Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Молекулярный и генетический анализ некоторых семейств гликозил-гидролаз микроорганизмов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

У молочнокислых бактерий Lactobacillus plantarum NRRL В-4496 и Pediococcus pentosaceus NRRL В-11 465 обнаружена сходная структура локуса утилизации сахарозы: дивергентно расположенные ген scrA, кодирующий сахарозо-специфичный второй фермент фосфотрансферазной системы, и гены scrB, scrR и agi, кодирующие ß—фруктозидазу, регуляторный белок и а-глюкозидазу соответственно. Сходство 5'-концевых… Читать ещё >

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
  • Глава I. Гликозил-гидролазы: принципы классификации
    • 1. Классификации, основанные на энзиматических свойствах гликозидаз
    • 2. Классификация, основанная на структурном сходстве гликозидаз
  • Глава II. Системы утилизации сахарозы грамположительных бактерий
    • 1. Система утилизации сахарозы Bacillus subtilis
      • 1. 1. Два пути утилизации сахарозы
      • 1. 2. Сахаразный и левансахаразный регулоны: сходство с ô-gZ-опероном Escherichia col
      • 1. 3. Леваназный оперон
      • 1. 4. Утилизация сахарозы у других штаммов Bacillus subtilis
    • 2. Системы утилизации сахарозы у других представителей рода Bacillus
      • 2. 1. Bacillus stearothermophilus
      • 2. 2. Bacillus circulons
      • 2. 3. Paenibacillus (Bacillus) polymyxa
      • 2. 4. Bacillus licheniformis
      • 2. 5. Bacillus amyloliquefaciens
      • 2. 6. Bacillus halodurans
      • 2. 7. Другие виды Bacillus
      • 2. 8. Штаммы Bacillus неизвестной видовой принадлежности
    • 3. Системы утилизации сахарозы у других немолочнокислых грамположительных бактерий
      • 3. 1. Staphylococcus
      • 3. 2. Clostridium 30 Ъ.Ъ. Bifidobacterium 31 3.4. Актиномицеты
    • 4. Системы утилизации сахарозы молочнокислых бактерий
      • 4. 1. Streptococcus mutans
      • 4. 2. Другие представители рода Streptococcus
      • 4. 3. Lactococcus lactis
      • 4. 4. Leuconostoc mesenteroides
      • 4. 5. Lactobacillus и Pediococcus Ъ
  • Глава III. Гены ферментации мелибиозы Saccharomyces cerevisiae и других видов дрожжей
  • МАТЕРИАЛЫ И МЕТОДЫ
    • 1. Бактериальные штаммы, среды и тестирование сбраживания сахарозы
    • 2. Выделение ДНК из молочнокислых бактерий
    • 3. Полимеразная цепная реакция
    • 4. Методы генной инженерии
    • 5. Среды для дрожжей и тестирование сбраживания мелибиозы
    • 6. Штаммы дрожжей и методы генетической гибридизации
    • 7. Молекулярное кариотипирование и Саузерн-гибридизация хромосом дрожжей
    • 8. Компьютерный анализ аминокислотных последовательностей 57 РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 1. Скрининг коллекции штаммов с помощью ПЦР
    • 2. Секвенирование фрагмента гена scrB Lactobacillus plantarum
    • 3. Рестрикционное картирование локуса утилизации сахарозы
    • 4. Сравнительный анализ последовательностей бактериальных сахараз
    • 5. Генетическое картирование а-галактозидазных генов семейства MEL1-MEL11 в теломерах дрожжей Saccharomyces cerevisiae
    • 6. Идентификация нового семейства а-галактозидазных генов MEL12-MEL14 у Saccharomyces cerevisiae
    • 7. Генетическое картирование а-галактозидазных генов семейства MEL12-MEL14 в теломерах дрожжей Saccharomyces cerevisiae
    • 8. Анализ аминокислотных последовательностей (З-фруктозидаз. Обнаружение (З-фруктозидазного суперсемейства
    • 9. a-L-Арабиназы и P-D-ксилозидазы — гомологи p-фруктозидаз
    • 10. Обсуждение результатов анализа структур белков фуранозидазного суперсемейства
  • ВЫВОДЫ

Молекулярный и генетический анализ некоторых семейств гликозил-гидролаз микроорганизмов (реферат, курсовая, диплом, контрольная)

выводы.

1. У молочнокислых бактерий Lactobacillus plantarum NRRL В-4496 и Pediococcus pentosaceus NRRL В-11 465 обнаружена сходная структура локуса утилизации сахарозы: дивергентно расположенные ген scrA, кодирующий сахарозо-специфичный второй фермент фосфотрансферазной системы, и гены scrB, scrR и agi, кодирующие ß—фруктозидазу, регуляторный белок и а-глюкозидазу соответственно. Сходство 5'-концевых частей генов scrB у L. plantarum и P. pentosaceus достигает 98.6%.

2. Проведено картирование в субтеломерных районах хромосом Saccharomyces cerevisiae девяти полимерных генов ферментации мелибиозы: ген MEL2 локализован в левом плече седьмой хромосомы (VII L), MEL3 — в XVI L, MEL4 — в XI L, MEL5 — в IV L, MEL6 — в XIIIR, MELI — в VI R, MEL8 — в XV R, MEL9 — в X R и MEL10 — в XIIR.

3. У штамма S. cerevisiae CBS 2888 обнаружено три гена ферментации мелибиозы MEL12-MEL14, представляющие новое дивергентное семейство а-галактозидазных генов. Проведено картирование этих генов в субтеломерных районах левых плечей хромосом S. cerevisiae: MELI2 в — IX, MEL13 — в XV и MEL14 — в X.

4. Обнаружена закономерность локализации полимерных генов семейств утилизации углеводов у S. cerevisiae. Гены ферментации сахарозы, мальтозы и мелибиозы, принадлежащие одному семейству (SUC, MAL, MELI-MELI 1 или MEL12-MEL14), никогда не находятся в противоположных концах одной и той же хромосомы (даже в разных штаммах).

5. Обнаружена гомология аминокислотных последовательностей ß—фруктозидаз, принадлежащих двум разным семействам гликозил-гидролаз: GH32 и GH68. Эти два семейства объединены в ß—фруктозидазное суперсемейство.

6. Обнаружена гомология белков ß—фруктозидазного суперсемейства с ß—D-ксилозидазами и a-L-арабинофуранозидазами семейств GH43 и GH62 гликозил-гидролаз. Оба семейства включены в состав ß—фруктозидазного суперсемейства. В состав этого суперсемейства также включена группа гипотетических белков, вероятно, кодирующих гликозидазы.

1. Дорошенко В. Г., Данилевич В. Н., Каратаев Г. И., Лившиц В. А. Структурная и функциональная организация транспозона Тп2555, несущего гены утилизации сахарозы. Молекуляр. биология. 1988. Т. 22. С. 645−658.

2. Кочетков Н. К, Бочков А. Ф., Дмитриев Б. А., Усов А. К, Чижов О. С., Шибаев В. Н. Химия углеводов. Москва: «Химия», 1967, С. 499−450.

3. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. Москва: Мир, 1984. 480 с.

4. Наумов Г. И. Естественное разнообразие дрожжей неисчерпаемый генофонд для фундаментальных и прикладных разработок. Успехи современной биологии. 1997. Т. 117. С. 185−195.

5. Наумов Г. И. Идентификация полимерных генов ферментации мелибиозы у дрожжей Saccharomyces cerevisiae. Докл. Акад. Наук СССР. 1989. Т. 304. С. 1475−1477.

6. Наумов Г. И. Таксономическая генетика дрожжей Saccharomyces cerevisiae: ферментация Сахаров. В: Основные направления генетики микроорганизмов. Под ред. Наумова Г. И., Кондратьевой В. И., Наумовой Е. С. Москва: «Наука», 1985, С. 35−44.

7. Наумов Г. К, Наумов Д. Г. Генетическое картирование нового дивергентного семейства а-галактозидазных генов MEL у дрожжей Saccharomyces cerevisiae. Биотехнология. 1997. № 1. С. 26−28.

8. Наумов Г. И, Наумов Д. Г. Суперсемейство а-галактозидазных генов MEL у дрожжей Saccharomyces cerevisiae. Докл. Акад. Наук. 1997. Т. 353. С. 426−429.

9. Наумов Г. И, Наумов Д. Г., Луис Э. Д. Локализация семейства а-галактозидазных генов MEL в правых и левых теломерах дрожжей Saccharomyces cerevisiae. Докл. Акад. Наук. 1995. Т. 341. С. 134−136.

10. Наумов Г. И., Никоненко Т. А., Кондратьева В. И. Таксономическая идентификация сахаромицетов дрожжевого генетического центра Калифорнийского университета. Генетика. 1994. Т. 30. С. 45−48.

11. Наумов Г. К, Толсторуков И. И. Сравнительная генетика дрожжей. Сообщение X. Реидентификация мутаторов типов спаривания у сахаромицетов. Генетика. 1973. Т. 9. С. 82−91.

12. Наумов Д. Г. Генетическое картирование суперсемейства а-галактозидазных генов MEL дрожжей Saccharomyces cerevisiae в теломерах. Тезисы IV научной конференции ГосНИИгенетика. 22−26 апреля 1996. С. 21.

13. Наумов Д. Г. Гомологичный локус геномов Bacillus subtilis и Bacillus stearothermophilus, содержащий гены левансахаразы и леваназы. Молекуляр. биология. 1999. Т. 33. С. 207−210.

14. Наумов Д. Г. Новое суперсемейство гликозил-гидролаз: Р-фруктозидазы генетически родственны (3-ксилозидазам и a-L-арабиназам. II съезд Вавиловского общества генетиков и селекционеров. Тезисы докладов. 1−5 февраля 2000. Санкт-Петербург. Т. 2. С. 231−232.

15. Наумов Д. Г. Новое суперсемейство гликозил-гидролаз: Р-фруктозидазы гомологичны р-ксилозидазам и a-L-арабиназам. Материалы конференции «Биосфера и человечество». 20−21 сентября 2000. Обнинск. С. 116−122.

16. Наумов Д. Г., Дорошенко В. Г. p-Фруктозидазы: новое суперсемейство гликозил-гидролаз. Молекуляр. биология. 1998. Т. 32. С. 902−907.

17. Наумов Д. Г., Дорошенко В. Г., Лившиц В. А. Секвенирование гена сахаразы из Lactobacillus plantarum. Тезисы V научной конференции ГосНИИгенетика. 28−31 октября 1997. С. 23.

18. Наумов Д. Г., Лившиц В. А. Молекулярная структура локуса утилизации сахарозы Lactobacillus plantarum: сравнение с Pediococcus pentosaceus. Молекуляр. биология. 2001. Т. 35. С. 19−27.

19. Прайд Ф. Е., Льюис Э. Д. Теломеры Saccharomyces cerevisiae. Биохимия. 1997. Т. 62. С. 1442−1452.

20. Хорлин А. Я. Активные центры карбогидраз. В: Структура и функции активных центров ферментов. Москва: «Наука», 1974, С. 39−69.

21. Alpert C.-A., Siebers U. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the BglG family of transcriptional antiterminators. J. Bacteriol. 1997. V. 179. P. 1555−1562.

22. AmoryA., KunstF., Aubert E., KlierA., Rapoport G. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 1987. V. 169. P.324−333.

23. Amster-Choder O., Houman F., Wright A. Protein phosphorylation regulates transcription of the (3-glucoside utilization operon in E. coli. Cell. 1989. V. 58. P. 847−855.

24. Arnaud M., Debarbouille M., Rapoport G., Saier Jr.M.H., Reizer J. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis. J. Biol. Chem. 1996. V. 271. P. 18 966−18 972.

25. Aslanidis Ch., SchmidK., Schmitt R. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffmose in Escherichia coli. J. Bacteriol. 1989. V. 171. P. 6753−6763.

26. Aslanidis Ch., Schmitt R. Regulatory elements of the raffmose operon: nucleotide sequences of operator and repressor genes. J. Bacteriol. 1990. V. 172. P. 2178−2180.

27. Aymerich S., Steinmetz M. Cloning and preliminary characterization of the sacS locus from Bacillus subtilis which controls the regulation of the exoenzyme levansucrase. Mol. Gen. Genet. 1987. V. 208. P. 114−120.

28. Aymerich S., Steinmetz M. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 10 410−10 414.

29. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res. 1993. V. 21. P. 3097−3103.

30. Balows A., Triiper H.G., Dworkin M., Harder W., Schleifer K.-H. (Eds.) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, 1992, V. 2.

31. Bardowski J., Ehrlich S.D., Chopin A. BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in J3-glucoside utilization in Lactococcus lactis. J. Bacteriol. 1994. V. 176. P. 5681−5685.

32. Beguin P. Molecular biology of cellulose degradation. Ann. Rev. Microbiol. 1990. V.44. P. 219−248.

33. Bergeron L.J., Morou-Bermudez E., Burne RA. Characterization of the fructosyltransferase gene of Actinomyces naeslundii WVU45. J. Bacteriol. 2000. V. 182. P. 3649−3654.

34. Bezzate S., Aymerich S., Chamberi R., Czarnes S., Berge O., Heulin Th. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ. Microbiol. 2000. V. 2. P. 333−342.

35. Bezzate S., Steinmetz M., Aymerich S. Cloning, sequencing, and disruption of a levanase gene oi Bacillus polymyxa CF43. J. Bacteriol. 1994. V. 176. P. 2177−2183.

36. Birsan C., Johnson P., Joshi M., MacLeod A., Mcintosh L., Monem V., Nitz M., Rose D.R., TullD., Wakarchuck W.W., Wang Q., Warren R.A.J., White A., Withers S.G. Mechanisms of cellulases and xylanases. Biochem. Soc. Trans. 1998. V. 26. P. 156−160.

37. Boddy L.M., Berges T., Barreau C., Vainstein M.H., Dobson M.J., Ballance D.J., Peberdy J.F. Purification and characterisation of an Aspergillus niger invertase and its DNA sequence. Curr. Genet. 1993. V. 24. P. 60−66.

38. Boss A., Nussbaum-Shochat A., Amster-Choder O. Characterization of the dimerization domain in BglG, an RNA-binding transcriptional antiterminator from Escherichia coli. J. Bacteriol. 1999. V. 181. P. 1755−1766.

39. Bringel F., Curk M.-Ck, Hubert J.-C. Characterization of lactobacilli by Southern-type hybridization with a Lactobacillus plantarum pyrDFE probe. Int. J. Syst. Bacteriol. 1996. V. 46. P. 588−594.

40. Broadbent JR., Oberg C.J., Wei L. Characterization of the Lactobacillus helveticus groESL operon. Res. Microbiol. 1998. V. 149. P. 247−253.

41. Bruckner R" Wagner E., Gotz F. Characterization of a sucrase gene from Staphylococcus xylosus. J. Bacteriol. 1993. V. 175. P. 851−857.

42. Buckholz R.G., Adams B.G. Induction and genetics of two a-galactosidase activities mSaccharomyces cerevisiae. Mol. Gen. Genet. 1981. V. 182. P. 77−81.

43. Burkardt H.J., Mattes R, Schmid K., Schmitt R. Properties of two conjugative plasmids mediating tetracycline resistance, raffinose catabolism and hydrogen sulfide production in Escherichia coli. Mol. Gen. Genet. 1978. V. 166. P. 75−84.

44. Burne R.A., Penders J.E.C. Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-?-D-fructosidase. Infect. Immun. 1992. V. 60. P. 4621−4632.

45. Burne RA., Penders J.E.C. Differential localization of the Streptococcus mutans GS-5 fructan hydrolase enzyme, FruA. FEMS Microbiol. Lett. 1994. V. 121. P. 243−249.

46. Burne R.A., Schilling K., Bowen W.H., Yasbin R.E. Expression, purification, and characterization of an exo-?-D-fructosidase of Streptococcus mutans. J. Bacteriol. 1987. V. 169. P. 4507−4517.

47. Burne R.A., Wen Z.Th., Chen Y.-Y.M., Penders J.E.C. Regulation of expression of the fructan hydrolase gene of Streptococcus mutans GS-5 by induction and carbon catabolite repression. J. Bacteriol. 1999. V. 181. P. 2863−2871.

48. Carle G.F., Frank M., Olson M.V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986. V. 232. P. 65−68.

49. Casey G.P., Xiao W, Rank G.H. Construction of a-galactosidase-positive strains of industrial baker’s (Saccharomyces cerevisiae) yeasts. ASBC J. 1988. V. 46. P. 67−71.

50. Chambert R., Petit-Glatron M.-F. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem. J. 1991. V. 279. P. 35−41.

51. Chassy B. Sucrose metabolism and glucosyltransferase activity in oral streptococci. In: Glucosyltransferases, Glucans, Sucrose, and Dental Caries. Eds. Doyle R.J., Ciardi J.E., Washington: IRL Press, 1983. P. 3−10.

52. Chen Q., Postma P.W., Amster-Choder O. Dephosphorylation of the Escherichia coli transcriptional antiterminator BglG by the sugar sensor BglF is the reversal of its phosphorylation. J. Bacteriol. 2000. V. 182. P. 2033;2036.

53. Chen Y.-Y.M., Lee L.N., LeBlanc D.J. Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715. Infect. Immun. 1993. V. 61. P. 2602−2610.

54. Collins M.D., Williams A.M., Wallbanks S. The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol. Lett. 1990. V. 70. P. 255−262.

55. Coutinho P.M., Henrissat B. Carbohydrate-Active Enzymes server. 2001. (http://afmb.cnrs-mrs.fr/~pedro/CAZY/db.html).

56. Crennell S.J., Garman E.F., Laver W.G., Vimr E.R., Taylor G.L. Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 9852−9856.

57. Crutz A.-M., Steinmetz M., Aymerich S., Riehter R., Le Coq D. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J. Bacteriol. 1990. V. 172. P. 1043−1050.

58. Dagnall B.H., Paulsen I.T., Saier Jr.M.H. The DAG family of glycosyl hydrolases combines two previously identified protein families. Biochem. J. 1995. V. 311. P. 349−350.

59. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995. V. 3. P. 853−859.

60. Debarbouille M., Arnaud M., Fouet A., Klier A., Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J. Bacteriol. 1990. V. 172. P. 3966−3973.

61. Debarbouille M, Martin-Verstraete I., Arnaud M., Klier A., Rapoport G. Positive and negative regulation controlling expression of the sac genes in Bacillus subtilis. Res. Microbiol. 1991. V. 142. P. 757−764.

62. Debarbouille M., Martin-Verstraete I., Kunst F., Rapoport G. The Bacillus subtilis sigL gene encodes an equivalent of a54 from Gram-negative bacteria. Proc. Natl. Acad. Sei. USA. 1991. V. 88. P. 9092−9096.

63. Delfour A. Approche tactique pour une analyse par spectroscopic de masse de la structure primaire des proteines: application a la levanesaccharase de B. subtilis. These de Doctorat d’Etat. Universite Paris VII, Paris, 1981 (цитируется по 91, 318.).

64. Denizot F.C. B. subtilis genomic DNA fragment (88 kb). GenBank accession number Z94043. 1997.

65. Divne Ch., Stahlberg J., Reinikainen T., Ruchonen L., Pettersson G., Knowles J.K.C., Teeri T.T., Jones T.A. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science. 1994. V. 265. P. 524−528.

66. Dodd H.M., Horn N., Gasson M.J. Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol. 1990. V. 136. P. 555−566.

67. Egeter 0., Bruckner R. Characterization of a genetic locus essential for maltose-maltotriose utilization in Staphylococcus xylosus. J. Bacteriol. 1995. V. 177. P. 2408−2415.

68. Ennahar S., Aoude-Werner D., Sorokine O., van Dorsselaer A., Bringel F., Hubert J.-C., Hasselmann C. Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl. Environ. Microbiol. 1996. V. 62. P. 4381−4387.

69. Enzyme Nomenclature. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. San Diego: Acad. Press, 1992. 862 p.

70. Ferretti J.J., Gilpin M.L., Russell R.R.B. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J. Bacteriol. 1987. V. 169. P. 4271−4278.

71. Ferretti J.J., Huang T.-T., Russell R.R.B. Sequence analysis of the glucosyltransferase A gene (gtfA) from Streptococcus mutans Ingbritt. Infect. Immun. 1988. V. 56. P. 1585−1588.

72. Fouet A., Arnaud M., Klier A., Rapoport G. Characterization of the precursor form of the exocellular levansucrase from Bacillus subtilis. Biochem. Biophys. Res. Com. 1984. V. 119. P. 795−800.

73. Fouet A., Klier A., Rapoport G. Nucleotide sequence of sucrase gene of Bacillus subtilis. Gene. 1986. V. 45. P. 221−225.

74. Fujiwara T., Hoshino T., Ooshima T., Sobue Sk, Hamada Sh. Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect. Immun. 2000. V. 68. P. 2475−2483.

75. Funane K, Mizuno K, Takahara H, Kobayashi M. Gene encoding a dextransucrase-like protein in Leuconostoc mesenteroides NRRL B-512 °F. Biosci. Biotechnol. Biochem. 2000. V. 64. P. 29−38.

76. Garcia-Vallve S., Palau J., Romeu A. Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtil is. Mol. Biol. Evol. 1999. V. 16. P. 1125−1134.

77. Gasson M.J. Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol. Lett. 1984. V. 21. P. 7−10.

78. Gay P. Le metabolisme vectoriel des glucides et le catabolisme du fructose chez Bacillus subtilis Marburg: etude genetique et biochimique. These d’Etat. Universite Paris VI, Paris, 1979 (цитируется по 195,313.).

79. Gering M., Briickner R. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR. J. Bacteriol. 1996. V. 178. P. 462−469.

80. Gibson T.J. Studies on the Epstein-Barr virus genome. Ph.D. thesis. University of Cambridge, Cambridge, England, 1984 (цитируется no 37, 137, 190, 194−196, 211,320.).

81. Giffard Ph.M., Simpson Ch.L., Milward C.P., Jacques N.A. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25 975. J. Gen. Microbiol. 1991. V. 137. P. 2577−2593.

82. Gilkes N.R., Henrissat В., Kilburn D.G., Miller Jr.R.C., Warren R.A.J. Domains in microbial ?-l, 4-glycanases: sequence conservation, function, and enzyme families. 1991. Microbiol. Rev. 1991. V. 55. P. 303−315.

83. Gilmore K.S., Russell R.R.B., Ferretti J.J. Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect. Immun. 1990. V. 58. P. 2452−2458.

84. Gonzalez C.F. Non-sucrose fermenting Pediococcus pentosaceus. United States Patent. Apr. 2, 1985, Number 4,508,738.

85. Gonzalez C.F., Kunka B.S. Evidence for plasmid linkage of raffinose utilization and associated a-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus. Appl. Environ. Microbiol. 1986. V. 51. P. 105−109.

86. Gonzalez C.F., Kunka B.S. Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microbiol. 1987. V. 53. P. 2534−2538.

87. Gonzalez C.F., Kunka B.S. Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol. 1985. V. 49. P. 627−633.

88. Gunasekaran P., Karunakaran T., Cami В., Mukundan A.G., Preziosi L., Baratti J. Cloning and sequencing of the sacA gene: characterization of a sucrase from Zymomonas mobilis. J. Bacteriol. 1990. V. 172. P. 6727−6735.

89. Hamada Sh, Slade H.D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 1980. V. 44. P. 331−384.

90. Hansen P.A., Lessei E.F. Lactobacillus casei (Orla-Jensen) comb. nov. Int. J. Syst. Bacteriol. 1971. V. 21. P. 69−71.

91. Haraguchi K., Mori S., Hayashi K. Cloning of inulin fructotransferase (DFA Ill-producing) gene from Arthrobacter globiformis CI 1−1. J. Biosci. Bioeng. 2000. V. 89. P. 590−595.

92. Hashimoto H, Katayama Ch., Goto M., Kitahata S. Purification and some properties of a-galactosidase from Candida guilliermondii H-404. Biosci. Biotechnol. Biochem. 1993. V. 57. P. 372−378.

93. Haupt W., Alps H. Uber die Vergarung der Melibiose durch Saccharomyces-Stamme. Arch. Mikrobiol. 1963. Bd. 45. SS. 179−187 (цитируется по 226.).

94. Helfert Ck, Gotsche S" Dahl M.K. Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-a-(l-l)-glucosidase encoded by the treA gene. Mol. Microbiol. 1995. V. 16. P. 111−120.

95. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991. V. 280. P. 309−316.

96. Henrissat B. Glycosidase families. Biochem. Soc. Trans. 1998. V. 26. P. 153−156.

97. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1993. V. 293. P. 781−788.

98. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 1996. V. 316. P. 695−696.

99. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J.-P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 7090−7094.

100. Henrissat B., Claeyssens M., Tomme P., Lemesle L., Mornon J.-P. Cellulase families revealed by hydrophobic cluster analysis. Gene. 1989. V. 81. P. 83−95.

101. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997. V. 7. P. 637−644.

102. Henrissat B., Romeu A. Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem. J. 1995. V. 311. P. 350−351.

103. Hernandez L., Arrieta J., Betancourt L., Falcon V., Madrazo J., Coego A., Menendez C. Levansucrase from Acetobacter diazotrophicus SRT4 is secreted via periplasm by a signal-peptide-dependent pathway. Curr. Microbiol. 1999. V. 39. P. 146−152.

104. Heyer A.G., Wendenburg R. Gene cloning and functional characterization by heterologous expression of the fructosyltransferase of Aspergillus sydowi IAM 2544. Appl. Environ. Microbiol. 2001. V. 67. P. 363−370.

105. Himmel M.E., Karplus P.A., Sakon J., Adney W.S., Baker J.O., Thomas S.R. Polysaccharide hydrolase folds diversity of structure and convergence of function. Appl. Biochem. Biotech. 1997. V. 63−65. P. 315−325.

106. Hiratsuka K, Wang B., Sato Y., KuramitsuH. Regulation of sucrose-6-phosphate hydrolase activity in Streptococcus mutans: characterization of the scrR gene. Infect. Immun. 1998. V. 66. P. 3736−3743.

107. Hofmann K.J., Schultz L.D. Mutations of the a-galactosidase signal peptide which greatly enhance secretion of heterologous proteins by yeast. Gene. 1991. V. 101. P. 105−111.

108. Holm L., Sander Ch. Structural similarity of plant chitinase and lysozymes from animals and phage. An evolutionary connection. FEBS Lett. 1994. V. 340. P. 129−132.

109. Honda O., Kato Ch., Kuramitsu H.K. Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J. Gen. Microbiol. 1990. V. 136. P. 2099;2105.

110. Houck C.M., Pear J.R., Elliott R., Perchorowicz J.T. Isolation of DNA encoding sucrase genes from Streptococcus salivarius and partial characterization of the enzymes expressed in Escherichia coli. J. Bacteriol. 1987. V. 169. P. 3679−3684.

111. Houman F., Diaz-Torres M.R., Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell. 1990. V. 62. P.1153−1163.

112. Idelson M., Amster-Choder O. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo. J. Bacteriol. 1998. V. 180. P. 660−666.

113. Inoue M" Fukui K., Miyagi A. S. cricetus glucosyltransferase (gt/S and gtfT) genes. GenBank accession number AB026123.1999.

114. Jacobson G.R., Mimura C.S., Scott P.J., Thompson P.W. Identification and properties of distinct sucrose and glucose phosphotransferase enzyme II activities in Streptococcus mutans 6715g. Infect. Immun. 1984. V. 46. P. 854−856.

115. Johnston S.A., Hopper J.E. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA. 1982. V. 79. P. 6971−6975.

116. Kang S.I., Kim S.I. Molecular cloning and sequence analysis of an endo-inulinase gene from Arthrobacter sp. S37. GenBank accession number AJ131562. 1999.

117. Kang S.-I., Kim W.-P., Chang Y.-J., Kim S.-I. Purification and properties of inulin fructotransferase (DFA Ill-producing) from Bacillus sp. snu-7. Biosci. Biotechnol. Biochem. 1998. V. 62. P. 628−631.

118. Kannan R., Mukundan G., Ait-Abdelkader N., Augier-Magro V., Baratti J., Gunasekaran P. Molecular cloning and characterization of the extracellular sucrase gene (sacC) of Zymomonas mobilis. Arch. Microbiol. 1995. V. 163. P. 195−204.

119. Kaplan H, Hutkins R.W. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 2000. V. 66. P. 2682−2684.

120. Kashiwabara Sh., Ogawa S., Miyoshi N., Oda M., Suzuki Y. Three domains comprised in thermostable molecular weight 54,000 pullulanase of type I from Bacillus flavocaldarius KP1228. Biosci. Biotechnol. Biochem. 1999. V. 63. P. 1736−1748.

121. Kawamura M., Uchiyama T. Reactions catalysed by cycloinulo-oligosaccharide fructanotransferase. Biosci. Biotechnol. Biochem. 1993. V. 57. P. 343.

122. Kew O.M., Douglas H.C. Genetic co-regulation of galactose and melibiose utilization in Saccharomyces. J. Bacteriol. 1976. V. 125. P. 33−41.

123. Kim H.-Y., Choi Y.-J. Molecular cloning and expression of the thermostable inulin fructotransferase (depolymerizing) gene of Arthrobacter sp. A-6 in Escherichia coli. GenBank accession number AF124980. 2000.

124. Kiska D.L., Macrina F.L. Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans. Infect. Immim. 1994. V. 62. P. 2679−2686.

125. Klier A.F., Rapoport G. Genetics and regulation of carbohydrate catabolism in Bacillus. Ann. Rev. Microbiol. 1988. V. 42. P. 65−95.

126. Kruger S., Gertz S., Hecker M. Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J. Bacteriol. 1996. V. 178. P. 2637−2644.

127. Kunst F., Msadek T., Bignon J., Rapoport G. The DegS/DegU and ComP/ComA two-component systems are part of a network controlling degradative enzyme synthesis and competence in Bacillus subtilis. Res. Microbiol. 1994. V. 145. P. 393−402.

128. Kunst F., Pascal M., Lepesant-Kejzlarova J., Lepesant J.-A., Billault A., Dedonder R. Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168. Biochimie. 1974. V. 56. P. 1481−1489.

129. Kunst F., Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J. Bacteriol. 1995. V. 177. P. 2403−2407.

130. Kunst F., Steinmetz M., Lepesant J.-A., Dedonder R. Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis-. constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168. Biochimie. 1977. V. 59. P. 287−292.

131. Kuriki T., Takata H., Okada Sh, Imanaka T. Analysis of the active center of Bacillus stearothermophilus neopullulanase. J. Bacteriol. 1991. V. 173. P. 6147−6152.

132. Kurimoto M., Tsusaki K, Kubota M., Fukuda Sh., Tsujisaka Y. Cloning and sequencing of the P-fructofuranosidase gene from Bacillus sp. V230. Biosci. Biotechnol. Biochem. 1999. V. 63. P. 1107−1111.

133. Kuroki R., Weaver L.H., Matthews B.W. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science. 1993. V. 262. P. 2030;2033.

134. Kuroki R., Weaver L.H., Matthews B.W. Structure-based design of a lysozyme with altered catalytic activity. Nat. Struct. Biol. 1995. V. 2. P. 1007−1011.

135. Kushibe S., Sashida R., Morimoto Y Production of cyclofructan from inulin by Bacillus circulans MCI-2554. Biosci. Biotechnol. Biochem. 1994. V. 58. P. 1136−1138.

136. Kyono K, Yanase H., Tonomura K, Kawasaki H., Sakai T. Cloning and characterization of Zymomonas mobilis genes encoding extracellular levansucrase and invertase. Biosci. Biotechnol. Biochem. 1995. V. 59. P. 289−293.

137. Lauret R., Morel-Deville F., Berthier F., Champomier-Verges M., Postma P., Ehrlich S.D., Zagorec M. Carbohydrate utilization in Lactobacillus sake. Appl. Environ. Microbiol. 1996. V. 62. P. 1922;1927.л.

138. Leat N.G., Reid Sh.J., Woods D.R. Molecular characterization of the sucrose-utilization region in C. acetobutylicum 8052. In: 7th International Symposium on Genetics of the Industrial Microorganisms. GIM94. Montreal. 1994. P. 182.

139. Leenhouts K.J., Bolhuis A.A., Кок J.J., Venema G.G. The sucrose and raffmose operons of Pediococcus pentosaceus PPE1.0. GenBank accession numbers L32093 and Z32771. 1994.

140. Lengeler J.W., Jahreis K, Wehmeier U.F. Enzymes II of the phosphoeno/pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim. Biophys. Acta. 1994. V. 1188. P. 1−28.

141. Lewington J., Greenaway S.D., Spillane B.J. Rapid small scale preparation of bacterial genomic DNA, suitable for cloning and hybridization analysis. Lett. Appl. Microbiol. 1987. V. 5. P. 51−53.

142. Li Y., Ferenci Th. Gene organisation and regulatory sequences in the sucrose utilisation cluster of Bacillus stearothermophilus NUB36. Gene. 1997. V. 195. P. 195−200.

143. Li Y, Ferenci Th. The Bacillus stearothermophilus NUB36 surA gene encodes a thermophilic sucrase related to Bacillus subtilis SacA. Microbiol. UK. 1996. V. 142. P. 1651−1657.

144. Li Y, Triccas J.A., Ferenci Th. A novel levansucrase-levanase gene cluster in Bacillus stearothermophilus ATCC 12 980. Biochim. Biophys. Acta. 1997. V. 1353. P. 203−208.

145. Liljestrom P.L. The nucleotide sequence of the yeast MEL1 gene. Nucleic Acids Res. 1985. V. 13. P. 7257−7268.

146. Lindner C., Galinier A., Hecker M., Deutscher J. Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme Iand HPr-catalysed phosphorylation. Mol. Microbiol. 1999. V. 31. P. 995−1006.

147. Loesche W.J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 1986. V. 50. P. 353−380.

148. Louis E.J., Borts Rh.H. A complete set of marked telomeres in Saccharomyces cerevisiae for physical mapping and cloning. Genetics. 1995. V, 139. P. 125−136.

149. Louis E.J., Haber J.E. Mitotic recombination among subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics. 1990. V. 124. P. 547−559.

150. Louis E.J., Haber J.E. The structure and evolution of subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics. 1992. V. 131. P. 559−574.

151. Louis E.J., Haber J.E. The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics. 1990. V. 124. P. 533−545.

152. Louis E.J., Naumova E.S., Lee A., Naumov G., Haber J.E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics. 1994. V. 136. P. 789−802.

153. Luesink E.J., Marugg J.D., Kuipers O.P., de Vos W.M. Characterization of the divergent saeBK and sacAR operons, involved in sucrose utilization by Lactococcus lactis. J. Bacterid. 1999. V. 181. P. 1924;1926.

154. Lyness C.A., Jones Ch.R., Meaden Ph.G. The STA2 and MEL1 genes of Saccharomyces cerevisiae are idiomorphic. Curr. Genet. 1993. V. 23. P. 92−94.

155. Mahadevan S., Wright A. A bacterial gene involved in transcription antitermination: regulation at a rho-independent terminator in the bgl operon of E. coll. Cell. 1987. V. 50. P. 485−494.

156. ManivalX., Yang Y., Strub M.P., Kochoyan M., Steinmetz M., Aymerich S. From genetic to structural characterization of a new class of RNA-binding domain within the SacY/BglG family of antiterminator proteins. EMBO J. 1997. V. 16. P. 5019−5029.

157. Martin I., Debarbouille M., Ferrari E., Klier A., Rapoport G. Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol. Gen. Genet. 1987. V. 208. P. 177−184.

158. Martin I., Debarbouille M., Klier A., Rapoport G. Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J. Bacteriol. 1989. V. 171. P. 1885−1892.

159. Martin-Verstraete I., Charrier V, Stulke J., Galinier A., Erni B., Rapoport G., Deutscher J. Antagonistic effects of dual PTS-catalysed phosphorylation of the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol. 1998. V. 28. P. 293−303.

160. Martin-Verstraete I., Debarbouille M., Klier A., Rapoport G. Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activated sequence of the levanase operon. J. Mol. Biol. 1994. V. 241. P. 178−192.

161. Martin-Verstraete I., Debarbouille M., Klier A., Rapoport G. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J. Mol. Biol. 1990. V. 214. P. 657−671.

162. Martin-Verstraete I., Debarbouille M., Klier A., Rapoport G. Mutagenesis of the Bacillus subtilis «-12, -24» promoter of the levanase operon and evidence for the existence of an upstream activated sequence. J. Mol. Biol. 1992. V. 226. P. 85−99.

163. Martin-Verstraete I., Stulke J., Klier A., Rapoport G. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J. Bacteriol. 1995. V. 177. P. 6919−6927.

164. Marx S.P., Winkler S., Hartmeier W. Metabolization of |3-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol. Lett. 2000. V. 182. P.163−169.

165. Matsuo N., Kaneko S., Kuno A., Kobayashi H., Kusakabe I. Purification, characterization and gene cloning of two oc-L-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem. J. 2000. V. 346. P. 9−15.

166. McCarter J.D., Withers S.G. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 1994. V. 4. P. 885−892.

167. McKellar R.C., Modler H.W. Metabolism of fructo-oligosaccharides by Bifidobacterium spp. Appl. Microbiol. Biotechnol. 1989. V. 31. P. 537−541.

168. Mercier R. W., Chaivisuthangkurar P., Gogarten J.P. Invertase encoding cDNA from oat (letter to the editor). Plant Mol. Biol. 1993. V. 23. P. 229−230.

169. Mian I.S. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol. Dis. 1998. V. 24. P. 83−100.

170. Miasnikov A.N. Characterization of a novel endo-levanase and its gene from Bacillus sp. L7. FEMS Microbiol. Lett. 1997. V. 154. P. 23−28.

171. Monzingo A.F., Marcotte E.M., Hart P. J., Robertus J.D. Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat. Struct. Biol. 1996. V. 3. P. 133−140.

172. Mortimer R.K., Johnston JR. Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986. V. 113. P. 35−43.

173. Motlagh A., Bukhtiyarova M., Ray B. Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett. Appl. Microbiol. 1994. V. 18. P. 305−312.

174. Msadek T., Kunst F., Klier A., Rapoport G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 1991. V. 173. P. 2366−2377.

175. Mtiller M., Seyforth W. Purification and substrate specificity of an extracellular fructanhydrolase from Lactobacillusparacasei ssp. paracasei P 4134. New Phytol. 1997. V. 136. P. 89−96.

176. Mundt J.O., Beattie W.G., Wieland F.R. Pediococci residing on plants. J. Bacteriol. 1969. V. 98. P. 938−942.

177. Munro C., Michalek S.M., Macrina F.L. Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect. Immun. 1991. V. 59. P. 2316−2323.

178. Murakami H., Kuramoto T., Mizutani K, Nakano H., Kitahata S. Purification and some properties of a new levanase from Bacillus sp. No. 71. Biosci. Biotechnol. Biochem. 1992. V. 56. P. 608−613.

179. Muramatsu K, Onodera Sh, Kikuchi M., Shiomi N. Purification and some properties of P-fructofuranosidase from Bifidobacterium adolescentis Gl. Biosci. Biotechnol. Biochem. 1993. V. 57. P. 1681−1685.

180. Muramatsu K, Onodera Sh, Kikuchi M., Shiomi N. The production of P-fructofuranosidase from Bifidobacterium spp. Biosci. Biotechnol. Biochem. 1992.V. 56. P. 1451−1454.

181. Nakano Y.J., Kuramitsu H. K Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis. J. Bacteriol. 1992. V. 174. P. 5639−5646.

182. Naumoff D.G. Conserved sequence motifs in levansucrases and bifunctional P-xylosidases and a-L-arabinases. FEBS Lett. 1999. V. 448. P. 177−179.

183. Naumoff D.G. Enzymes of fructan synthesis and degradation: sequence analysistViand classification. Abstracts of 4 International Fructan Symposium «Fructan 2000». August 16−20, 2000. Arolla. Switzerland. P. 1.4.

184. Naumoff D.G. P-Fructosidase superfamily: homology with some a-L-arabinases and p-D-xylosidases. Proteins Struct. Funct. Genet. 2001. V. 42. P. 66−76.

185. Naumoff D.G. Levanase gene sequence from strain Bacillus sp. L7 (letter to the editor). FEMS Microbiol. Lett. 1998. V. 164. P. 227−228.

186. Naumov G., Naumova E., Turakainen H., Suominen P., Korhola M. Polymeric genes MEL8, MEL9 and MEL10 new members of a-galactosidase gene family in Saccharomyces cerevisiae. Curr. Genet. 1991. V. 20. P. 269−276.

187. Naumov G., Turakainen H., Naumova E., Aho S., Korhola M. A new family of polymorphic genes in Saccharomyces cerevisiae: a-galactosidase genes MEL1-MEL7. Mol. Gen. Genet. 1990. V. 224. P. 119−128.

188. Naumov G.I., Naumova E.S., Gaillardin C., Turakainen H" Korhola M. Identification of new chromosomes of Saccharomyces bayanus using gene probes from? cerevisiae. Hereditas. 1994. V. 120. P. 121−126.

189. Naumov G.I., Naumova E.S., Korhola M.P. Chromosomal polymorphism of MEL genes in some populations of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1995. V. 127. P. 41−45.

190. Naumov G.I., Naumova E.S., Louis E.J. Genetic mapping of the a-galactosidase MEL gene family on right and left telomeres of Saccharomyces cerevisiae. Yeast. 1995. V. 11. P. 481−483.

191. Naumov G.I., Naumova E.S., Sancho E.D. Genetic reidentification of Saccharomyces strains associated with black knot disease of trees in Ontario and Drosophila species in California. Can. J. Microbiol. 1996. V. 42. P. 335−339.

192. Naumov G.I., Naumova E.S., Sancho E.D., Korhola M.P. Polymeric SUC genes in natural populations of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1996. V. 135. P. 31−35.

193. Naumov G.I., Naumova E.S., Sancho E.D., Korhola M. Taxogenetics of the Saccharomyces sensu stricto yeasts from Western and South Africa. Cryptogam. Mycol. 1993. V. 14. P. 263−270.

194. Naumov G.I., Naumova E.S., Turakainen H., Korhola M. Identification of the a-galactosidase MEL genes in some populations of Saccharomyces cerevisiae: a new gene MEL11. Genet. Res. Camb. 1996. V. 67. P. 101−108.

195. Naumova E., Naumov G., Fournier Ph., Nguyen H.-V., Gaillardin C. Chromosomal polymorphism of the yeast Yarrowia lipolytica and related species: electrophoretic karyotyping and hybridization with cloned genes. Curr. Genet. 1993. V. 23. P. 450−454.

196. Naumova E.S., Turakainen H., Naumov G.I., Korhola M. Superfamily of a-galactosidase MEL genes of the Saccharomyces sensu stricto species complex. Mol. Gen. Genet. 1996. V. 253. P. 111 -117.

197. Norman J.M., Bunny K.L., Giffard Ph.M. Characterization of lev J, a sucrase/fructanase-encoding gene from Actinomyces naeslundii T14V, and comparison of its product with other sucrose-cleaving enzymes. Gene. 1995. V. 152. P. 93−98.

198. Oda Y., Fujisawa T. Intraspecific divergence of Saccharomyces kluyveri as revealed by the nucleotide sequences of 18S-28S rRNA spacer regions and a-galactosidase MEL genes. Biosci. Biotechnol. Biochem. 2001. V. 65. P. 164−166.

199. Oda Y., Fujisawa T. Nucleotide sequence of a-galactosidase MEL gene from Zygosaccharomyces mrakii. Curr. Microbiol. 2000. V. 41. P. 220−222.

200. Oda Y., Fukunaga M. Isolation and characterization of MELt gene from Torulaspora delbrueckii IFO 1255. Yeast. 1999. V. 15. P. 1797−1801.

201. Oda Y., Ito M. Characterization of a mutant from Lactobacillus amylovorus JCM 1126T with improved utilization of sucrose. Curr. Microbiol. 2000. V. 41. P. 392−395.

202. Oseguera M.A.P., Guereca L., Lopez-Munguia A. Properties of levansucrase from Bacillus circulans. Appl. Microbiol. Biotechnol. 1996. V. 45. P. 465−471.

203. O’Sullivan D.J., Klaenhammer T.R. Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl. Environ. Microbiol. 1993. V. 59. P. 2730−2733.

204. Petit-Glatron M.-F., Monteil I., Benyahia F., Chamberi R. Bacillus subtilis levansucrase: amino acid substitutions at one site affect secretion efficiency and refolding kinetics mediated by metals. Mol. Microbiol. 1990. V. 4. P. 2063;2070.

205. Pickersgill R., Harris G., Leggio L.L., Mayans O., Jenkins J. Superfamilies: the 4/7 superfamily of Pa-barrel glycosidases and the right-handed parallel p-helix superfamily. Biochem. Soc. Trans. 1998. V. 26. P. 190−198.

206. Pons T., Olmea O., Chinea G., Beldarrain A., Marquez G., Acosta N., Rodriguez L., Valencia A. Structural model for family 32 of glycOsyl-hydrolase enzymes. Proteins Struct. Funct. Genet. 1998. V. 33. P. 383−395.

207. Post-Beittenmiller M.A., Hamilton R.W., Hopper J.E. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol. Cell. Biol. 1984. V. 4. P. 1238−1245.

208. Postma P.W., Lengeler J.W., Jacobson G.R. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 1993. V. 57. P. 543−594.

209. Poy F, Jacobson G.R. Evidence that a low-affinity sucrose phosphotransferase activity in Streptococcus mutans GS-5 is a high-affinity trehalose uptake system. Infect. Immun. 1990. V. 58. P. 1479−1480.

210. Prestidge L.S., Spizizen J. Inducible sucrase activity in Bacillus subtilis distinct from levan-sucrase J. Gen. Microbiol. 1969. V. 59. P. 285−288.

211. Projan S.J. Staphylococcus aureus hypothetical protein (ORF9). GenPept accession number CAA36786. 2001.

212. Pucci M.J., Novotny J., Discotto L.F., Dougherty Th.J. The Escherichia coli Dga (Muri) protein shares biological activity and structural domains with the Pediococcus pentosaceus glutamate racemase. J. Bacteriol. 1994. V. 176. P. 528−530.

213. Rathsam C, Giffard Ph.M., Jacques N.A. The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system. J. Bacteriol. 1993. V. 175. P. 4520−4527.

214. Rauch P.J.G., Beerthuyzen M.M., de Vos W.M. Distribution and evolution of nisin-sucrose elements in Lactococcus lactis. Appl. Environ. Microbiol. 1994. V. 60. P. 1798−1804.

215. Rauch P.J.G., de Vos W.M. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 1992. V. 174. P. 1280−1287.

216. Rauch P.J.G., de Vos W.M. Transcriptional regulation of the TnJ27tf-located Lactococcus lactis sucrose operon and characterization of the sacA gene encoding sucrose-6-phosphate hydrolase. Gene. 1992. V. 121. P. 55−61.

217. Reddy A., Maley F. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J. Biol. Chem. 1996. V. 271. P. 13 953−13 958.

218. Reddy V.A., Maley F. Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J. Biol. Chem. 1990. V. 265. P. 10 817−10 820.

219. Reichelt T., Kermes J., Kramer J. Co-transfer of two plasmids determining bacteriocin production and sucrose utilization in Streptococcus faecium. FEMS Microbiol. Lett. 1984. V. 23. P. 147−150.

220. ReidSh.J., Rafudeen M.S., Leat N.G. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Microbiol. UK. 1999. V. 145. P. 1461−1472.

221. Roberts C., Ganesan A.T., Haupt W. Genetics of melibiose fermentation in Saccharomyces italicus var. melibiosi. Heredity. 1959. V. 13. P. 499−517.

222. Roggiani M., Hahn J., Dubnau D. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J. Bacteriol. 1990. V. 172. P. 4056−4063.

223. Ruohola H., Liljestrom P.L., Torkkeli T., Kopu H., Lehtinen P., Kalkkinen N., Korhola M. Expression and regulation of the yeast MEL1 gene. FEMS Microbiol. Lett. 1986. V. 34. P. 179−185.

224. Russell R.R.B., Aduse-Opoku J., Sutcliffe I.C., Tao L., Ferretti J.J. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 1992. V. 267. P. 4631−4637.

225. Rutberg B. Antitermination of transcription of catabolic operons. Mol. Microbiol. 1997. V. 23. P. 413−421.

226. Saier Jr.M.H., Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J. Bacteriol. 1992. V. 174. P. 1433−1438.

227. Saito K, YokotaA., Tomita F. Molecular cloning of levan fructotransferase gene from Arthrobacter nicotinovorans GS-9 and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 1997. V. 61. P. 2076;2079.

228. Sakurai H., Yokota A., Tomita F. Molecular cloning of an inulin fructotransferase (depolymerizing) gene from Arthrobacter sp. H65−7 and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 1997. V. 61. P. 87−92.

229. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Press, N.Y. 1989. Vol. 2. P. 14.12−14.13.

230. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977. V. 74. P. 5463−5467.

231. Sato S, Kuramitsu H.K. Isolation and characterization of a fructosyltransferase gene from Streptococcus mutans GS-5. Infect. Immun. 1986. V. 52. P. 166−170.

232. Sato Y" Kuramitsu H.K. Sequence analysis of the Streptococcus mutans scrB gene. Infect. Immun. 1988. V. 56. P. 1956;1960.

233. Sato Y., Yamamoto Y., Kizaki H., Kuramitsu H.K. Isolation, characterization and sequence analysis of the scrK gene encoding fructokinase of Streptococcus mutans. J. Gen. Microbiol. 1993. V. 139. P. 921−927.

234. Sato Y., Yamamoto Y., Suzuki R., Kizaki H., Kuramitsu H.K. Construction of scrAr. lacZ gene fusions to investigate regulation of the sucrose PTS of Streptococcus mutans. FEMS Microbiol. Lett. 1991. V. 79. P. 339−346.

235. Scheda R., Yarrow D. The instability of physiological properties used as criteria in the taxonomy of yeasts. Arch. Mikrobiol. 1966. Bd. 55. SS. 209−225.

236. Schleifer K.H., Ludwig W. Phylogeny of the genus Lactobacillus and related genera. System. Appl. Microbiol. 1995. V. 18. P. 461−467.

237. Schmid K., Ebner R., Altenbuchner J., Schmitt R., Lengeier J.W. Plasmid-mediated sucrose metabolism in Escherichia coli Kl 2: mapping of the scr genes of pUR400. Mol. Microbiol. 1988. V. 2. P. 1−8.

238. Schmid K, Ritschewald S., Schmitt R. Relationships among raffinose plasmids determined by the immunochemical cross-reaction of their a-galactosidases. J. Gen. Microbiol. 1979. V. 114. P. 477−481.

239. SchmidK, Schmitt R. Raffinose metabolism in Escherichia coli K12. Purification and properties of a new a-galactosidase specified by a transmissible plasmid. Eur. J. Biochem. 1976. V. 67. P. 95−104.

240. Schmid K., Schupfner M., Schmitt R. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J. Bacteriol. 1982. V. 151. P. 68−76.

241. Schnetz K, Rak B. Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J. 1988. V. 7. P. 3271−3277.

242. Schnetz K, Stulke J., Gertz S., Kruger S" Krieg M., Hecker M., Rak B. LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J. Bacteriol. 1996. V. 178. P. 1971;1979.

243. Scholle R.R., Robb S.M., Robb F.T., Woods D.R. Nucleotide sequence and analysis of the Vibrio alginolyticus sucrase gene (scrB). Gene. 1989. V. 80. P. 49−56.

244. Schonert S., Buder Th, Dahl M. K Identification and enzymatic characterization of the maltose-inducible a-glucosidase MalL (sucrase-isomaltase-maltase) of Bacillus subtilis. J. Bacteriol. 1998. V. 180. P. 2574−2578.

245. Schorgendorfer K, Schwab H., Lafferty R.M. Nucleotide sequence of a cloned 2.5 kb Pstl-EcoRl Bacillus subtilis DNA fragment coding for levanase. Nucleic Acids Res. 1987. V. 15. P. 9606.

246. Sharpe M.E., Fryer T.F., Smith D. G. Identification of the lactic acid bacteria. In: Identification methods for microbiologists. Part A. Eds. Gibbs B.M., Skinner F.A., London: Academic Press, 1966. P. 65−79.

247. Shibata Y., Kuramitsu H.K. Identification of the Streptococcus mutans frp gene as a potential regulator of fructosyltransferase expression. FEMS Microbiol. Lett. 1996. V. 140. P. 49−54.

248. Shimamura A., Nakano Y.J., Mukasa H., Kuramitsu H.K. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product. J. Bacteriol. 1994. V. 176. P. 4845−4850.

249. Shimotsu H., Henner D.J. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol. 1986. V. 168. P. 380−388.

250. Shiroza T., Kuramitsu H.K. Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions. J. Bacteriol. 1988. V. 170. P. 810−816.

251. Shiroza T., Ueda S" Kuramitsu H. K Sequence analysis of the gtfB gene from Streptococcus mutans. J. Bacteriol. 1987. V. 169. P. 4263−4270.

252. Simpson Ch.L., Giffard Ph.M., Jacques N.A. Streptococcus salivarius ATCC 25 975 possesses at least two genes coding for primer-independent glucosyltransferases. Infect. Immun. 1995. V. 63. P. 609−621.

253. Sin K.-A., Nakamura A., Masaki H, Uozumi T. Extracellular production of Bacillus ohbensis cyclodextrin glucanotransferase by B. subtilis. Biosci. Biotechnol. Biochem. 1993. V. 57. P. 346−347.

254. Sinnott M.L. Catalytic mechanisms of enzymatic glycosyl transfer. Chem. Rev. 1990. V. 90. P. 1171−1202.

255. Slee A.M., Tanzer J.M. Sucrose transport by Streptococcus mutans. Evidence for multiple transport systems. Biochim. Biophys. Acta. 1982. V. 692. P. 415−424.

256. SlomaA., PawlykD., Pero J. Development of an expression and secretion system in Bacillus subtilis utilizing sacQ. In: Genetics and Biotechnology of Bacilli. Eds. Ganesan A.T., Hoch J.A., San Diego: Acad. Press, 1988, V. 2. P. 23−26.

257. Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. (Eds.) Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, 1986. V. 2. 1599 p.

258. Somiari R.I., Brzeski H., Tate R., Bieleck S., PolakJ. Cloning and sequencing of an Aspergillus niger gene coding for p-fructofuranosidase. Biotech. Lett. 1997. V. 19. P. 1243−1247.

259. Song K.-B., Joo H.-K., Rhee S.-K. Nucleotide sequence of levansucrase gene (levU) of Zymomonas mobilis ZM1 (ATCC10988). Biochim. Biophys. Acta. 1993. V. 1173. P. 320−324.

260. Song K.-B., Lee S.-K., Joo H.-K, Rhee S.-K Nucleotide and derived amino acid sequences of an extracellular sucrase gene (invB) of Zymomonas mobilis ZM1 (ATCC 10 988). Biochim. Biophys. Acta. 1994. V. 1219. P. 163−166.

261. Song KB., Rhee S.K., Yoo E.J. Arthrobacter ureafaciens levan fructotransferase (IftA) gene. GenBank accession number AF181254. 2000.

262. Sprenger N., Bortlik K, Brandt A., Boiler Tk, WiemkenA. Purification, cloning, and functional expression of sucrose: fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 11 652−11 656.

263. Stahlberg J., Divne Ch., Koivula A., Piens K, Claeyssens M., Teeri T.T., Jones T.A. Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 1996. V. 264. P. 337−349.

264. Steele J.L., McKay L.L. Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl. Environ. Microbiol. 1986. V. 51. P. 57−64.

265. Steele J.L., Murphy M.C., Daly Ch, McKay L.L. DNA-DNA homology among lactoseand sucrose-fermenting transconjugants from Lactococcus lactis strains exhibiting reduced bacteriophage sensitivity. Appl. Environ. Microbiol. 1989. V. 55. P. 2410−2413.

266. Steinmetz M., Aymerich S. The Bacillus subtilis sac-deg constellation: how and why? In: Genetics and Biotechnology of Bacilli. Eds. Zukowski M.M., Ganesan A.T., Hoch J.A., San Diego: Acad. Press, 1990, V. 3. P. 303−311.

267. Steinmetz M., Kunst F., Dedonder R. Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus subtilis. Identity of the saclf1, amyB and pap mutations. Mol. Gen. Genet. 1976. V. 148. P. 281−285.

268. Steinmetz M., Le Coq D., Aymerich S. Induction of saccharolytic enzymes by sucrose in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways. J. Bacteriol. 1989. V. 171. P. 1519−1523.

269. Steinmetz M., Le Coq D., Aymerich S., Gonzy-Treboul G., Gay Ph. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol. Gen. Genet. 1985. V. 200. P. 220−228.

270. Stiilke J., Arnaud M., Rapoport G., Martin-Verstraete I. PRD a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol. Microbiol. 1998. V. 28. P. 865−874.

271. Stiilke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol. Microbiol. 1997. V. 25. P. 65−78.

272. Sturm A., Chrispeels M.J. cDNA cloning of carrot extracellular P-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990. V. 2. P. 1107−1119.

273. Sumner-Smith M., Bozzato R.P., Skipper N., Davies R.W., Hopper J.E. Analysis of the inducible MEL1 gene of Saccharomyces carlsbergensis and its secreted product, alpha-galactosidase (melibiase). Gene. 1985. V. 36. P. 333−340.

274. Suominen P.L. Characterisation and applications of the yeast MEL1 gene. Ph.D. thesis. University of Helsinki, Finland, 1988.

275. Takahashi M., Soutome Sh. On the properties of P-fructofuranosidase from Lactobacillus plantarum. Bull. Coll. Agr. Utsinomiya Univ. 1975. V. 9. P. 89−93 (in Japanese).

276. Takahashi N. Mizuno F., Takamori K. Isolation and properties of levanase from Streptococcus salivarius KTA-19. Infect. Immun. 1983. V. 42. P. 231−236.

277. Takami H, Takaki Y. Bacillus halodurans sucrase-6-phosphate hydrolase. GenPept accession number BAB05577. 2001.

278. Tang L.B., Lenstra R, Borchert T.V., Nagarajan V. Isolation and characterization of levansucrase-encoding gene from Bacillus amyloliquefaciens. Gene. 1990. V. 96. P. 89−93.

279. Tangney M., Mitchell W.J. Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824. J. Mol. Microbiol. Biotechnol. 2000. V. 2. P. 71−80.

280. Thirunavukkarasu M., Priest F.G. Purification and characterization of an extracellular and a cellular a-glucosidase from Bacillus licheniformis. J. Gen. Microbiol. 1984. V. 130. P. 3135−3141.

281. Thompson J., Nguyen N.Y., Robrish S.A. Sucrose fermentation by Fusobacterium mortiferum ATCC 25 557: transport, catabolism, and products. J. Bacteriol. 1992. V. 174. P. 3227−3235.

282. Tobisch S" Glaser Ph., Kruger S., Hecker M. Identification and characterization of a new ?-glucoside utilization system in Bacillus subtilis. J. Bacteriol. 1997. V. 179. P. 496−506.

283. Tomme P., Warren R.A.J., Gilkes N.R. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 1995. V. 37. P. 1−81.

284. Torchia T.E., Hopper J.E. Genetic and molecular analysis of the GALS gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. Genetics. 1986. V. 113. P. 229−246.

285. Torronen A., Kubicek Ch.P., Henrissat B. Amino acid sequence similarities between low molecular weight endo-l, 4-?-xylanases and family H cellulases revealed by clustering analysis. FEBS Lett. 1993. V. 321. P. 135−139.

286. Tortosa P., Le Coq D. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Microbiol. UK. 1995. V. 141. P. 2921−2927.

287. Tsai H.-J., Sandine W.E. Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl. Environ. Microbiol. 1987. V. 53. P. 352−357.

288. Tsumori H., Kuramitsu H. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol. Immun. 1997. V. 12. P. 274−280.

289. Turakainen H" Aho S., Korhola M. MEL gene polymorphism in the genus Saccharomyces. Appl. Environ. Microbiol. 1993. V. 59. P. 2622−2630.

290. Turakainen H., Hankaanpaa M., Korhola M., Aho S. Characterization of MEL genes in the genus Zygosaccharomyces. Yeast. 1994. V. 10. P. 733−745.

291. Turakainen K, Korhola M., Aho S. Cloning, sequence and chromosomal location of a MEL gene from Saccharomyces carlsbergensis NCYC396. Gene. 1991. V. 101. P. 97−104.

292. Turakainen H" Kristo P., Korhola M. Consideration of the evolution of the Saccharomyces cerevisiae MEL gene family on the basis of the nucleotide sequences of the genes and their flanking regions. Yeast. 1994. V. 10. P. 1559−1568.

293. Turakainen H., Naumov G., Naumova E" Korhola M. Physical mapping of the MEL gene family in Saccharomyces cerevisiae. Curr. Genet. 1993. V. 24. P. 461−464.

294. Tymowska-Lalanne Z, Kreis M. The plant invertases: physiology, biochemistry and molecular biology. Adv. Botanical Res. 1998. V. 28. P. 71−117.

295. Veda Sh, Shiroza T., Kuramitsu H.K. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene. 1988. V. 69. P. 101 -109.

296. Volff J.-N., Altenbuchner J. The 1-kb-repeat-encoded DNA-binding protein as repressor of an a-glucosidase operon flanking the amplifiable sequence AUDI of Streptomyces lividans. Microbiol. UK. 2000. V. 146. P. 923−933.

297. Vollrath D., Davis R. W., Connelly C., Hieter Ph. Physical mapping of large DNA by chromosome fragmentation. Proc. Natl. Acad. Sei. USA. 1988. V. 85. P. 6027−6031.

298. Vullo D.L., Coto C.E., Siheriz F. Characteristics of an inulinase produced by Bacillus subtilis 43 OA, a strain isolated from the rhizosphere of Vernonia herbacea (Veil Rusby). Appl. Environ. Microbiol. 1991. V. 57. P. 2392−2394.

299. Wagner E., Gotz F., Bruckner R. Cloning and characterization of the scrA gene encoding the sucrose-specific Enzyme II of the phosphotransferase system from Staphylococcus xylosus. Mol. Gen. Genet. 1993. V. 241. P. 33−41.

300. Wang Q., Graham R.W., Trimbur D., Warren R.A.J., Withers S.G. Changing enzymatic reaction mechanisms by mutagenesis: conversion of a retainingglucosidase to an inverting enzyme. J. Am. Chem. Soc. 1994. V. 116. P. 11 594−11 595.

301. Watanabe K, Kitamura K, Iha K, Suzuki Y. Primary structure of the oligo-l, 6-glucosidase of Bacillus cereus ATCC7064 deduced from the nucleotide sequence of the cloned gene. Eur. J. Biochem. 1990. V. 192. P. 609−620.

302. White A., Rose D.R. Mechanism of catalysis by retaining P-glycosyl hydrolases. Curr. Opin. Struct. Biol. 1997. V. 7. P. 645−651.

303. Wilke-Douglas M., Perchorowicz J.T., Houck C.M., Thomas B.R. Methods and compositions for altering physical characteristics of fruit and fruit products. 1989. PCT Patent WO 89/12 386.

304. Yagasaki M., Iwata K, Ishino Sh., Azuma M., Ozaki A. Cloning, purification, and properties of a cofactor-independent glutamate racemase from Lactobacillus brevis ATCC 8287. Biosci. Biotechnol. Biochem. 1995. V. 59. P. 610−614.

305. Yamashita Y., Bowen W.H., Kuramitsu H.K. Molecular analysis of a Streptococcus mutans strain exhibiting polymorphism in the tandem gtfB and gtfC genes. Infect. Immun. 1992. V. 60. P. 1618−1624.

306. Yang S.J., Cha J. Levan fructotransferase gene (IftM) from Microbacterium sp. AL-210. GenBank accession number AF294730. 2000.

307. Yoshida Sh, Tan Ch.H., Shimokawa T., Turakainen H., Kusakabe I. Substrate specificities of a-galactosidases from yeasts. Biosci. Biotechnol. Biochem. 1997. V. 61. P. 359−361.

308. Zukowski M., Miller L., Cogswell P., Chen K. Inducible expression system based on sucrose metabolism genes of Bacillus subtilis. In: Genetics and Biotechnology of Bacilli. Eds. Ganesan A.T., Hoch J.A., San Diego: Acad. Press, 1988, V. 2. P. 17−22.

309. Zukowski M.M., Miller L., Cosgwell P., Chen K., Aymerich S., Steinmetz M. Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. Gene. 1990. V. 90. P. 153−155.

Показать весь текст
Заполнить форму текущей работой