Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Физико-химические методы повышения нефтеотдачи пластов

РефератПомощь в написанииУзнать стоимостьмоей работы

При контакте щелочных растворов с нефтью, особо активно взаимодействующей с щелочью из-за низкого межфазного натяжения, образуются мелкодисперсные эмульсии типа «нефть в воде» ', обладающие высокими нефтевытесняющими свойствами. Вторым важным элементом в механизме метода щелочного заводнения служит изменение смачиваемости породы щелочным раствором за счет адсорбции органических кислот… Читать ещё >

Физико-химические методы повышения нефтеотдачи пластов (реферат, курсовая, диплом, контрольная)

Полимерное заводнение.

Физико-химические методы повышения нефтеотдачи пластов.
Физико-химические методы повышения нефтеотдачи пластов.

Сущность метода заключается в выравнивании подвижности нефти () и вытесняющего агента () для увеличения охвата пласта воздействием. Для этого в воде растворяется высокомолекулярный химический реагент — полимер (полиакриламид), обладающий способностью даже при малых концентрациях существенно повышать вязкость воды, снижать ее подвижность. При концентрации полиакриламида (ПАА) в растворе 0,01−0,1% вязкость его увеличивается до 3−4 мПа-с. это приводит к такому же уменьшению соотношения вязкостей нефти и воды в пласте и сокращению условий прорыва воды, обусловленных различием вязкостей или неоднородностью пласта. В процессе фильтрации полимерных растворов через пористую среду они приобретают кажущуюся вязкость, которая может быть в 10−20 раз выше вязкости, замеренной вискозиметром. Поэтому полимерные растворы наиболее применимы в неоднородных пластах, а также при повышенной вязкости нефти с целью повышения охвата их заводнением.

Кроме того, полимерные растворы, обладая повышенной вязкостью, лучше вытесняют не только нефть, но и связанную пластовую воду из пористой среды. Поэтому они вступают во взаимодействие со скелетом пористой среды, т. е. породой и цементирующим веществом. Это вызывает адсорбцию молекул полимеров, которые выпадают из раствора на поверхность пористой среды и перекрывают каналы или ухудшают фильтрацию в них воды. А так как полимерный раствор предпочтительно поступает в высокопроницаемые слои, то за счет этих двух эффектовповышения вязкости раствора и снижения проводимости средыпроисходит существенное уменьшение динамической неоднородности потоков жидкости и, как следствие, повышение охвата пласта заводнением.

Полимерные растворы обычно применяются в виде оторочек размером 40−50% от объема пор. Размер оторочки, концентрация раствора и тип полимера должны выбираться исходя из неоднородности пласта, неоднородности пористой среды и солевого состава пластовой воды. При перемешивании полимерных растворов с пластовой соленой водой происходит разрушение структуры раствора (молекул) и снижение его вязкости. В случае высокой минерализации воды концентрация раствора должна быть в 2−3 раза выше. Оторочка загущенной воды затем продвигается обычной водой. Полимерное заводнение является одним из перспективных методов повышения нефтеотдачи пластов. Область возможного применения его весьма велика.

Однако у метода существуют и большие недостатки, ограничивающие его широкое применение. Основной недостаток метода заключается в том, что резко снижается продуктивность нагнетательных скважин вследствие резкого роста вязкости, которую не всегда можно компенсировать повышением давления нагнетания из-за деструкции молекул полимера. Полимерные молекулы в водном растворе под действием различных факторов могут необратимо разрушаться вследствие их деструкции. Деструкция уменьшает молекулярную массу полимера и, как следствие, загущающую способность — основу эффективности его применения в качестве вытесняющего агента.

Деструкция может быть химической, термической, механической и микробиологической. Химическая деструкция происходит вследствие взаимодействия кислорода воздуха с полимерными молекулами. Поэтому в воде, используемой для приготовления полимерного раствора не должно быть кислорода. При температуре свыше 130 °C наступает термическая деструкция. Механическая деструкция обусловлена разрывом макромолекул полимера при высоких скоростях движения, т. е. при движении растворов полимеров по трубам, насосам и в призабойной зоне. Микробиологическая деструкция полимерных молекул может происходить под действием аэробных бактерий, которые развиваются в пласте при закачке их с водой вследствие окисления нефти. Поэтому использование полимеров для глубокозалегающих пластов, сложенных малопроницаемыми коллекторами и имеющих высокую температуру, не представляется возможным. Нельзя ожидать эффект от закачки полимеров в сравнительно однородных пластах, содержащих маловязкую нефть. Этот метод малоэффективен также для месторождений находящихся на поздней стадии разработки, и для пластов с большим содержанием солей.

Для промышленного применения требуется изготовление компактных, надежных и простых в работе установок для приготовления полимерных растворов и для соответствующей подготовки воды. Однако эта техническая проблема пока полностью не решена, особенно проблема подготовки воды.

Щелочное заводнение.

Метод щелочного заводнения нефтяных пластов основан на взаимодействии щелочей с пластовыми нефтью и породой. Практически вся природная нефть содержит в своем составе активные компоненты — органические кислоты, но количество и состав их различны. При контакте щелочи с нефтью происходит ее взаимодействие с органическими кислотами, в результате чего образуются поверхностно-активные вещества, снижающие межфазное натяжение на границе раздела фаз нефть-раствор щелочу и увеличивающие смачиваемость породы водой.

При контакте щелочных растворов с нефтью, особо активно взаимодействующей с щелочью из-за низкого межфазного натяжения, образуются мелкодисперсные эмульсии типа «нефть в воде» ', обладающие высокими нефтевытесняющими свойствами. Вторым важным элементом в механизме метода щелочного заводнения служит изменение смачиваемости породы щелочным раствором за счет адсорбции органических кислот на поверхность породы из нефти. Применение растворов щелочей — один из самых эффективных способов уменьшения контактного угла смачивания породы водой, т. е. гидрофилизации пористой среды, что повышает коэффициент вытеснения нефти водой. Установлено, что наличие щелочи в пластовой воде смещает в благоприятную сторону кривые фазовых проницаемостей при совместной фильтрации нефти и воды. Относительная проницаемость пласта для активной нефти существенно улучшается, особенно при насыщенности водой более 70%, когда обычная нефть становится неподвижной. При щелочном растворе относительная проницаемость для нефти еще больше, чем для воды, и сохраняет подвижность до насыщенности пласта водой до 90−95%.

Для приготовления щелочных растворов можно использовать:

едкий натр (каустическую соду) NaOH; ;

углекислый натрий (кальцинированную соду) Na2CO3.

гидрат окиси аммония (аммиак) NH4OH;

силикат натрия (растворимое стекло) N2SiO3.

Наиболее активны из них едкий натр и силикат натрия. Щелочные растворы закачиваются в виде оторочек размером 10−25% от объема пор пласта, в зависимости от его неоднородности, которые продвигаются обычной водой. Рабочая концентрация едкого натра в растворе определяется лабораторными исследованиями для конкретной нефти, пласта, воды и должна обеспечивать наименьшее межфазное натяжение между раствором и нефтью. Обычно эта концентрация составляет 0,2−0,4% с учетом адсорбции щелочи.

Повышение концентрации щелочи не дает эффекта в вытеснении нефти. Но в гидрофобизованных коллекторах более высокие концентрации щелочи в растворе (до 2−4%) необходимы для изменения смачиваемости поверхности пористой среды.

Размер оторочки и концентрация в ней агента должны определяться расчетным путем с учетом неизбежных потерь щелочи в пласте. Возможно применение и высококонцентрированных щелочных растворов (до 4−5%), особенно в пластах, требующих повышения гидрофильности, при большом содержании солей.

Приготовление раствора щелочи и его подача в пласт не отличаются большой сложностью. Продвижение щелочной оторочки по пласту должно регулироваться режимом работы нагнетательных и добывающих скважин (циклическое воздействие и изменение направления потоков жидкости). Система размещения нагнетательных и добывающих скважин при маловязкой нефти может не отличаться от метода обычного внутриконтурного заводнения или заводнения с ПАВ и полимерами.

Основными недостатками метода являются очень жесткие критерии применимости его по активности нефти. Минерализация пластовой и закачиваемой воды и большое содержание глин в породе также могут исключать применение метода.

Недостаточная активность нефти, содержание солей в воде и глин в породе приводят к увеличению расхода щелочи и снижению эффективности вытеснения нефти, по сравнению с обычной водой, вплоть до нуля.

Лабораторные исследования не дают возможности моделировать эффективность таких процессов, как образование эмульсий, адсорбция щелочей и осадкообразование в реальном пласте. В пластах, содержащих гипс, возможно растворение его щелочью и последующее отложение в призабойных зонах, скважинах и оборудовании.

Заводнение с растворами ПАВ.

Механизм процесса вытеснения нефти из пластов водным малоконцентрированным раствором ПАВ основан на том, что при этом снижается поверхностное натяжение между нефтью и водой и увеличивается краевой угол смачивания. Следовательно, натяжение смачивания уменьшается в 8−10 раз.

Процесс разработки нефтяных месторождений при заводнении их водными растворами ПАВ осуществляется с минимальными изменениями в технологии и системе размещения скважин.

Добавление к закачиваемой воде 0,05−0,1% ПАВ не влечет за собой необходимости существенного изменения давления, темпов или объемов нагнетания воды. Объемы закачиваемых в пласты водных растворов ПАВ должны быть большими (не менее 2−3 объемов пор нефтяной залежи). Так как эффективное действие ПАВ по вытеснению нефти сопровождается их адсорбцией, то весь подвергнутый воздействию объем пласта будет предельно насыщен адсорбированными ПАВ. При пренебрежении десорбцией ПАВ для насыщения охваченного заводнением объема пласта потребуется (при концентрации ПАВ в растворе 0,1%) закачать 5−10 объемов пор воды. При меньшем объеме закачки раствора фронт ПАВ не достигнет добывающих скважин и объем пласта, подвергнутого воздействию ПАВ, будет меньше охваченного заводнением. Адсорбция ПАВ в пористой среде приводит к тому, что на фронте вытеснения нефти вода не содержит ПАВ или содержит их в очень малых, неэффективных концентрациях. Фронт ПАВ движется по пласту в 10−20 раз медленнее, чем фронт вытеснения. Система размещения скважин для применения водных растворов ПАВ может быть такой же, как при обычном заводнении. Никаких ограничений на сетку скважин не налагается. Однако нагнетательные скважины размещаются только внутри контура нефтеносности, а раствор нагнетается в чисто нефтяную часть пласта.

Самый большой недостаток метода заводнения малоконцентрированными растворами ПАВ заключается в большом межфазном натяжении между нефтью и раствором и высокой адсорбции химического реагента на породе. Он ставит под сомнение их применение с целью повышения вытесняющей способности воды.

Другие недостатки применения водорастворимых ПАВ также усложняют или ограничивают их применение. К ним относятся:

слабая биоразлагаемость неионогенных ПАВ (всего 35−40%) и повышенная способность загрязнения окружающей среды;

высокая чувствительность к качеству воды — содержанию кислорода, микроорганизмов и механических примесей, которые в состоянии свести эффект к нулю, вследствие разрушения раствора.

Сернокислотное заводнение.

В основе применения концентрированной серной кислоты для повышения нефтеотдачи пластов лежит комплексное воздействие этого реагента как на минералы скелета пласта, так и на содержащиеся в нем нефть и погребенную воду.

Химическое взаимодействие серной кислоты с ароматическими углеводородами нефти приводит к образованию сульфокислот в количестве 5 — 7% от массы нефти, которые являются анионами ПАВ и способствуют улучшению извлечения нефти из пор пласта. Как показали лабораторные эксперименты, при вытеснении нефти из пористых сред оторочкой серной кислоты коэффициент вытеснения возрастает на 13 — 15% по сравнению с обычным заводнением. Столь высокая эффективность обусловлена не только образованием из нефти ПАВ, но и тем, что при химическом взаимодействии сульфат-ионов с солями кальция, составляющими минералогическую основу породы, образуется малорастворимый в воде сульфат кальция — гипс. Кристаллы гипса частично закупоривают поры пласта, промытые водой, направляя последующие порции воды в поры, заполненные нефтью. Это приводит к повышению охвата пласта вытеснением. Были выявлены и другие эффекты, способствующие улучшению вытеснения нефти при сернокислотном воздействии, а именно, разбавление в пласте концентрированной кислоты погребенной или ранее закачанной водой сопровождается выделением тепла. Расчеты показывают, что при разбавлении 1 т кислоты до 0, 5% -ной концентрации выделяется 620 тыс. кДж тепла. Взаимодействие серной кислоты с терригенными породами призабойной зоны пласта приводит к увеличению их проницаемости, что наряду с выпадением гипса в глубине пласта обусловливает перераспределение градиентов давления в сторону их увеличения на фронте вытеснения.

Кроме того, при взаимодействии концентрированней серной кислоты с карбонатами породы образуется углекислота S количестве 400 кг/т.

СаСО3 + H2SO4 = CaSO4 + Н2СО3

Расчеты показывают, что при закачке серной кислоты образуется оторочка размером до 3% от объема пор пласта 4%-ного раствора углекислоты (карбонизированной воды), которая обусловливает возрастание коэффициента извлечения нефти за счет одновременного возрастания коэффициентов вытеснения и охвата.

На 1 т кислоты дополнительно добывается 30 — 50 т нефти, а приемистость водонагнетательных скважин возрастает на 60−70%. Применяют либо техническую серную кислоту концентрацией до 96%, либо так называемую алкилированную серную кислоту (АСК) концентрацией 80−85% (сернокислотный отход производства высооктанового бензина). Технология метода заключается в закачке в пласт небольшой (порядка 0,15% порового объема пласта) оторочки серной кислоты, продвигаемой по пласту водой. Для этого у нагнетательной скважины размещают емкости (500−2000 м3) с АСК, которую насосами закачивают в пласт. После этого скважина подключается к общей системе заводнения для закачки воды.

Применение метода сопровождается сильной коррозией используемого оборудования и эксплуатационной колонны скважины.

Заводнение с углекислотой.

Физико-химические методы повышения нефтеотдачи пластов.

Метод основан на том, что диоксид углерода (СО2), растворяясь в нефти, увеличивает ее объем и уменьшает вязкость, с другой стороны, растворяясь в воде, повышает ее вязкость. Таким образом, растворение СО2 в нефти и воде ведет к выравниванию подвижности нефти и воды, что создает предпосылки к получению более высокой нефтеотдачи, как за счет увеличения коэффициента вытеснения, так и коэффициента охвата.

Физико-химические методы повышения нефтеотдачи пластов.

Растворимость СО2 в воде увеличивается с повышением давления и уменьшается с повышением температуры. С ростом минерализации воды растворимость СО2 в ней снижается. При растворении в воде двуокиси углерода вязкость ее несколько увеличивается, однако это увеличение незначительно. Образующаяся при растворении СО2 в воде угольная кислота Н2СО3 растворяет некоторые виды цемента и породы пласта и повышает проницаемость. В присутствии двуокиси углерода снижается набухаемость глинистых частиц. Двуокись углерода растворяется в нефти в 4−10 раз лучше, чем в воде, поэтому она может переходить из водного раствора в нефть. Во время перехода межфазное натяжение между ними становится очень низким и вытеснение приближается к смешивающемуся.

Двуокись углерода в воде способствует размыву и отмыву пленочной нефти, покрывающей зерна породы, и уменьшает возможность разрыва водной пленки. Вследствие этого капли нефти при малом межфазном натяжении свободно перемещаются в поровых каналах и фазовая проницаемость нефти увеличивается.

Увеличение объема нефти в 1,5−1,7 раза при растворении в ней СО2 вносит особенно большой вклад в повышение нефтеотдачи пластов при разработке месторождений, содержащих маловязкую нефть. При вытеснении высоковязкой нефти основной фактор, увеличивающий коэффициент вытеснения, — уменьшение вязкости нефти при растворении в ней СО2.

Важное условие технологии вытеснения нефти СО2 — его чистота, от которой зависит смесимость с нефтью. Чистый СО2 (99,8−99,9%) имеет минимальное давление смесимости, лучше смешивается с нефтью и вытесняет ее, а при сжижении может закачиваться в пласты насосами без осложнений и необходимости удаления газов. При содержании в смеси с СО2 большого количества легких углеводородных и инертных газов нагнетание смеси возможно только в газообразном состоянии.

Если в пласт закачивается СО2 в смеси с метаном (природный газ) или азотом (дымовые газы), то давление смесимости будет очень высоким, а эффективность вытеснения нефти сниженной. Это объясняется тем, что метан или азот препятствуют смесимости нефти и СО2.

Для вытеснения нефти одним СО2 требуется его большой расход для ощутимого увеличения нефтеотдачи. Ввиду большой разницы вязкостей и плотностей СО2 и нефти возможны быстрые прорывы СО2 к добывающим скважинам по высокопроницаемым слоям, гравитационное разделение их и значительное уменьшение охвата по сравнению с заводнением. Вследствие этого эффект повышения вытеснения нефти СО2 может быть меньше потерь в нефтеотдаче за счет снижения охвата вытеснением. С целью экономии СО2, предотвращения его прорывов к добывающим скважинам, снижения гравитационных эффектов и увеличения коэффициента охвата, применение СО2 целесообразно сочетать с заводнением.

Диоксид углерода может подаваться в пласт по следующим технологическим схемам:

> в виде водного раствора заданной концентрациикарбонизированная вода;

> разовой оторочки реагента, продвигаемой по пласту карбонизированной или обычной водой; > чередующихся оторочек диоксида углерода, продвигаемых по пласту закачиваемой водой.

Закачиваемая карбонизированная вода на контакте с нефтью обедняется диоксидом углерода, который переходит в нефть. В дальнейшем нефть вытесняется водой с низким содержанием реагента, что существенно снижает эффективность процесса. При создании разовой оторочки СО2 с проталкиванием ее водой в связи с тем, что жидкий СО2 обладает малой вязкостью, отмечается вязкостная неустойчивость в перемещении водонефтяного контакта с прорывом оторочки в добывающие скважины. Попеременной закачкой СО2 и воды создается несколько чередующихся оторочек. Растворение углекислоты в нефти и воде снижает отрицательный эффект в вязкостной неустойчивости при перемещении ВНК. Поэтому более предпочтителен метод чередующейся закачки углекислоты и воды.

Применение СО2 для увеличения нефтеотдачи пластов не предъявляет особых требований к системе разработки, но она обязательно должна быть внутриконтурная, либо должны применяться различные модификации площадного заводнения. Предпочтение должно быть отдано активным, т. е. малорядным системам разработки.

Основной недостаток метода извлечения остаточной нефти при помощи СО2 заключается в снижении охвата пластов вытеснением по сравнению с обычным заводнением, особенно при неполной смесимости его с нефтью. Если бы удалось обеспечить охват пластов вытеснением С02 такой же, как при заводнении, то можно было бы получить существенное увеличение нефтеотдачи пластов, так как в зоне, где проходит СО2, смешивающийся с нефтью, остается очень мало остаточной нефти — 3 — 5%. Уменьшить снижение охвата пластов вытеснением можно разными способами — улучшением условий смесимости чередующимися оторочками воды и газа, изменением их размера, селективной изоляцией определенных интервалов пластов для выравнивания продвижения СО2, циклическим воздействием на пласты, соответствующим размещением скважин и вскрытием в них пластов и др.

Другим недостатком метода, видимо, следует считать то, что СО2 при условиях неполной смесимости с нефтью экстрагирует из нее легкие углеводороды, уносит их, а тяжелые фракции нефти остаются в пласте. Извлечь их в последующем будет труднее, так как они становятся менее подвижными и, возможно, выпадают на поверхность пор, изменяя смачиваемость среды.

Ограничением для применения СО2 с целью повышения нефтеотдачи пластов, помимо геолого-физических критериев, будет наличие ресурсов СО2 в районе нефтяных месторождений или доступных для транспортировки к месторождениям при благоприятных экономических показателях. Можно считать, что удаление источника СО2 от месторождения более чем на 400 — 600 км, стоимость его (на устье нагнетательных скважин) и низкая цена на нефть будут серьезными помехами для применения СО2.

К самым сложным проблемам, возникающим при использовании СО2 для увеличения нефтеотдачи пластов, относятся возможность коррозии нагнетательных и добывающих скважин и нефтепромыслового оборудования, необходимость утилизации СО2 — удаления из добываемых углеводородных газов на поверхности и повторной инжекции в нефтяные пласты. Чистый СО2 (без влаги) не опасен в отношении коррозии. Но при чередовании с водой в нагнетательной скважине или после смешивания с ней в пласте и при появлении в добывающих скважинах и на поверхности он становится коррозионно-активным.

Сложной технической проблемой является транспорт жидкой СО2, распределение ее по скважинам, требующие специальных труб, качества сварки и т. д.

При использовании совместно с СО2 воды, несовместимой с пластовой, создаются более благоприятные условия для выпадения солей в пластах, призабойных зонах скважин, подъемных трубах, поверхностном оборудовании и пр.

Существенным недостатком, ограничивающим внедрение метода, является относительно большое поглощение СО2 пластом — потери достигают 60 — 75% от общего объема закачки. Они обусловлены удержанием СО2 в тупиковых порах и застойных зонах. Все это приводит к большому удельному расходу СО2 на тону дополнительно добытой нефти.

В целом из всех известных методов увеличения нефтеотдачи пластов использование СО2 наиболее универсально и перспективно.

Заводнение мицеллярными растворами.

Успешное и широкое применение заводнения нефтяных месторождений, обеспечивающего существенное увеличение конечной нефтеотдачи, по сравнению с режимами истощения, поставило очень сложную проблему дополнительного извлечения нефти из сильно истощенных, заводненных пластов. Остаточная нефть в заводненных пластах удерживается в неподвижном состоянии поверхностно-молекулярными силами. Заставить двигаться остаточную нефть в заводненных пластах можно, только полностью устранив действие Капиллярных сил или снизив их настолько, чтобы они были меньше гидродинамических сил, создаваемых перепадом давления, и выравняв подвижности в различных слоях.

Мицеллярно-полимерное заводнение направлено на устранение капиллярных сил в заводненных пластах и вытеснение остаточной нефти. Метод мицеллярно-полимерного заводнения основан на последовательной закачке мицеллярного и полимерного растворов, продвигаемых по пласту водой.

Мицеллярные растворы — это особые коллоидные системы, основными компонентами которых являются углеводородная жидкость и вода, стабилизированные смесью маслои водорастворимых ПАВ. Эти системы, в принципе, способны практически полностью вытеснить из пористой среды нефть, благодаря крайне низкому межфазному натяжению на границе нефть-мицеллярный раствор. Возможность значительного увеличения нефтеотдачи заводнением пластов за счет применения мицеллярных растворов связана с тем, что вытесняющее действие не зависит от текущего значения нефтенасыщенности пористой среды. Обладая повышенной и регулируемой вязкостью, эти системы способствуют также увеличению охвата пластов воздействием за счет сближения значений подвижностей нефти и вытесняющего ее флюида. Закачка же полимерного раствора вслед за оторочкой мицеллярной композиции служит для создания буфера, предохраняющего оторочку от вязкостного разрушения проталкивающей водой.

Как известно, углеводородная жидкость (нефть, керосин) и вода между собой не смешиваются в обычных условиях. Но когда к ним добавляется третий компонент — специальное, растворимое в нефти и воде ПАВ, они могут смешиваться. Молекулы ПАВ за счет энергии взаимодействия с водой и нефтью служат связующим звеном между молекулами углеводородной жидкости и воды. При их перемешивании в определенных условиях получается однофазный гомогенный раствор, или микроэмульсия. Оптимальные мицеллярные растворы получаются, когда энергии взаимодействия на единицу поверхности ПАВ с водой и с нефтью одинаковы и значительны по величине. Это условие — основное для образования устойчивых в обычных условиях мицеллярных растворов. Но, чтобы они были устойчивыми в пласте, в зависимости от свойств пластовой нефти, солевого состава воды, насыщенности и строения пласта, в растворы приходится добавлять четвертый компонент — различные стабилизаторы.

В качестве углеводородной жидкости (50−70%) можно применять сжиженный газ, керосин, сырую легкую нефть и другие жидкости, но с увеличением их так называемого алканового углеводородного числа повышается межфазное натяжение и ухудшаются условия применения.

Вода (20−35%) — важная составная часть раствора. Можно применять обычную пресную воду, пластовую минерализованную или подвергнутую специальной обработке, но с заданной соленостью и определенным солевым составом.

ПАВ (8−10%) обычно являются водонефтерастворимые вещества,.

— алкил-ариловые сульфонаты, нефтяные сульфонаты, нонил-фенолы и др. могут применяться композиции различных водорастворимых неионогенных и анионных ПАВ.

В качестве стабилизатора (2−3%) обычно используются спирты.

— изопропиловый, бутиловый, гексанол и др.

Мицеллярный раствор готовится из составных компонентов непосредственно на месторождении. Обычно он хорошо перемешивается при циркуляции его через насос, перед закачкой его пропускают через фильтр.

Как показывают лабораторные исследования и промысловый опыт использование мицеллярных растворов в качестве вытесняющих жидкостей позволило достичь коэффициента вытеснения на участках пласта, охваченных заводнением, 60−90%.

Самый большой недостаток метода вытеснения остаточной нефти из заводненных пластов мицеллярными растворами — сложность его технологии, зависящая от многих неуправляемых факторов и требующая точного неукоснительного исполнения. Строгая последовательность нагнетания, соблюдение качественного и количественного состава и объема оторочек — обязательное условие успешного применения метода. При этом методе недопустимы отклонения от обоснованной для конкретного пласта оптимальной технологии, как это возможно при заводнении или применении других химических продуктов, которые почти не отличаются для разных пластов. При этом методе понятие оптимальной, проектной технологии приобретает буквальный, жесткий смысл, так как снижение концентрации химических реагентов и уменьшение объемов оторочек будут неизбежно ухудшать эффективность процесса.

Другой важный недостаток метода — его острая чувствительность к неблагоприятным геолого-физическим условиям месторождений, и особенно к солевому составу пластов, а также воды пластовой и используемой для приготовления растворов. Приготовление растворов на воде несоответствующего качества или без учета свойств солей пласта и пластовой воды может не только уменьшить эффективность, но и поставить под сомнение целесообразность применения.

Удаление механических примесей из воды (до 1—3 мг/л), обескислороживание (деаэрация) и бактерицидная обработка воды используемой для приготовления мицеллярных растворов, — также необходимое условие их эффективного применения.

Основным ограничивающим фактором применения метода мицеллярного заводнения служит большая потребность в химических реагентах. Для того чтобы применить метод на залежи с начальными запасами 1 млн т и получить дополнительно 250−300 тыс. т нефти, требуется закачать в пласт 100−150 тыс. м3 мицеллярного раствора и 300−400 тыс. м3 полимерного раствора, на которые понадобится 8−15 тыс. т нефтяных сульфонатов, 2−3 тыс. спиртов, 150−250 т полимеров и 25−50 тыс. т углеводородов. Следовательно, для промышленного применения метода в широких масштабах требуется организовать производство огромных объемов различных химических продуктов.

Высокая стоимость всех требующихся для мицеллярных растворов компонентов и их чувствительность к пластовым солямважнейшие сдерживающие факторы широкого применения метода.

Проблемы, связанные с применением мицеллярно-полимерного заводнения, обусловлены главным образом недостаточной изученностью фундаментальных физико-химических основ, механизма пластовых процессов. Из всех известных методов мицеллярно-полимерное заводнение, обладая самым сложным механизмом процессов, является наименее изученным и испытанным в промышленных условиях.

Показать весь текст
Заполнить форму текущей работой