Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Влияние сейсмичности на несущую способность грунта

РефератПомощь в написанииУзнать стоимостьмоей работы

Максимальные величины расчетного сопротивления фунтов Для того чтобы глубже понять работу оснований, полезно было бы узнать максимальные величины расчетного сопротивления грунтов, которые встречаются в реальной жизни. Такие экстремальные параметры грунта могут возникнуть только при максимальном его уплотнении, например, под нижним концом забивных свай. Фундамент, возводимый по технологии ТИСЭ… Читать ещё >

Влияние сейсмичности на несущую способность грунта (реферат, курсовая, диплом, контрольная)

Задаваясь той или иной величиной расчетного сопротивления грунта, следует учитывать, что при одновременном воздействии статической нагрузки и вибраций прочность грунта снижается. Грунт, как говорят специалисты, приобретает свойства псевдожидкого состояния.

Индивидуальные застройщики, решившие возводить сейсмостойкий фундамент своими силами, должны учитывать уменьшение несущей способности грунта при сейсмических вибрациях. Ориентировочно табличную величину расчетного co противления грунта необходимо уменьшить в 1,5 раза, т. е увеличить площадь подошвы фундамента тоже в 1,5 раза.

Расчетное сопротивление грунта на разной глубине Величины расчетного сопротивления грунтов (R0), приведенные в таблицах 4.8 даны для глубины заложения фундамента 1,5…2 м.

Если глубина заложения фундамента меньше чем 1,5 м. то расчетное сопротивление грунта (Rh) определяется по формуле:

Rh = 0,005R0(100 +h/3), где.

h — глубина заложения фундамента в см.

Пример 1.

Глинистый грунт на глубине 0,5 м при R0=4 кг/см2 будет иметь расчетное сопротивление грунта Rh = 2,33 кг/см2.

Если глубина заложения фундамента больше чем 2 м. то расчетное сопротивление грунта (Rh) определяется по формуле:

Rh = R0 + kg (h — 200), где.

h — глубина заложения фундамента в см,.

g — вес столба грунта, расположенного выше глубины заложения фундамента (кг/см2);

к — коэффициент грунта (для песка — 0,25; для супеси и суглинка — 0,20; для глины — 0,15).

Пример 2.

Глинистый грунт на глубине 3 м при R0=4 кг/см2 будет иметь расчетное сопротивление Rh = 10,3 кг/см2. Удельный вес глины — 1,4 кг/см2, а вес столба глины высотой 300 см — 0,42 кг/см2.

Максимальные величины расчетного сопротивления фунтов Для того чтобы глубже понять работу оснований, полезно было бы узнать максимальные величины расчетного сопротивления грунтов, которые встречаются в реальной жизни. Такие экстремальные параметры грунта могут возникнуть только при максимальном его уплотнении, например, под нижним концом забивных свай.

Значения расчетного сопротивления сильно уплотненных грунтов R0 (пески гравелистые, крупные, средние, мелкие и пылеватые, пылевато-глинистые грунты) зависят от глубины погружения нижнего конца свай [3]:

  • · на глубине 3 м увеличение — в 10 раз;
  • · на глубине 20 м увеличение — в 15 раз;
  • · на глубине 35 м увеличение — в 20 раз.

Такое внушительное увеличение несущей способности грунта связано с уплотнение грунта не только непосредственно под сваей, но и вокруг неё (рис. 4, д).

Эти данные приведены не для того, чтобы их напрямую использовать при расчете фундамента, т.к. такое значительное увеличение расчетного сопротивления грунтов связано с их сильным уплотнением и значительными деформациями основания. Но вместе с тем, это дает застройщику определенную уверенность в том, что созданный им фундамент выдержит вес задуманного сооружения: грунт не подведет. Главное в этом — сделать грамотно все остальное: фундамент и стены.

На заметку.

Фундамент, возводимый по технологии ТИСЭ, дает возможность просесть дому на 8… 10 см. В реальной жизни просадка фундамента — не более 1 см. Если это учитывать, то величину расчетного сопротивления грунта можно несколько увеличить (предположительно в 1,5раза) или использовать этот довод для создания определенного запаса по несущей способности основания.

Расчет фундамента по допустимым деформациям сооружения Целью расчета фундамента по этой методике является оценка соответствия действующего и допустимого уровней деформаций сооружения от воздействия эксплуатационных нагрузок.

В гибких и жестких конструкциях неравномерность осадки вызывает деформации строений или ведет к изменению их положения (рис. 5), что может вызвать ухудшение условий эксплуатации здания или его оборудования. Кроме этого, при больших деформациях конструкция сооружения может испытывать закритические напряжения, ведущие к его разрушению.

Правильно спроектированный фундамент предполагает осадки и деформации строения, но величина их не должна превышать строительные нормы, гарантирующие полноценную эксплуатацию здания.

Показать весь текст
Заполнить форму текущей работой