedings of the National Academy of Sciences of the United States of America 100(9): 5193−5198.

63. Greenwald, J., Groppe, J., Gray, P., Wiater, E., Kwiatkowski, W., Vale, W., and Choe, S. 2003. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Molecular cell 11(3): 605−617.

64. Gritsman, K., Zhang, J.J., Cheng, S., Heckscher, E., Talbot, W.S., and Schier, A.F. 1999. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97(1): 121 132.

65. Grunz, H. and Tacke, L. 1989. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 28(3): 211−217.

66. Guzman-Ayala, M., Lee, K.L., Mavrakis, K.J., Goggolidou, P., Norris, D.P., and Episkopou, V. 2009. Graded Smad2/3 activation is converted directly into levels of target gene expression in embryonic stem cells. PloS one 4(1): e4268.

67. Habas, R., Kato, Y., and He, X. 2001. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daaml. Cell 107(7): 843−854.

68. Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science (New York, NY 279(5350): 509−514.

69. Hannon, G.J. and Beach, D. 1994. pl5INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371(6494): 257−261.

70. Haramoto, Y., Takahashi, S., and Asashima, M. 2006. Two distinct domains in proregion of Nodal-related 3 are essential for BMP inhibition. Biochemical and biophysical research communications 346(2): 470−478.

71. Haramoto, Y., Tanegashima, K., Onuma, Y., Takahashi, S., Sekizaki, H., and Asashima, M. 2004. Xenopus tropicalis nodal-related gene 3 regulates BMP signaling: an essential role for the pro-region. Developmental biology 265(1): 155−168.

72. Haremaki, T., Tanaka, Y., Hongo, I., Yuge, M., and Okamoto, H. 2003. Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3. Development (Cambridge, England) 130(20): 4907−4917.

73. Harrington, A.E., Morris-Triggs, S.A., Ruotolo, B.T., Robinson, C.V., Ohnuma, S., and Hyvonen, M. 2006. Structural basis for the inhibition of activin signalling by follistatin. The EMBO journal 25(5): 1035−1045.

74. Hassler, C., Cruciat, C.M., Huang, Y.L., Kuriyama, S., Mayor, R., and Niehrs, C. 2007. Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling. Development (Cambridge, England) 134(23): 4255−4263.

75. He, X., Semenov, M., Tamai, K., and Zeng, X. 2004. LDL receptor-related proteins 5 and 6 in Wnt/beta-Catenin signaling: arrows point the way. Development (Cambridge, England) 131(8): 1663−1677.

76. Heisenberg, C.P., Tada, M., Rauch, G.J., Saude, L., Concha, M.L., Geisler, R., Stemple, D.L., Smith, J.C., and Wilson, S.W. 2000. Silberblick/Wntll mediates convergent extension movements during zebrafish gastrulation. Nature 405(6782): 76−81.

77. Hemmati-Brivanlou, A., Kelly, O.G., and Melton, D.A. 1994. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77(2): 283−295.

78. Henry, J.Q., Perry, K.J., and Martindale, M.Q. 2010. beta-Catenin and Early Development in the Gastropod, Crepidula fomicata. Integrative and Comparative Biology 50(5): 707−719.

79. Henry, J.Q., Perry, K.J., Wever, J., Seaver, E., and Martindale, M.Q. 2008. beta-Catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus. Developmental biology 317(1): 368−379.

80. Herz, J. and Marschang, P. 2003. Coaxing the LDL receptor family into the fold. Cell 112(3): 289−292.

81. Hobmayer, B., Rentzsch, F., and Holstein, T.W. 2001. Identification and expression of HySmadl, a member of the R-Smad family of TGFbeta signal transducers, in the diploblastic metazoan Hydra. Development genes and evolution 211(12): 597−602.

82. Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C.M., von Laue, C.C., Snyder, P., Rothbacher, U., and Holstein, T.W. 2000. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407(6801): 186−189.

83. Hogan, B.L. 1996. Bone morphogenetic proteins in development. Current opinion in genetics & development 6(4): 432−438.

84. Hsieh, J.C., Kodjabachian, L., Rebbert, M.L., Rattner, A., Smallwood, P.M., Samos, C.H., Nusse, R., Dawid, I.B., and Nathans, J. 1999. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398(6726): 431−436.

85. Hsieh, J.C., Lee, L., Zhang, L., Wefer, S., Brown, K., DeRossi, C., Wines, M.E., Rosenquist, T., and Holdener, B.C. 2003. Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112(3): 355−367.

86. Hsu, D.R., Economides, A.N., Wang, X., Eimon, P.M., and Harland, R.M. 1998. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Molecular cell 1(5): 673−683.

87. Itoh, F., Asao, H., Sugamura, K., Heldin, C.H., ten Dijke, P., and Itoh, S. 2001. Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. The EMBO journal 20(15): 4132−4142.

88. Jones, C.M., Kuehn, M.R., Hogan, B.L., Smith, J.C., and Wright, C.N. 1995. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development (Cambridge, England) 121(11): 3651−3662.

89. Kahlem, P. and Newfeld, S.J. 2009. Informatics approaches to understanding TGFbeta pathway regulation. Development (Cambridge, England) 136(22): 3729−3740.

90. Kaji, T. and Artinger, K.B. 2004. dlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula. Developmental biology 276(2): 523−540.

91. Khadka, D., Luo, T., and Sargent, T.D. 2006. Msxl and Msx2 have shared essential functions in neural crest but may be dispensable in epidermis and axis formation in Xenopus. The International journal of developmental biology 50(5): 499−502.

92. Kim, H., Cheong, S.M., Ryu, J., Jung, H.J., Jho, E.H., and Han, J.K. 2009. Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion. Molecular and cellular biology 29(8): 2118−2128.

93. Kirsch, T., Sebald, W., and Dreyer, M.K. 2000. Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7(6): 492−496.

94. Klingensmith, J., Ang, S.L., Bachiller, D., and Rossant, J. 1999. Neural induction and patterning in the mouse in the absence of the node and its derivatives. Developmental biology 216(2): 535−549.

95. Knecht, A.K. and Harland, R.M. 1997. Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue. Development (Cambridge, England) 124(12): 24 772 488.

96. Komekado, H., Yamamoto, H., Chiba, T., and Kikuchi, A. 2007. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 12(4): 521−534.

97. Komiya, Y. and Habas, R. 2008. Wnt signal transduction pathways. Organogenesis 4(2): 68−75.

98. Korkut, C., Ataman, B., Ramachandran, P., Ashley, J., Barria, R., Gherbesi, N., and Budnik, V. 2009. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139(2): 393−404.

99. Kurayoshi, M., Yamamoto, H., Izumi, S., and Kikuchi, A. 2007. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. The Biochemical journal 402(3): 515−523.

100. Kuroda, H., Wessely, O., and De Robertis, E.M. 2004. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol 2(5): E92.

101. Kurth, T. 2005. A cell cycle arrest is necessary for bottle cell formation in the early Xenopus gastrula: integrating cell shape change, local mitotic control and mesodermal patterning. Mechanisms of development 122(12): 1251−1265.

102. Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H.A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M.Q., and Holstein, T.W.2005. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433(7022): 156−160.

103. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680−685.

104. Laiho, M., DeCaprio, J.A., Ludlow, J.W., Livingston, D.M., and Massague, J. 1990. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 62(1): 175−185.

105. Laitinen, M., Jortikka, L., Halttunen, T., Nevalainen, J., Aho, A.J., Marttinen, A., and Lindholm, T.S. 1997. Measurement of total and local bone morphogenetic protein concentration in bone tumours. International orthopaedics 21(3): 188−193.

106. Lamb, T.M., Knecht, A.K., Smith, W.C., Stachel, S.E., Economides, A.N., Stahl, N., Yancopolous, G.D., and Harland, R.M. 1993. Neural induction by the secreted polypeptide noggin. Science (New York, AT262(5134): 713−718.

107. Lan, L., Vitobello, A., Bertacchi, M., Cremisi, F., Vignali, R., Andreazzoli, M., Demontis, G.C., Barsacchi, G., and Casarosa, S. 2009. Noggin elicits retinal fate in Xenopus animal cap embryonic stem cells. Stem cells (Dayton, Ohio) 27(9): 2146−2152.

108. Larrain, J., Bachiller, D., Lu, B., Agius, E., Piccolo, S., and De Robertis, E.M. 2000. BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development (Cambridge, England) 127(4): 821−830.

109. Lawrence, P.A. and Shelton, P.M. 1975. The determination of polarity in the developing insect retina. Journal of embryology and experimental morphology 33(2): 471−486.

110. Le Good, J.A., Joubin, K., Giraldez, A.J., Ben-Haim, N., Beck, S., Chen, Y., Schier, A.F., and Constam, D.B. 2005. Nodal stability determines signaling range. Current Biology 15(1): 31−36.

111. Lengfeld, T., Watanabe, H., Simakov, O., Lindgens, D., Gee, L., Law, L., Schmidt, H.A., Ozbek, S., Bode, H., and Holstein, T.W. 2009. Multiple Wnts are involved in Hydra organizer formation and regeneration. Developmental biology 330(1): 186−199.

112. Lewis, K.A., Gray, P.C., Blount, A.L., MacConell, L.A., Wiater, E., Bilezikjian, L.M., and Vale, W. 2000. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 404(6776): 411−414.

113. Li, L., Hutchins, B.I., and Kalil, K. 2010. Wnt5a Induces Simultaneous Cortical Axon Outgrowth and Repulsive Turning Through Distinct Signaling Mechanisms. Science signaling 3(147).

114. Li, Y., Chen, J., Lu, W., McCormick, L.M., Wang, J., and Bu, G. 2005. Mesd binds to mature LDL-receptor-related protein-6 and antagonizes ligand binding. Journal of cell science 118(Pt 22): 5305−5314.

115. Liang, H., Chen, Q., Coles, A.H., Anderson, S.J., Pihan, G., Bradley, A., Gerstein, R., Jurecic, R., and Jones, S.N. 2003. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4(5): 349−360.

116. Liu, P., Yang, J.B., Pei, J., Pei, D.Q., and Wilson, M.J. 2010. Regulation of MT1-MMP Activity by beta-Catenin in MDCK Non-Cancer and HT1080 Cancer Cells. Journal of Cellular Physiology 225(3): 810−821.

117. Liu, Z.H., Tsuchida, K., Matsuzaki, T., Bao, Y.L., Kurisaki, A., and Sugino, H. 2006. Characterization of isoforms of activin receptor-interacting protein 2 that augment activin signaling. The Journal of endocrinology 189(2): 409−421.

118. Logan, C.Y., Miller, J.R., Ferkowicz, M.J., and McClay, D.R. 1999. Nuclear beta-Catenin is required to specify vegetal cell fates in the sea urchin embryo. Development (Cambridge, England) 126(2): 345−357.

119. Lopez-Rios, J., Esteve, P., Ruiz, J.M., and Bovolenta, P. 2008. The Netrin-related domain of Sfrpl interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural development 3: 19.

120. Lu, W., Yamamoto, V., Ortega, B., and Baltimore, D. 2004. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119(1): 97−108.

121. Lu, W.Y., Liu, C.C., Thottassery, J.V., Bu, G.J., and Li, Y.H. 2010. Mesd Is a Universal Inhibitor of Wnt Coreceptors LRP5 and LRP6 and Blocks Wnt/beta-Catenin Signaling in Cancer Cells. Biochemistry 49(22): 4635−4643.

122. Luxardi, G., Marchal, L., Thome, V., and Kodjabachian, L. 2010. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development (Cambridge, England) 137(3): 417−426.

123. Lyuksyutova, A.I., Lu, C.C., Milanesio, N., King, L.A., Guo, N., Wang, Y., Nathans, J., Tessier-Lavigne, M., and Zou, Y. 2003. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science (New York, NY 302(5652): 19 841 988.

124. MacDonald, B.T., Tamai, K., and He, X. 2009. Wnt/beta-Catenin signaling: components, mechanisms, and diseases. Developmental cell 17(1): 9−26.

125. Macdonald, R., Barth, K.A., Xu, Q.L., Holder, N., Mikkola, I., and Wilson, S.W. 1995. Midline Signaling Is Required for Pax Gene-Regulation and Patterning of the Eyes. Development (Cambridge, England) 121(10): 3267−3278.

126. Maeno, M. 2003. Regulatory signals and tissue interactions in the early hematopoietic cell differentiation in Xenopus laevis embryo. Zoolog Sci 20(8): 939−946.

127. Mao, B. and Niehrs, C. 2003. Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302(1−2): 179−183.

128. Martin, B.L. and Kimelman, D. 2009. Wnt Signaling and the Evolution of Embryonic Posterior Development. Current Biology 19(5): R215-R219.

129. Martindale, M.Q. and Hejnol, A. 2009. A Developmental Perspective: Changes in the Position of the Blastopore during Bilaterian Evolution. Developmental cell 17(2): 162−174.

130. Massague, J. and Gomis, R.R. 2006. The logic of TGFbeta signaling. FEBS Lett 580(12): 2811−2820.

131. Mathews, L.S. and Vale, W.W. 1991. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65(6): 973−982.

132. Matzuk, M.M., Lu, N., Vogel, H., Sellheyer, K., Roop, D.R., and Bradley, A. 1995. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374(6520): 360−363.

133. McMahon, J.A., Takada, S., Zimmerman, L.B., Fan, C.M., Harland, R.M., and McMahon, A.P. 1998. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes & development 12(10): 14 381 452.

134. Merino, R., Ganan, Y., Macias, D., Rodriguez-Leon, J., and Hurle, J.M. 1999a. Bone morphogenetic proteins regulate interdigital cell death in the avian embryo. Annals of the New York Academy of Sciences 887: 120−132.

135. Minabe-Saegusa, C., Saegusa, H., Tsukahara, M., and Noguchi, S. 1998. Sequence and expression of a novel mouse gene PRDC (protein related to DAN and cerberus) identified by a gene trap approach. Development, growth & differentiation 40(3): 343−353.

136. Mine, N., Anderson, R.M., and Klingensmith, J. 2008. BMP antagonism is required in both the node and lateral plate mesoderm for mammalian left-right axis establishment. Development (Cambridge, England) 135(14): 2425−2434.

137. Moos, M., Jr., Wang, S., and Krinks, M. 1995. Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development (Cambridge, England) 121(12): 4293−4301.

138. Moriya, N., Komazaki, S., and Asashima, M. 2000. In vitro organogenesis of pancreas in Xenopus laevis dorsal lips treated with retinoic acid. Development, growth & differentiation 42(2): 175−185.

139. Moriya, N., Uchiyama, H., and Asashima, M. 1993. Induction of Pronephric Tubules by Activin and Retinoic Acid in Presumptive Ectoderm of Xenopus-Laevis. Development Growth & Differentiation 35(2): 123−128.

140. Munoz-Sanjuan, I. and A, H.B. 2001. Early posterior/ventral fate specification in the vertebrate embryo. Developmental biology 237(1): 1−17.

141. Nakamura, R.E., Hunter, D.D., Yi, H., Brunken, W.J., and Hackam, A.S. 2007. Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina. BMC cell biology 8: 52.

142. Niehrs, C. 2010. On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development (Cambridge, England) 137(6): 845−857.

143. Nieuwkoop, P.D. 1999. The neural induction processits morphogenetic aspects. The International journal of developmental biology 43(7): 615−623.

144. Nusse, R., van Ooyen, A., Cox, D., Fung, Y.K., and Varmus, H. 1984. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307(5947): 131−136.

145. Nusse, R. and Varmus, H.E. 1982. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1): 99−109.

146. Oelgeschlager, M., Kuroda, H., Reversade, B., and De Robertis, E.M. 2003. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Developmental cell 4(2): 219−230.

147. Ohyama, Y., Nifuji, A., Maeda, Y., Amagasa, T" and Noda, M. 2004. Spaciotemporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis. Endocrinology 145(10): 4685−4692.

148. Okabayashi, K. and Asashima, M. 2003. Tissue generation from amphibian animal caps. Current opinion in genetics & development 13(5): 502−507.

149. Oliverio, M., Digilio, M.C., Versacci, P., Dallapiccola, B., and Marino, B. Shells and heart: are human laterality and chirality of snails controlled by the same maternal genes? American journal of medical genetics 152A (10): 2419−2425.

150. Onai, T., Yu, J.K., Blitz, I.L., Cho, K.W.Y., and Holland, L.Z. 2010. Opposing Nodal/Vgl and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Developmental biology 344(1): 377−389.

151. Onichtchouk, D., Chen, Y.G., Dosch, R., Gawantka, V., Delius, H., Massague, J., and Niehrs, C. 1999. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401(6752): 480−485.

152. Ozaki, T. and Sakiyama, S. 1993. Molecular cloning and characterization of a cDNA showing negative regulation in v-src-transformed 3Y1 rat fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 90(7): 2593−2597.

153. Pang, K., Ryan, J.F., Baxevanis, A.D., and Martindale, M.Q. 2011. Evolution of the TGF-beta Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis leidyi. PloS one 6(9).

154. Papalopulu, N. and Kintner, C. 1993. Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals. Development (Cambridge, England) 117(3): 961−975.

155. Pearce, J.J., Penny, G., and Rossant, J. 1999. A mouse cerberus/Dan-related gene family. Developmental biology 209(1): 98−110.

156. Peinado, H., Portillo, F., and Cano, A. 2004. Transcriptional regulation of cadherins during development and carcinogenesis. The International journal of developmental biology 48(5−6): 365−375.

157. Pentek, J., Parker, L., Wu, A., and Arora, K. 2009. Follistatin preferentially antagonizes activin rather than BMP signaling in Drosophila. Genesis 47(4): 261−273.

158. Perlman, R., Schiemann, W.P., Brooks, M.W., Lodish, H.F., and Weinberg, R.A. 2001. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature cell biology 3(8): 708−714.

159. Piccolo, S., Agius, E., Leyns, L., Bhattacharyya, S., Grunz, H., Bouwmeester, T., and De Robertis, E.M. 1999. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397(6721): 707−710.

160. Piccolo, S., Sasai, Y., Lu, B., and De Robertis, E.M. 1996. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86(4): 589−598.

161. Polakis, P. 1997. The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta 1332(3): F127−147.

162. Raida, M" Sarbia, M., Clement, J.H., Adam, S., Gabbert, H.E., and Hoffken, K. 1999. Expression, regulation and clinical significance of bone morphogenetic protein 6 in esophageal squamous-cell carcinoma. International journal of cancer 83(1): 38−44.

163. Reber-Muller, S., Streitwolf-Engel, R, Yanze, N., Schmid, V., Stierwald, M., Erb, M., and Seipel, K. 2006. BMP2/4 and BMP5−8 in jellyfish development and transdifferentiation. The International journal of developmental biology 50(4): 377−384.

164. Reese, D.E., Hall, C.E., and Mikawa, T. 2004. Negative regulation of midline vascular development by the notochord. Developmental cell 6(5): 699−708.

165. Reinhardt, B., Broun, M., Blitz, I.L., and Bode, H.R. 2004. HyBMP5−8b, a BMP5−8 orthologue, acts during axial patterning and tentacle formation in hydra. Developmental biology 267(1): 43−59.

166. Rentzsch, F., Guder, C., Vocke, D., Hobmayer, B., and Holstein, T.W. 2007. An ancient chordin-like gene in organizer formation of Hydra. Proceedings of the National Academy of Sciences of the United States of America 104(9): 3249−3254.

167. Reversade, B. and De Robertis, E.M. 2005. Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123(6): 1147−1160.

168. Rogers, C.D., Archer, T.C., Cunningham, D.D., Grammer, T.C., and Casey, E.M. 2008. Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Developmental biology 313(1): 307−319.

169. Saina, M., Genikhovich, G., Renfer, E., and Technau, U. 2009. BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proceedings of the National Academy of Sciences of the United States of America 106(44): 18 592−18 597.

170. Saka, Y. and Smith, J.C. 2007. A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus. BMC developmental biology 7: 47.

171. Sander, V., Reversade, B., and De Robertis, E.M. 2007. The opposing homeobox genes Goosecoid and Vent ½ self-regulate Xenopus patterning. The EMBO journal 26(12): 2955−2965.

172. Sasal, Y., Lu, B., Steinbelsser, H., and De Robertis, E.M. 1995. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 378(6555): 419.

173. Saxen, L. and Toivonen, S. 1961. The two-gradient hypothesis in primary induction. The combined effect of two types of inductors mixed in different ratios. Journal of embryology and experimental morphology 9: 514−533.

174. Schier, A.F. and Shen, M.M. 2000. Nodal signalling in vertebrate development. Nature 403(6768): 385−389.

175. Schneider, S., Steinbeisser, H., Warga, R.M., and Hausen, P. 1996. beta-Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mechanisms of development 57(2): 191−198.

176. Schneider, S.Q. and Bowerman, B. 2007. beta-Catenin asymmetries after all animal/vegetal-oriented cell divisions in Platynereis dumerilli embryos mediate binary cell-fate specification. Developmental cell 13(1): 73−86.

177. Schulte-Merker, S., Lee, K.J., McMahon, A.P., and Hammerschmidt, M. 1997. The zebrafish organizer requires chordino. Nature 387(6636): 862−863.

178. Sedohara, A., Komazaki, S., and Asashima, M. 2003. In vitro induction and transplantation of eye during early Xenopus development. Development, growth & differentiation 45(5−6): 463−471.

179. Semenov, M.V., Tamai, K., Brott, B.K., Kuhl, M., Sokol, S., and He, X. 2001. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11(12): 951 961.

180. Sharma, R.P. and Chopra, V.L. 1976. Effect of the Wingless (wgl) mutation on wing and haltere development in Drosophila melanogaster. Developmental biology 48(2): 461−465.

181. Shen, M.M. 2007. Nodal signaling: developmental roles and regulation. Development (Cambridge, England) 134(6): 1023−1034.

182. Shen, M.M. and Schier, A.F. 2000. The EGF-CFC gene family in vertebrate development. Trends Genet 16(7): 303−309.

183. Sive, H.L., Grainger, R. M., Harland, R. M. 1994. Early development ofXenopus laevis. Cold spring harbor.

184. Slack, J.M., Darlington, B.G., Gillespie, L.L., Godsave, S.F., Isaacs, H.V., and Paterno, G.D. 1989. The role of fibroblast growth factor in early Xenopus development. Development (Cambridge, England) 107 Suppl: 141−148.

185. Smith, W.C. and Harland, R.M. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70(5): 829−840.

186. Smith, W.C., Knecht, A.K., Wu, M., and Harland, R.M. 1993. Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361(6412): 547−549.

187. Sokol, S.Y. 2011. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development (Cambridge, England) 138(20): 4341−4350.

188. Suzuki, A., Ueno, N., and Hemmati-Brivanlou, A. 1997. Xenopus msxl mediates epidermal induction and neural inhibition by BMP4. Development (Cambridge, England) 124(16): 3037−3044.

189. Tada, M., Concha, M.L., and Heisenberg, C.P. 2002. Non-canonical Wnt signalling and regulation of gastrulation movements. Seminars in cell & developmental biology 13(3): 251−260.

190. Tanaka, K., Kitagawa, Y., and Kadowaki, T. 2002. Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. The Journal of biological chemistry 277(15): 12 816−12 823.

191. Thisse, B., Wright, C.V.E., and Thisse, C. 2000. Activinand Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403(6768): 425−428.

192. Thomsen, G.H. and Melton, D.A. 1993. Processed Vgl protein is an axial mesoderm inducer in Xenopus. Cell 74(3): 433−441.

193. Topol, L.Z., Modi, W.S., Koochekpour, S., and Blair, D.G. 2000b. DRM/GREMLIN (CKTSF1B1) maps to human chromosome 15 and is highly expressed in adult and fetal brain. Cytogenetics and cell genetics 89(1−2): 79−84.

194. Tsuchida, K., Nakatani, M., Hitachi, K., Uezumi, A., Sunada, Y., Ageta, H., and Inokuchi, K. 2009. Activin signaling as an emerging target for therapeutic interventions. Cell Commun Signal 7: 15.

195. Tsuchida, K., Nakatani, M., Uezumi, A., Murakami, T., and Cui, X. 2008. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. EndocrJ 55(1): 11−21.

196. Ulloa, F. and Marti, E. 2010. Wnt Won the War: Antagonistic Role of Wnt over Shh Controls Dorso-Ventral Patterning of the Vertebrate Neural Tube. Developmental Dynamics 239(1): 69−76.

197. Urist, M.R. 1965. Bone: formation by autoinduction. Science (New York, NY 150(698): 893−899.

198. Villanueva, S., Glavic, A., Ruiz, P., and Mayor, R. 2002. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Developmental biology 241(2): 289−301.

199. Vonica, A., Weng, W., Gumbiner, B.M., and Venuti, J.M. 2000. TCF is the nuclear effector of the beta-Catenin signal that patterns the sea urchin animal-vegetal axis. Developmental biology 217(2): 230−243.

200. Wansleeben, C. and Meijlink, F. 2011. The Planar Cell Polarity Pathway in Vertebrate Development. Developmental Dynamics 240(3): 616−626.

201. Warren, S.M., Brunet, L.J., Harland, R.M., Economides, A.N., and Longaker, M.T. 2003. The BMP antagonist noggin regulates cranial suture fusion. Nature 422(6932): 625−629.

202. Watanabe, K. and Dai, X. 2011. A WNTer Revisit: New Faces of beta-Catenin and TCFs in Pluripotency. Science signaling 4(193).

203. Welt, C., Sidis, Y., Keutmann, H., and Schneyer, A. 2002. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Experimental biology and medicine (Maywood, NJ 227(9): 724−752.

204. Wend, P., Holland, J.D., Ziebold, U., and Birchmeier, W. 2010. Wnt signaling in stem and cancer stem cells. Seminars in cell & developmental biology 21(8): 855−863.

205. Wikramanayake, A.H., Hong, M., Lee, P.N., Pang, K., Byrum, C.A., Bince, J.M., Xu, R.H., and Martindale, M.Q. 2003. An ancient role for nuclear beta-Catenin in the evolution of axial polarity and germ layer segregation. Nature 426(6965): 446−450.

206. Wikramanayake, A.H., Huang, L., Dayal, S., and Klein, W. 1998a. Wnt signaling is required for gastrulation and aboral ectoderm formation in the sea urchin embryo. Developmental biology 198(1): 182−182.

207. Wilson, P.A. and Hemmati-Brivanlou, A. 1995. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376(6538): 331−333.290. -. 1997. Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron 18(5): 699−710.

208. Windsor, P.J. and Leys, S.P. 2010. Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evolution & Development 12(5): 484−493.

209. Wu, J. and Mlodzik, M. 2008. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling. Developmental cell 15(3): 462−469.

210. Yamaguchi, T.P. 2001. Heads or tails: Wnts and anterior-posterior patterning. CurrBiol 11(17): R713−724.

211. Yamakawa, N., Tsuchida, K., and Sugino, H. 2002. The rasGAP-binding protein, Dok-1, mediates activin signaling via serine/threonine kinase receptors. The EMBO journal 21(7): 1684−1694.

212. Yamamoto, M., Saijoh, Y., Perea-Gomez, A., Shawlot, W., Behringer, R.R., Ang, S.L., Hamada, H., and Meno, C. 2004. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428(6981): 387−392.

213. Zeisberg, M., Shah, A.A., and Kalluri, R. 2005. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. The Journal of biological chemistry 280(9): 8094−8100.

214. Zimmerman, L.B., De Jesus-Escobar, J.M., and Harland, R.M. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86(4): 599−606.

Показать весь текст
Заполнить форму текущей работой