Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Интеллектуализация анализа данных диагностики физического развития детей на основе трансформации измерений

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Обосновано применение квантильно-регрессионных моделей в ка честве модели знаний диагностики физического развития на основе анализа возрастных особенностей эмпирических распределений измерений массы и длины тела у детей различного возраста.2. Модифицирован и апробирован LMS-метод, основанный на транс формации первичных измерений к нормальному распределению, для по строения… Читать ещё >

Содержание

  • ГЛАВА 1. ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ДИАГНОСТИКИ ФИЗИЧЕСКОГО РАЗВИТИЯ ДЕТЕЙ С ИСПОЛЬЗОВАНИЕМ СОВРЕМЕННЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
    • 1. 1. Анализ современных подходов к диагностированию физического развития детей
    • 1. 2. Проблемы представления диагностических критериев физического развития детей
    • 1. 3. Значение формы распределения показателей физического развития детей для повышения эффективности диагностики
    • 1. 4. Цели и задачи исследования
  • ГЛАВА 2. АЛГОРИТМИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КВАНТИЛЬНО-РЕГРЕССИОННЫХ МОДЕЛЕЙ
    • 2. 1. Анализ методов построения квантильной регрессии
    • 2. 2. Алгоритмизация выбора вида функций, составляющих модель
    • 2. 3. Выбор оптимального критерия оценки качества квантильно-регрессионных моделей
    • 2. 4. Интегрирование алгоритмов построения модели диагностики физического развития
  • Выводы второй главы
  • ГЛАВА 3. ФОРМИРОВАНИЕ ПРОБЛЕМНО-ОРИЕНТИРОВАННЫХ АЛГОРИТМОВ ДИАГНОСТИКИ ФИЗИЧЕСКОГО РАЗВИТИЯ
    • 3. 1. Анализ свойств ЬМБ-модели для алгоритмизации решения задач диагностики физического развития детей
    • 3. 2. Разработка информационной технологии интеллектуализации диагностики физического развития
    • 3. 3. Моделирование процесса диагностики физического развития
    • 3. 4. Исследование характеристик качества модели диагностики физического развития
  • Выводы третьей главы
  • ГЛАВА 4. ОЦЕНКА ЭФФЕКТИВНОСТИ И ПРОГНОСТИЧЕСКОЙ ЗНАЧИМОСТИ ИНТЕЛЛЕКТУАЛИЗАЦИИ АНАЛИЗА ДАННЫХ ДИАГНОСТИКИ ФИЗИЧЕСКОГО РАЗВИТИЯ ДЕТЕЙ
    • 4. 1. Практическая реализация модели диагностики физического развития детей
    • 4. 2. Прогностическая значимость развития нефропатий и их прогрессирование по результатам моделирования возрастных особенностей физического развития
    • 4. 3. Значение для медицинской практики интеллектуализации анализа данных артериального давления и их корреляции с показателями физического развития
    • 4. 4. Оценка качества жизни детей с учетом гармоничности физического развития
  • Выводы четвертой главы

Интеллектуализация анализа данных диагностики физического развития детей на основе трансформации измерений (реферат, курсовая, диплом, контрольная)

Актуальность темы

Применение информационных технологий для мониторинга социально значимых хронических заболеваний и консультативной поддержки лечебно-диагностического процесса позволяют решать проблемы снижения заболеваемости, инвалидности и смертности. Формальное представление системы знаний о функционировании медицинского учреждения является основой для оптимизации принятия оперативных и долговременных решений. В мировой практике для оперативного обеспечения информацией организованы хранилища данных, интегрирующее разнообразные сведения из существующих учрежденческих автоматизированных систем, объединенные посредством Internet. Сейчас в этот процесс активно включается и Россия.

Существующее множество различных медицинских баз данных, регистров больных с различной патологией, автоматизированных систем принятия решений с накоплением информации, зачастую удовлетворяет только установленной при разработке этих систем специальной цели. Накапливаемые данные, представляют собой разрозненную, разнородную, часто, не систематизированную информацию, которая не используется в решении возникающих на практике задач, потому что недостаточно развиты методы извлечения знаний из множества данных.

Уменьшение разрыва между сбором данных и использованием из них извлеченных знаний является на сегодняшний день актуальной проблемой, для решения которой эффективно применение информационных интеллектуальных технологий.

Интеллектуальный анализ данных (ИАД), получивший в последнее десятилетие широкое распространение, представляет собой бурно развивающееся самостоятельное направление в теории и приложении автоматизированных систем принятия решений в различных областях деятельности.

Содержание термина «ИАД» трактуется Загоруйко Н. Г. как методы авто5 матического обнаружения эмпирических закономерностей при решении задач классификации, распознавания образов и прогнозирования. Отличительной особенностью ИАД является ориентация на задачи анализа данных очень большого объема, плохо обусловленных таблиц (количество признаков сравнимо с количеством объектов), пораженных шумами и пробелами, с признаками, измеренными в разнотипных шкалах, при отсутствии оснований для выдвижения гипотез о законах распределения.

В медицинских исследованиях использование традиционных статистических методов вызывает значительные затруднения в связи с невозможностью получить все необходимые для анализа параметры, наличие скрытых зависимостей между различными видами данных, без априорно известной формы распределения. В связи с этим актуально исследование методов ИАД в прикладных медицинских исследованиях с целью повышения качества диагностики, точности прогноза и эффективности лечебных и реабилитационных мероприятий.

Важное место в педиатрической практике занимает диагностика физического развития. Так как физическое развитие — это интегральная характеристика благополучия не только индивидуума, но и популяции в целом.

В педиатрической практике для многих хронических заболеваний детского возраста не существует определенной специфической симптоматики, относящейся к начальному периоду, но нарушение физического развития, например, торможение роста, нарушение пропорций могут быть определены. Такие неспецифические нарушения являются важным критерием необходимости углубленного обследования ребенка. Простота антропометрических методов, их количественных характер, доступность для полной автоматизации, как самих измерений, так и их оценок, позволяют широко использовать их для диспансеризации детей, т. е. скрининг диагностики.

Антропометрические признаки широко используются в качестве диагностических критериев для распознавания различных патологий. Принципиально важным для практического решения об оценке состояния здоровья ребенка является вопрос о границе между нормой и патологией, т. е. о возникновении донозологических изменений, получивших название «пограничное» состояние. Этим объясняется повышенный интерес к профилям патологии и группам риска, к проблеме реализации их формирования в условиях функционирования автоматизированных систем, где желателен учет как степени угрозы, так и вероятного характера патологии или ее подразделения.

Показатели физического развития являются индикаторами нарушений социально-гигиенического характера, экологической обстановки и поэтому используются не только в медицинской практике. Актуальность диагностики биологического возраста и темпа биологического созревания ребенка очевидна в связи с проблемами школьной зрелости, ранней спортивной ориентации, а также для планирования производства одежды, мебели, специального оборудования.

Динамическое формирование оптимальной совокупности, составляющей модель знаний диагностики физического развития детей, должно обеспечивать наиболее полное удовлетворение потребностей педиатров и других специалистов.

Использование современных информационных технологий изменило взгляд на анализ данных — значительно расширились возможности традиционных статистических методов, стало возможным накопление и обобщение данных из различных источников на основе Internet, активно используется моделирование, вместе с тем обязательным стало требование качественной визуализации информации.

Таким образом, актуальность темы заключается в необходимости формирования современной информационной технологии интеллектуализации анализа данных диагностики физического развития детей.

Работа выполнена в рамках НИР ГБ 01.2005.2305 «Моделирование информационных технологийразработка и совершенствование методов и моделей управления, планирования и проектирования технических, технологических, экономических и социальных процессов и производств» и в соответствии с основным научным направлением АНОО ВПО «Воронежский институт высоких технологий».

Цель и задачи исследования

Целью диссертационной работы является разработка методологических основ, алгоритмов и моделей оценки физического развития детей с использованием современных информационных технологий.

Для достижения поставленной цели необходимо решить следующие задачи:

— сформировать оптимальную совокупность знаний диагностики физического развития, отражающую эмпирические распределения показателей физического развития — длины, массы, индекса массы тела для различных возрастных групп детей;

— предложить математическое и алгоритмическое обеспечение процедур пересчета значений показателей физического развития из первичных измерительных шкал в шкалы и оценки, распространенные в международной практике;

— построить современную модель знаний диагностики физического развития и верифицировать ее по данным экспериментальных измерений длины и массы тела детей различного возраста;

— осуществить подбор рационального минимума диагностических критериев для верификации модели по выборочным данным;

— разработать алгоритмическое и программное обеспечение интеллектуальной поддержки процесса диагностики, индивидуального мониторинга и прогнозирования физического развития детей;

— интегрировать разработанные модели и алгоритмы в единую информационную технологию диагностики физического развития.

Методы исследования. Для решения поставленных задач использовались методы системного анализа, теории управления и информационных систем, прикладной математической статистики, имитационного моделирования, оптимизации и исследования операций.

Научная новизна. В диссертации получены следующие основные результаты, характеризующиеся научной новизной:

— алгоритм построения квантильно-регрессионной модели на основе модифицированного ЬМЭ-метода, отличающийся использованием трансформации первичных измерений, позволяющий значительно расширить существующие методы диагностики физического развития детей;

— процедура визуализации диагностического средства для верификации модели, отличающаяся совместной оценкой характеристик положения, рассеивания и формы трансформированных измерений показателей длины, массы, индекса массы тела и артериального давления;

— методика характеристики медико-биологических показателей пациентов с учетом их половозрастной неоднородности и использованием нормализованных оценок, позволяющая осуществлять индивидуальный и по-пуляционный мониторинг;

— информационная технология интеллектуализации диагностики физического развития, соответствующая международным рекомендациям и практическим потребностям педиатров;

— справочные диаграммы и программа диагностики физического развития, использующая разработанную модель знаний и обеспечивающая реализацию предложенных информационных технологий.

Практическая значимость и реализация результатов работы. Разработана и верифицирована модель оценки физического развития по длине и массе тела детей от 2 до 14 лет с учетом региональных особенностей.

Полученные справочные диаграммы возрастной динамики длины, массы и артериального давления введены в использование для индивидуального мониторинга физического развития детей в работу приемного отделения ГУЗ «Воронежская областная детская клиническая больница № 1» и МУЗ ГО г. Воронежа «Городская детская клиническая поликлиника № 11».

Результаты исследований в виде методического, информационного и программного обеспечения апробированы в деятельности ГУЗ «ВОДКБ № 1».

Теоретические и практические результаты диссертационной работы внедрены в учебный процесс кафедры инновационных систем информатизации и безопасности АНОО ВПО «Воронежский институт высоких технологий» и кафедры госпитальной педиатрии ГОУ ВПО «Воронежская государственная медицинская академия им. Н. Н. Бурденко», разработаны и изданы методические рекомендации.

Апробация работы. Результаты диссертационной работы докладывались и обсуждались на следующих конференциях и семинарах: V и VI Российских конгрессах по детской нефрологии (Воронеж, 2006), (Москва, 2007) — Региональных научно-практических конференциях «Информационные технологии в науке, технике и образовании» (Воронеж, 2007, 2008) — внутривузовских научных отчетных конференциях (Воронеж, 2006;2008) — научно-методических семинарах кафедры информационных технологий и телекоммуникаций АНОО ВПО «Воронежский институт высоких технологий» (Воронеж, 2005; 2008).

Публикации. По теме диссертационной работы опубликовано 15 научных работ, в том числе 5 — в изданиях, рекомендованных ВАК РФ.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка литературы из 170 наименований и приложений. Основная часть работы изложена на 146 страницах, содержит 41 рисунок, 18 таблиц.

В ходе работы получены следующие основные результаты:

1. Обосновано применение квантильно-регрессионных моделей в ка честве модели знаний диагностики физического развития на основе анализа возрастных особенностей эмпирических распределений измерений массы и длины тела у детей различного возраста.2. Модифицирован и апробирован LMS-метод, основанный на транс формации первичных измерений к нормальному распределению, для по строения квантильно-регрессионных моделей показателей физического раз вития детей.3. Разработано алгоритмическое обеспечение процесса построения модели знаний диагностики физического развития на основе LMS-метода с применением трехшаговой процедуры подгонки модели, характеризующей ся использованием критериев различного типа — обобщенного информаци онного критерия Акайке, совместной оценки асимметрии и эксцесса по Д’Агостино и критерия согласия Колмогорова-Смирнова.4. Проведено исследование диагностического средства, отличающего ся совместной оценкой характеристик положения, рассеивания и формы трансформированных измерений для визуализации процесса верификации LMS-моделей.5. Сформулирована оптимальная методика сравнительного анализа медико-биологических показателей с учетом половозрастной неоднородно сти пациентов с применением z-оценок, рассчитанных на основе разрабо танной LMS-модели, для проведения исследований физического развития детей на популяционном уровне. Унифицирован процесс скрининг диагностики путем разработки единой процедуры перерасчета в различные классификационные схемы из предложенной модели знаний для получения оценок достигнутого уровня физического развития.6. Предложена информационная технология интеллектуализации ди агностики физического развития, обеспечивающая современное и эффек тивное представление об индивидуальном развитии ребенка, для решения различных прикладных и исследовательских задач, связанных с физическим развитием детей.7. Разработано и апробировано в лечебно-профилактическом процессе ГУЗ «ВОДКБ № 1» программное обеспечение интеллектуальной поддержки мониторинга, классификации, оценки и прогнозирования массы, длины тела детей в возрасте от 2 до 14 лет для интегрирования в базы данных ЛПУ. Построены диаграммы развития на основе разработанных и верифициро ванных по экспериментальным данным половозрастных моделей длины и массы тела, систолического, диастолического и среднего АД для эффектив ного визуального мониторинга индивидуального развития детей.8. На основе применения разработанных моделей установлена высо кая корреляционная связь показателей массы тела с систолическим, диасто лическим и средним артериальным давлением у детей при эксперименталь ном исследовании здоровых и больных нефропатиями детей. Диагностиро ван высокий рост у пациентов с нефропатиями первых 8 лет жизни в ре зультате применения разработанной модели знаний диагностики физиче ского развития, что позволяет судить о прогностической значимости длины тела у детей с нефропатиями. Подтверждена прямая зависимость физиче ского развития детей и оценок качества жизни по данным международной анкеты (SF-36) на основе экспериментальных исследований. Результаты работы внедрены в учебный процесс кафедры госпиталь ной педиатрии ГОУ ВПО «ВГМА им. Н. Н. Бурденко РосЗдрава», а также используются в практической деятельности ГУЗ «ВОДКБ № 1» и поликли ник г. Воронежа.

Показать весь текст

Список литературы

  1. А., Енюков И. С., Мешалкин А. Д. Прикладная статистика. Исследование зависимостей. 1983.
  2. А., Эйзен Статистиеский анализ. Подход с использованием ЭВМ. М. Мир. 1982. 488 с.
  3. P.M. Прогнозирование состояний на грани нормы и патологии P.M. Баевский. М.: Медицина, 1979. 296 с.
  4. Р. М. Оценка и классификация уровней здоровья с точки зрения теории адаптации/ Р. М. Баевский //Вестн. АМН СССР. 1989. 8. 73−78.
  5. Бактериальный мониторинг флоры мочи у детей с инфекцией мочевой системы и принципы выбора антибактериальных препаратов А. П. Швырев, В. Г. Середняк, О. А. Жданова, О. А. Колесниченко, О. В. Минакова Детская больница. 2004. 4. 28−32.
  6. А. И. Интеллектуальные информационные технологии: Учеб. пособие А. И. Башмаков, И. А. Башмаков. М.: Изд-во МГТУ им. Н.Э. Бау-мана, 2005. 304 с.
  7. А. А. Математическая статистика: Оценка параметров. Проверка гипотез. М.: Наука. 1984
  8. Анализ данных. Статистические и вычислительные методы для научных работников и инженеров. М.: Мир, 2003. 686 с. 9.
  9. В.В. Физическое развитие детей- М., 1976. 226 с. Васильев Ф. П. Численные методы решения экстремальных задач.- М.: Наука, 1980.-518с.
  10. Ю. Е. Объективные показатели нормального развития и состояния здоровья ребенка (нормативы детского возраста) /Ю. Е. Вельтищев, В. П. Ветров-М. 2002.
  11. Ю. Е. Рост ребенка: закономерности, нормальные вариации, соматотипы, нарушения и их коррекция (лекция для врачей) Ю. Е. Вельтищев М. 2000−312 с.
  12. Е.С. Теория вероятностей и ее инженерные приложения. М.: Высшая школа. 1989. 282 с.
  13. Висленев Ю.С. О выборе закона распредления по моментам случайной 148
  14. В. В. Введение
  15. В. В. Эффективность диагностических исследований В. В. Власов. М: Медицина, 1988−246 с.
  16. Л.Ю. Физическое развитие школьников Москвы: современное состояние и методы оценки Л. Ю. Волкова, М. В. Копытько, И. Я. Конь Гигиена и санитария. 2004. 4. 42−46.
  17. И. М. Закономерности физического развития детей и методы его оценки: Учебно-методическое пособие/ И. М. Воронцов. Л. Изд. ЛПМИ. 1986. 56 с.
  18. Гаврюшова Л. П. Особенности физического развития детей с воспалительными заболеваниями почек Л. П. Гаврюшова и др. Материалы конгресса педиатров России. М 1999.-С. 110−111.
  19. А. А. Новая информационная технология анализа медицинских данных А. А. Генкин. СПб.: Политехника, 1999. 146 с.
  20. Государственный доклад «О санитарно-эпидемиологической обстановке в РФ в 2002 г». М 2003.
  21. Е.В. Информатика в патологии, клинической медицине и педиатрии/ Е. В. Гублер. Л.: Медицина, Ленингр. отд. 1990. 176 с.
  22. Н., Смит Г. Прикладной регрессионный анализ. Т.1. М.: Финансы и статистика. 1981. 392 с.
  23. В. Е. Многомерная биометрия для антропологов В. Е. Дерябин М.: МГУ, 1983.-227 с. 25.
  24. Дети России 2000 2001 гг. Москва. 2003. 96 с. Дубова Н. И. Динамическое хранилище данных/ Н.И. Дубова// Открытые системы. 2007. 5 с37−42. 27. Дюк В. A. Data mining интеллектуальный анализ данных /В. А. Дюк. СПб.: Питер, 2001.-368 с.
  25. А.Е. Модуль формирования таблиц соответствия измеритель-ных шкал в подсистеме индуктивного вывода знаний проблемно-ориентиро-ванного инструментального средства /А.Е. Ермаков, В. А. Ниткин// Тр. 12-ой национ. конф. по искусственному интеллекту с международным участием. СПб. 2005 256−272.
  26. Н.Г. Прикладные методы анализа данных и знаний Н.Г. Загоруйко. Новосибирск: Изд-во инст. математики, 1999. 270 с.
  27. А. И. Динамика и тенденции физического развития детей Воронежской области/ А. И. Иванников, В. П. Ситникова, А. Н. Паш-ков //Вопросы современной педиатрии. 2007. 3. 24−28.
  28. А.И. Оценка показателей физического развития детей в системе мониторинга здоровья населения, методические подходы А.И. Иванников, О. В. Минакова, В. П. Ситникова, А.Н. Пашков// Системный анализ и управление в биомедицинских системах. 2008. № 1. 170−173.
  29. М.С. Прогрессирование нефропатий у детей и возможные пути ренопротекции М.С.Игнатова Современные технологии в педиатрии и детской хирургии: матер. III Рос. конгресса, 26−28 окт. М 2004. 213−218.
  30. И. Характеристика физического развития школьников различных регионов России/ И. Изаак, Т. В. Панасюк Гигиена и санитария. 2005. № 5. 61−64.
  31. Индекс массы тела в оценке состояния здоровья детей Воронежской области В. Н. Пенкин, В. П. Ситникова, А. П. Швырев, Л.И. Стахурлова-Воронеж, 2003. 2 2 с.
  32. Н. Н. Факторы прогрессирования хронического пиелонефрита и хронического интерстициального нефрита Н. Н. Картамышева, О. В. Чумакова, А. Кучеренко Педиатрия. 2004. 5. 50−53.
  33. В. Имитационное моделирование. Классика CS. Спб.:Питер- Киев: Издательская группа BHV. 2004. 847 с. 38.
  34. М., Стыоарт А. Теория распределений. М.: Наука. 1966. 587 с. Кобзарь А. И. Прикладная математическая статистика. Для инженеров и научных работников. М.: ФИЗМАТЛИТ. 2006. 816 с.
  35. . А. Возможность вскрытия интуитивных представлений врачей при групповом извлечении знаний/ Б. А. Кобринский //X национальная конференция по искусственному интеллекту КИИ-2006 (25−28 сентября 2006 г., Обнинск): Труды 150
  36. М.Р. Перспективные технологии информационных систем. М.: ДМК Пресс- М.: Компания АйТи, 2003. 288 с. 43.
  37. Д., Хинкли Д. Теоретическая статистика. М.: Мир. 1974. 560 с. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука. 1978. 832 с.
  38. Г. К., Кабанов В. А., Фомин Г. А., Фомина Е. С. Планирование эксперимента в задачах нелинейного оценивания и распознавания образов. М.:Наука. 1981.-172 с.
  39. СИ. Модель зрелости управления данными. Обзор IEEE Computer Society, Vol. 40, No. 4, April 2007// Открытые системы. 2007. № 5.
  40. В. Р.Оценка физического развития как скрининг-тест выявления детей с донозологическими нарушениями/ В. Р. Кучма, В. В. Чепрасов Гигиена и санитария. -2004. 4. С 39−42.
  41. В. Р. Методы исследования физического развития детей и подростков в популяционном мониторинге Р.В. Кучма, Т. Ю. Вишневецкая Т. Ю, Скоблина Н. Н. М.: Издательство ГУНЦЗД РАМН, 1999. 256 с.
  42. В. Р. Оценка физического развития детей и подростков в гигиенической диагностике системы «Здоровье населения среда обитания» Р.В. Кучма. М.: Издательство ГУНЦЗД РАМН, 2003. 316 с.
  43. В. Р. Показатели здоровья детей и подростков в современной системе социально-гигиенического мониторинга/ Р. В. Кучма Гигиена и санитария. 2004. 6 С 14−16.
  44. В. Р. Гигиена детей и подростков: Учебник В. Р. Кучма. М.: Медицина, 2001.-384 с.
  45. Г. Ф. Биометрия: Учебное пособие для биологических специальностей вузов Г. Ф. Лакин М.: Высшая школа, 1990 352 с.
  46. .Ю. Сравнительный анализ критериев проверки отклонения распределения от нормального закона./ Б. Ю. Лемешко, С Ю Лемешко Метрология. 2005.-№.2.-СЗ.-23. 151
  47. Е.М. Оценка качества жизни в педиатрии Е.М. Лукья-нова Качественная клиническая практика. 2002. 4. 34 42.
  48. И.Я. Диаграмма развития как метод оценки физического развития детей с применением новых информационных технологий/ И. Я. Львович, О.В. Минакова// Информационные технологии в науке, технике и образовании: материалы региональной научно-практической конференции. Воронеж: АНОО ВИВТ, РосНОУ (ВФ), 2007. 95−99.
  49. И.Я. Информационная технология интеллектуализации процесса диагностики физического развития детей/ И. Я. Львович, О. В. Минакова, В.П. Ситникова// Вестник Воронежского института высоких технологий. 2008. N 3. 112−115.
  50. И.Я. Использование нормализованных оценок для описания медико- биологических параметров пациентов неоднородных по полу и возрасту/ И. Я. Львович, О. В. Минакова, В.П. Ситникова// Вестник Воронежского института высоких технологий. 2007. 2. 23−29.
  51. И.Я. Определение справочных показателей физического развития детей с применением LMS-метода/ И. Я. Львович, О. В. Минакова, В.П. Ситникова// Вестник ВГТУ. 2007. 10. 96−101.
  52. И.Я. Сравнение способов представления справочных показателей длины и массы тела детей/ И. Я. Львович, О. В. Минакова, В. П. Ситникова, Л.И. Стахурлова// Системный анализ и управление в биомедицинских системах. 2007. № 3. -С.737−741.
  53. И.Я. Формирование алгоритма построения моделей на основе трансформации первичных измерений к нормальности И.Я. Львович, О.В. Минакова// Информационные технологии в науке, технике и образовании: материалы региональной научно-практической конференции. Воронеж: АНОО ВИВТ, РосНОУ (ВФ), 2008. 28−33.
  54. Я.Е., Фролов М. В. Моделирование биотехнических и медицинских систем: Учеб. Пособие. Воронеж, ВГТУ, 1994. 183 с.
  55. Максимова Т. М. Физическое развитие и здоровье детей России (2000−2001 гг.)/
  56. Морфология человека Под. Ред. Б. А. Никитюка, В. П. Чтецова. М.: Изд. Митропольский А. К. Техника статистических вычислений. М.: Наука. 1971 МГУ, 1991.-186 с.
  57. Морфофункциональные константы детского организма. Справочник Под ред. В. А. Доскина, Х. Келлера, Н. Н. Мураенко, Р.В. Тонковой-Ямпольской. М. Медицина, 1999.-228 с. 71.
  58. Мостеллер Ф, Тыоки Дж. Анализ данных и регрессия. Вып. 1. М.: Финансы и Мухин Н. А. Хронические прогрессирующее нефропатии и образ жизни статистика. 1982. 319 с. современного человека/ Н. А. Мухин, И. М. Балкаров, В. Моисеев// Терапевтический архив. 2004. 9. с.5−11.
  59. А. А. Концепция исследования качества жизни в педиатрии А. А. Новик, Т. И. Ионова, Т. П. НикитинаШедиатрия.- 2002- б 83−88. 74.
  60. А.И. Практическая статистика. М.: Экзамен. 2006. 312 с. Первичная артериальная гипертензия у детей и подростков: этиология, диагностика, терапия. Нормативные показатели артериального давления у детей Воронежского региона: Метод, рекомендации/ Кондрыкинский Е. Л., Ситникова В. П., Закиров М. М., Кондратьева И. В., Ковешникова Н. И., Настаушева А. С, Початкова Г. И., Минакова О. В. Воронеж. 2006. 32 с.
  61. В. И. Артериальная гипертензия у детей и подростков: Современные 153
  62. Показатели физического развития детского населения Воронежской области на рубеже второго и третьего тысячелетий/ А. И. Иванников, В. Н. Пенкин, Ситникова В. П., Пашков А. Н., Швырев А. П. Москва- Воронеж, 2005. 121 с. 79. 80. 81. 82. 83. 84.
  63. А. Б. Принципы использования антропометрии в клинической оценке состояния питания А. Б. Петухов, В. Е. Дерябин Вопросы питания 2003. 5. Т. В. Сергеева Актовая речь на торжественном собрании, посвящ. 83 годовщине со дня основания нефрологического отделения НИИ педиатрии НЦЗД РАМН. М., 2005. 35.
  64. В.П. Качество жизни подростков с гломерулонефритом, пиелонефритом// В. П. Ситникова, Т. Л. Настаушева, А. П. Швырев, Е. В. Свиридова, О. В. Гурович, О. В. Минакова, И. Г. Волосовец //Сборник тезисов VI Российского конгресса по детской нефрологии. Москва 2007. 103. 87. 88.
  65. Э. Корпоративные хранилища данных. Планирование, разработка, Стечкин Б, Субботин Ю. Н. Сплайны в вычислительной математике. М.: Стулов А. В. Хранилища данных: основные архитектуры и принципы реализация. Том. 1: М.: Изд. «Вильяме», -2001. 250 с. Наука.-1976.-248 с. построения /А.В. Стулов Новости искусственного интеллекта. 2003. 2. 37 154
  66. А. Г. Здоровье и физическое воспитание детей и подростков А. Г. Сухарев. М.: Медицина, 1991. 272 с.
  67. Л. И. Основы современной антропологии: Учебное пособие Л. И. Тегако, И. И. Саливан. М.: Университетское, 1989 271 с. 92.
  68. Уилкс Математическая статистика. М.: Мир. 1967. 682 с. Управление в биотехнических и медицинских системах/ Под ред. академика АЕН В. Н. Фролова.- Воронеж: ВГТУ, -1994. 145 с.
  69. Физиология роста и развития детей и подростков (теоретические и клинические вопросы). Руководство в 2-х томах Под ред. А. А. Баранова, Л. А. Щеплягиной. М. Издательство: ГЭОТАР-Медиа, 2006. 896 с.
  70. Физическое развитие (рост, масса) детей Воронежской области Под ред. В. Н. Пенкина. Воронеж, 2000. 41 с.
  71. Р. Клиническая эпидемиология. Основы доказательной медицины Р. Флетчер, Флетчер, Э. Вагнер. М.: Медиа Сфера, 1998. 352 с.
  72. М., Вульф Д. А. Непараметрические методы статистики. М.: Финансы и статистика. 1983. 286 с. 99.
  73. П. Робастность в статистике. М.: Мир. 1984. 304 с. Швырев А. П. Особенности возрастной динамики длины тела детей с нефропатиями/ А. П. Швырев, В. П. Ситникова, О. В. Минакова //Сб. тезисов V Рос. конгресса по детской нефрологии. Воронеж, 2006. 264−266.
  74. А.П. Особенности корреляции артериального давления и показателей физического развития// А. П. Швырев, А. С. Настаушева, О. В. Минакова, Красных Л. В., В. П. Ситникова //Сб. тезисов VI Российского конгресса по детской нефрологии. Москва.- 2007.-С. 109.
  75. А.П. Особенности линейного роста у детей с хроническими нефропатиями/ А. П. Швырев, В. П. Ситникова, А. Н. Пашков, О.В. Минакова// Вестник ВолГМУ. 2007. № 3. 23−25.
  76. Р. Теория вероятностей. Математическая статистика. Статистический контроль качества. М.: Мир. 1970. 368 с. 155
  77. В.О., Тишук Е. А. Актуальные вопросы информатизации в здравоохранении и медицинской науке. Проблемы социальной гигиены, здравоохранения и истории медицины. 2005. № 4. 3−6.
  78. О.П. Изучение здоровья населения на современном этапе развития общества О. П. Щепин, В. А. Медик, В. И. Стародубов Гигиена и санитария. 2005. 5 С 3−6.
  79. . Нетрадиционные методы многомерного статистического анализа. М.: Финансы и статистика. 1983. 312 с.
  80. В. В. Автоматизированная система профилактических осмотров детского населения (система оценки здоровья детского населения). Метод. рекомендации В. В. Юрьев, А. Симаходский, В. Лебедев Л. 1991. 30 с.
  81. В. В. Рост и развитие ребенка. Краткий справочник/ В. В. Юрьев, А. Симаходский, М. М. Хомич. Питер. 2007. 272 с.
  82. Ю. Г. Оценка физического развития детей центильным методом Ю. Г. Яковлев, В. И. Кульков, Н. Н. Курьянова Сов. Здравоохранение. 1989. № 12.-С.26−30.
  83. Ю. А. Грацилизация и внутригрупповое распределение типов конституции московских подростков во второй половине XX века Ю. А. Ямпольская Педиатрия -2007. 2 С 120−124.
  84. Ю. А. Региональное разнообразие и стандартизованная оценка физического развития детей и подростков Педиатрия. 2005. 6 120−124.
  85. Ю. А. Состояние, тенденции и прогноз физического развития детей и подростков России Ю. А. Ямпольская, Е. З. Година Российский педиатрический журнал. 2005. 2. 30−43.
  86. Borghi Е. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves./E Borghi, M. de Onis, С Garza, Van den Broeck J, EA Frongillo//Statistics in Medicine. 2006. Vol. 25: — P. 247−265.
  87. Buchinsky M. Recent Advances in Quantile Regression Models: A Practical Guidline for Empirical Research// Journal of Human Resources, 1998. Vol. 33(1). P. 88 126.
  88. Chadha V. Is growth a valid outcome measure of dialysis clearance in children undergoin peritoneal dialysis?/V. Chadha, DL Blowey, BA Warady// Perit. Dial. Int. 2001. V.21.-P.179−184.
  89. Cizek P. Quantile Regression/ XploRe Application Guide, ed. by W. Hardle, Z. Hlavka, and S. Klinke. Springer, Berlin. 2003: — P. 19−48.
  90. Cole TJ Smoothing reference centile curves: the LMS method and penalized likelihood/ TJ Cole, PJ. Green//Statistics in Medicine. 1992. Vol. 11. P 1305−1319
  91. Cole TJ Establishing a standard definition for child overweight and obesity worldwide: international survey./ TJ Cole, MC Bellizzi, KM Flegal, WH. Dietz//British Medical Journal.-2000. Vol.3. -P. 1240−1243.
  92. Cole TJ. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood /TJ Cole, JV Freeman, MA. Preece //Statistics in Medicine.- 1998. -Vol. 17: -P. 407−429.
  93. Deurenberg P. Body mass index and percent body fat: a meta analysis among different ethnic groups/ P Deurenberg, M Yap, WA van Staveren.// Int. J Obes Relat Metab Disord. 1998. Vol.12. P. 1164−1171.
  94. Dibley MJ. Development of normalized curves for the international growth reference: historical and technical considerations/ MJ Dibley, JB Goldsby, NW Staehling, FL Trowbridge//American Journal of Clinical Nutrition. 1987. Vol. 46. -P.736−748.
  95. Englund MS. Growth impairment at renal transplantation-a determinant of growth and final height./ MS Englund, G. Tyden, I. Wikstad, UB Berg// Pediatr. Transplant. 2003. V. 7 P 192−199.
  96. Flegal K.M. Curve smoothing and transformations in the development of growth curves/ K.M. Flegal// Am. J. Clin. Nutr. 1999. -V. 70. -P. 163 -168.
  97. Flegal KM. Changes in the distribution of body mass index of adults and children in the US population/ KM Flegal, RP Troiano Int J Obes Relat Metab Disord. 2000. Vol.7. -P.807−818.
  98. Fredriks AM. Continuing positive secular growth change in the Netherlans 1955- 1997 /AM Fredriks, S. van Buuren, RJF Burgmeijer //Pediatric Research. 2000. Vol. 47. P. 316−323.
  99. Freeman J.V. Cross-sectional stature and weight reference curves for the UK./ J.V. Freeman, T.J. Cole, S Chinn, P.R.M. Hones//Arch Dis Child. 1995. Vol.73. P. 17−24.
  100. Frongillo, EA. Univariate and bivariate growth references. Hauspie RC, Cameron N, Molinari L (eds.) Methods in human growth research. Cambridge: Cambridge University Press, 2004. P.261−286.
  101. Garza C, de Onis M, for the WHO Multicentre Growth Reference Study Group. Rationale for developing a new international growth reference. Food and Nutrition Bulletin 2004- 25(Suppl. 1): S5−14. 141. Guo S, Roche AF, Baumgartner RN, et al. Kernel regression for smoothing percentile curves: reference data for calf and subscapular skinfold thicknesses in Mexican 158
  102. Hahn G.J. Statistical models in Engineering./GJ. Hahn, S.S. Shapiro, G.H. Hahn. New York. John Wiley. 1994. 143. P.10−15. 144. He X. Quantile curves without crossing./American Statistician. 1997. V. 51. P. 186−192.
  103. Healy MJR. Statistics of growth standards. /Falkner F, Tanner JM.// Human growth: Hall D.M.B. Growth monitoring./D. M.B. Hall Arch. Dis. Child. 2000. -V.82. A comprehensive treatise. New York: Plenum Press, 1986. Vol. 3. P 47−58
  104. Jackson Lisa V. Blood pressure centiles for Great Britain./ L.V. Jackson, Nandu KS Thalange, TJ Cole// Arch. Dis. Child. 2007. V.92. P. 298−303.
  105. Johnson M. E. Bounds on the sample skewness and kurtosis/ M.E. Johnson, V.W.Lowe// Technometrics. 1979. V. 21. P. 377−378.
  106. Koenker R. Quantile Regression/ R. Koenker, K. F. Hallock //Journal of Economic Perspectives-2001.-Vol. 1 5 P 143−156.
  107. Konishi S. Generalized information criteria in model selection/ S. Konishi, G. Kitagawa//Biometrika. 1996. Vol. 4. P. 875−890.
  108. Kuczmarski RJ. CDC growth charts for the United States: methods and development./ RJ Kuczmarski, CL Ogden, SS Guo, LM Grummer-Strawn, KM Flegal//National Center for Health Statistics. Vital and Health Statistics. 2
  109. Kuczmarski RJ. Criteria for definition of overweight in transition: background and recommendations for the United States/ KM Flegal, RJ Kuczmarski Am J Clin Nutr. 2000. -Vol. 5.-P.1067−1088.
  110. Mulligan J. Growth monitoring: testing the new guidelines./ J. Mulligan, LD Voss, ES McCaughey, BJR Bailey, PR Betts// Arch. Dis. Child. 1998. V. 79. P. 318−322.
  111. Nelson D.B. Conditional heteroskedasticity in asset returns a new approach/ D.B. Nelson// Econometrica- 1991. V. 59. P. 347−370.
  112. Ong, K.K. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions./ K.K. Ong, R.J. Loos //Acta Paediatr. 2006. V. 8. P.904−908. 155. Pan H. A comparison of goodness of fit tests for age-related reference ranges/H Pan, TJ Cole //Statistics in Medicine. 2004. Vol. 23. P. 1749−1765. 159
  113. Rigby RA. Smooth centile curves for skew and kurtotic data modelled using the RA Rigby, DM Stasinopoulos// Statistics in Box-Сох power exponential distribution./ Medicine. 2004. V. 23. P.3053−3076.
  114. Royston P. A method for estimating age-specific reference intervals (normal ranges) based on fractional polynomials and exponential transformation/ P Royston, EM Wright//Journal of the Royal Statistical Society, Series A, 1998. Vol. 161. P 79−101.
  115. Royston P. Goodness-of-fit statistics for age-specific reference intervals./ P. Royston, EM Wright// Statistics in Medicine. 2000. V.19. P.2943−2962.
  116. Schaefer F. Body mass index and percentage fat mass in healthy German schoolchildren and adolescents/ F. Schaefer, M. Georgi, E. Wuhl, К Scharer //Int J Obes Relat Metab Disord. 1998. Vol. 5. P. 461−469.
  117. Sean F. Body mass index and mortality in «healthier» as compared with «sicker» haemodialysis patients: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS) F. Sean et. al. Nephrol. Dialys. Transplant. 2001. Vol. 16. P. 2386−2394.
  118. Silverman B.W. Density Estimation for statistics and data analysis. London. Chapman&Hall. 1986. 286 p.
  119. Stephens M.A. EOF Statistics for goodness of fit and some comparisons./ M.A. Stephens// J. Am. Statist. Assoc. 1974 V. 69. P. 730−737. 164. Van Buuren S. Worm plot: A simple diagnostic device for modeling growth reference curves./ S. Van Buuren, AM Fredriks //Statistics in Medicine. 2001. -Vol. 20. P. 1259−1277.
  120. Voss L D. Changing practice in growth monitoring./ LD Voss// BMJ. 1999. V. 318.-P. 344−345
  121. Wang J. Asians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements/ J Wang, JC Thornton, M Russell, S. Burastero J Clin Nutr. 1994. Vol. 60. P.23−28. 167. WHO Multicentre Growth Reference Study Group. Enrolment and baseline characteristics in the WHO Multicentre Growth Reference Study//Acta Paediatrica. 2006. Vol.4.-P. 7−15. 168. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: 160
  122. Wong C.S. Anthropometric measures and risk of death in children with end-stage renal disease Am. J. Kidney Dis. 2000. Vol. 36. P. 811−819.
  123. Wright CM. Growth reference charts for use in the United Kingdom/ С M. Wright, I.W. Booth, C M Buckler, T.J. Cole//Arch. Dis. Child. 2002. V. 86. P. 11−14. 161
Заполнить форму текущей работой