Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Техногенный 210Pb в атмосфере промышленного центра в холодный период года

РефератПомощь в написанииУзнать стоимостьмоей работы

В целом, совокупность дополнительных определений подтверждает высказанное предположение о природе разделения данных по содержанию 210Pb на две группы в холодное время года. По ним можно оценить вклад техногенной составляющей в содержании 210Pb в приземном слое воздуха в холодное время года за счет эксплуатации систем отопления. Среднее отношение объемных активностей верхней и нижней группы точек… Читать ещё >

Техногенный 210Pb в атмосфере промышленного центра в холодный период года (реферат, курсовая, диплом, контрольная)

ТЕХНОГЕННЫЙ 210PB В АТМОСФЕРЕ ПРОМЫШЛЕННОГО ЦЕНТРА В ХОЛОДНЫЙ ПЕРИОД ГОДА

Как и другие продукты распада радона, 210Pb имеет и радиоэкологическое значение [1−5]. По оценкам НКДАР ООН [4] в среднемировой эффективной эквивалентной дозе облучения человека естественными радионуклидами 2,4 мЗв/год (в том числе от внутреннего облучения 1,6 мЗв/год) доза облучения короткоживущими продуктами распада 222Rn составляет 1,1мЗв/год, а долгоживущими в цепочке 210Pb210Bi210Po — 0,12мЗв/год. При этом учитывается поступление радона в атмосферу только из почвы, а поступление долгоживущих продуктов распада — только с продуктами питания и водой. Однако техногенные факторы значительно изменяют эти оценки в сторону их увеличения, особенно в крупных промышленных центрах.

В одной из первых работ по радиологической значимости долгоживущих продуктов распада радона [5] (кстати, выполненных в г. Ростове-на-Дону) годовое поступление радона в организм человека оценивается в 4Бк из воздуха и 40Бк с продуктами питания. Для большого города содержание радона в воздухе достигает ~1500 Бк/м3 (центр Лондона [1]) при среднем содержании над континентом 222Rn ~ 5 Бк/м3, 210Pb ~ 0,5 мБк/м3 и диапазоне содержаний соответственно 1,85ч31,5 Бк/м3 222Rn и 0,074ч6,3 мБк/м3 210Pb.

В наибольшей степени влияние техногенных факторов изучено для процессов сжигания твердого топлива на ТЭС [6]. Для долгоживущих продуктов распада радона относительная биологическая эффективность определяется отношением 210Pb:210Bi:210Po как1:10:100. В районе ТЭС мощностью 1 ГВт индивидуальные дозы облучения определяется для костной ткани — 1,14мЗв/год, костного мозга — 0,145мЗв/год и легких — 0,420 мЗв/год. Доля 210Pb в этих дозах сравнительно невелика (~1,3−3,4%), но его продукта распада 210Po значительна (до 83%).

Основными источниками поступления радона и продуктов его распада в атмосферу промышленного центра следует считать сжигание органического топлива для отопления, обеспечение различных технологических процессов, работу транспорта [7].

Систематическое определение 210Pb вместе с другими радионуклидами в приземном воздухе непрерывно проводится в г. Ростове-на-Дону с 2002 года на юго-восточной окраине на аспирационной станции НИИ Физики ЮФУ. В сезонной зависимости содержания 210Pb в воздухе по данным определения 2002;2007гг, в условиях города с умеренно-континентальным климатом, избытком тепла летом и отрицательными температурами зимой, имеется два максимума: весенне-летний (связанный с перестройкой атмосферы) и зимний (связанный, преимущественно, с техногенными выбросами объектов сжигания органического топлива для целей отопления). Техногенный максимум в осенне-зимний сезон появляется вместо ожидаемого, в естественных условиях, глубокого минимума, связанного с резким снижением скорости эксгаляции радона с земной поверхности и, следовательно, образующегося в верхней атмосфере из него 210Pb и переносимого затем в приземный слой воздуха. Рассмотрение техногенных факторов формирования 210Pb в атмосфере промышленного центра [7] в настоящей работе дополнено попытками количественной оценки влияния одного из наиболее существенных из них. На приведенных на Рис. 1. гистограммах показан сезонный ход объемной активности 210Pb (средний за 2002;2005гг. (а), за 2006 г. (б) и за 2007 г. (в)). На этом же рисунке приведены данные для теплого и холодного сезонов года. Во всех случаях зимний максимум превышает летний, как и среднее по сезонам содержание 210Pb для осенне-зимнего сезона выше, чем для весенне-летнего сезона. При этом различие тем больше, чем ниже средняя температура холодного сезона (2002;2005гг. — +2,3оС, 2006 г. — +1,2оС и 2007 г. — -2,9оС) и ниже температуры месяца зимнего максимума: -1,3оС в декабре 2002;2005гг., -8,6оС в январе 2006 г. и -1,7оС в декабре 2007 г. В то же время среднегодовые температуры воздуха были в любом случае в районе 10,0 ч 11,0оС.

а).

Техногенный 210Pb в атмосфере промышленного центра в холодный период года.

б).

Техногенный 210Pb в атмосфере промышленного центра в холодный период года.

в).

Рис. 1. Сезонная зависимость содержания 210Pb в воздухе по данным определения 2002;2007гг

Особый интерес представляет зависимость А (Т) для холодного времени года при Т?5оС (Рис.2). Данные как бы разделены на две группы: верхнюю с А?2,0 мБк/м3 (n=11) и нижнюю с А<2,0 мБк/м3(n=17), причем при Т<0оС в обеих группах содержится практически равное число четко разделенных точек (n=5−6). В нижней группе все точки относятся к 2002;2005гг., полученных при сравнительно небольших средних значениях температуры =-1,4оС и силе ветра =1,8 балла. В верхней группе содержатся преимущественно точки 2006;2007гг. (n=4 из всех точек группы n=6) со средними значениями =-5,0 оС и =3 балла.

Зависимость объемной активности Pb от температуры воздуха в холодное время года (Т?5С).

Рис. 2. Зависимость объемной активности 210Pb от температуры воздуха в холодное время года (Т?5оС)

Возможно, причиной такого разделения данных по активности, А 210Pb на две группы является наличие или отсутствие перемешивания воздушных масс (в том числе горизонтального). При сочетании сильных ветров и морозов, кроме значительного перемешивания, увеличивается общий расход органического сырья для целей отопления. С другой стороны, при относительно слабых ветрах и морозах атмосфера более стабильна, перемешивание воздушных масс ограничено, а расход топлива несколько сокращается. Возможно осаждение техногенного 210Pb преимущественно вблизи источников выбросов и техногенный 210Pb не достигает или почти не достигает зеленой зоны, в которой расположена аспирационная станция.

Необходимо учитывать, что, кроме продуктов распада радона, в техногенных выбросах находится собственно радон, который, как газ, тяжелее воздуха, распространяется далеко от места выброса, особенно по склонам, может накапливаться в низменных местах и в результате радиоактивного распада увеличивает содержание 210Pb в приземном воздухе. Радон от выбросов Новочеркасской ГРЭС определяется на расстоянии более 20 км от вентиляционных труб ГРЭС [8]. По различным оценкам независимо от источника поступления аэрозоля 210Pb, время его жизни в атмосфере может быть от 1−2 суток до 20−30 суток и зависит от устойчивости его носителей. При самой малой скорости ветра собственные аэрозоли 210Pb могут быть также перенесены на значительные расстояния.

В целом, можно предположить, что по нижней группе точек, возможно оценить верхний предел содержания в приземном воздухе 210Pb природного происхождения. Верхняя группа может служить для определения 210Pb преимущественно техногенного происхождения (от выбросов продуктов сгорания органических материалов для целей отопления).

Сделана попытка проверить высказанное предположение о преимущественно естественном происхождении нижней группы данных в зависимости А (Т) по дополнительным экспериментам в районе аспирационной станции АС в условиях, максимально приближенным к таковым для этой группы. В результате недельной экспозиции 29.02−07.03.2008г на фильтре ФПП-15−1,7 и радономере РГА-04 были получены объемные активности 210Pb 0,76±0,03мБк/м3 и 222Rn 13±1Бк/м3 в приземном воздухе (в пересчете на дневное время 7−8 Бк/м3). Во время измерений температура воздуха была +6+7оС, а сила ветра =2 балла северо-восточного направления, что соответствует типичным для месяца марта метеоусловиям (для 2002;2005 гг. =+2,2оС, = 2 балла).

Кроме того, ранее радон в окрестности АС (зеленая зона) определялся в 8 пунктах (дневное время, лето) и получены значения, типичные для района при отсутствии какой-либо значимой аномалии: содержание 222Rn в почвенном воздухе 1,56кБк/м3, скорость эксгаляции с земной поверхности 10,1 мБк/м2час и содержание в воздухе 7,4 Бк/м3.

Техногенный 210Pb в атмосфере промышленного центра в холодный период года.

В целом, совокупность дополнительных определений подтверждает высказанное предположение о природе разделения данных по содержанию 210Pb на две группы в холодное время года. По ним можно оценить вклад техногенной составляющей в содержании 210Pb в приземном слое воздуха в холодное время года за счет эксплуатации систем отопления. Среднее отношение объемных активностей верхней и нижней группы точек по всему интервалу температур ?5оС за 2002;2007гг составила. Из среднего содержания 210Pb в воздухе за зимние месяцы этого же периода (n=35) +=2,28мБк/м3 и значения б=2,86, получили =0,59мБк/м3 и =1,69мБк/м3 при ветрах преимущественно восточных, северо-восточных и северных. радон техногенный топливо радионуклид Можно оценить, в каком отношении природная и техногенная составляющие поступают с ветрами различных направлений. Наиболее обеспечены данными лишь некоторые направления (табл. 1), в том числе:

Таблица 1. Отношение природной и техногенной составляющих содержания 210Pb

Параметры.

Направление ветра.

Восточное.

Северо-восточное.

2,8 балла.

2,1.

n.

1,27мБк/м3

1,53мБк/м3

2,71мБк/м3

7,00мБк/м3

2,13.

4,58.

Для восточного направления ветра точкам АТ соответствуют = 3,0 балла и =+1,2оС; точкам АС соответствуют = 2,0 балла и =+6,6оС.

Для северо-восточного направления ветра точкам АТ соответствуют = 2,3 балла и =-7,0оС; точкам АС соответствуют = 2,0 балла и =+2,6оС.

Для остальных направлений ветра в качестве оценки приходится использовать усредненную по всем данным оценку /=2,86 или использовать оценку по малообеспеченным данным.

Таблица 2. Отношение природной и техногенной составляющих содержания 210Pb

Параметры.

Направление ветра.

Северное.

Юго-западное.

Западное.

n.

1,8 балла.

3,5 балла.

3,0 балла.

;

4,0 балла.

4,0 балла.

1,25мБк/м3

1,45мБк/м3

1,05мБк/м3

;

4,38мБк/м3

2,52мБк/м3

;

3,02.

2,40.

— 0,1оС.

+1,8оС.

— 0,7оС.

;

— 1,7оС.

+1,7оС.

Относительная доля техногенного 210Pb в целом соответствует доле городской (жилой и промышленной) застройки в этом направлении.

Также, если использовать полученные одновременно объемные активности 210Pb и 222Rn в соотношении 1:1,7*104, то получим кроме повышения содержания 210Pb зимой за счет отопления в 2−4 раза, такое же повышенное содержание радона (в среднем до 25−20 Бк/м3).

Количественные оценки иных техногенных источников поступления 210Pb и 222Rn в приземный слой воздуха промышленного центра еще предстоит получить.

  • 1. Сердюкова А. С., Капитанов Ю. Т. Изотопы радона и продукты их распада в природе / М.: Атомиздат., Изд. 2-е, 1975.
  • 2. Крисюк Э. М. Радиационный фон помещений / М.: Энергоатомиздат., 1989.
  • 3. Моисеев А. А., Иванов В. И. Справочник по дозиметрии и радиационной гигиене / М.: Энергоатомиздат., 1990.
  • 4. Источники, эффекты и опасность ионизирующей радиации. Доклад НКДАР ООН Генеральной Ассамблеи за 1988 г. Т.1. М. «Мир». 1992 г.
  • 5. Ladinskaya L., Parfenov Y.D., Popov D.K. Lead-210 and polonium-210 content of air, water, food stuffs and human body. / Arch. Environ. Health. 1973, v.22, Р. 254−258.
  • 6. Ильин Л. А., Книжников В. А., Шандала Н. К. и др. Океанологическая «цена» тепловой и атомной электроэнергии. / М.: «Медицина», 2001.
  • 7. Зорина Л. В., Стасов В. В., Бураева Е. А. Оценка техногенной составляющей загрязнения приземного слоя атмосферы 210Pb на примере юго-востока г. Ростова-на-Дону. / Сб. «Фундаментальные и прикладные проблемы современной техники». Вып.10, Ростов-на-Дону, 2007, С. 21−29.
  • 8. Давыдов М. Г., Тимонина Ю. А. Радиоэкология расположения ГРЭС Ростовской области. / Теплоэнергомиздат., № 12, 2003, С. 8−13.
Показать весь текст
Заполнить форму текущей работой