Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Чернобыльская катастрофа и её последствия

РефератПомощь в написанииУзнать стоимостьмоей работы

Для контроля за ввозом и транзитом через территорию края радиоактивных веществ, отходов и ИИИ на границах с Ростовской областью и Ставропольским краем специализированной организацией «Радиационные контроль» установлено 4 поста дозиметрического контроля. Однако в июле 2001 г., в связи с распоряжением Министерства внутренних дел России о недопустимости нахождения на контрольных постах милиции… Читать ещё >

Чернобыльская катастрофа и её последствия (реферат, курсовая, диплом, контрольная)

УВК «Общеобразовательная школа І - ІІІ ступеней — лицей»

Реферат

На тему:

Чернобыльская катастрофа и её последствия

Дорош Д.

10- класс

г. Ананьев

2005 год Содержание

Введение

1 Источники и характеристика радиационного загрязнения…

1.1Характеристика радиационного загрязнения…

1.2ПО «Маяк» …

1.3 Чернобыль…

2 Распространение радиационного загрязнения…

2.1 Радиоактивное загрязнение воздушной среды…

2.2 Радиоактивное загрязнение водной среды. …

2.3 Радиоактивное загрязнение почвы. …

2.4 Радиоактивное загрязнение растительного и

животного мира. …

3 Переработка и нейтрализация радиационных отходов. …

4. Радиационная обстановка в Краснодарском крае. …

5 Возможные последствия применения ядерного оружия массового поражения…

Заключение

Список литературы

Радиоактивное загрязнение биосферы это превышение естественного уровня содержания в окружающей среде радиоактивных веществ. Оно может быть вызвано ядерными взрывами и утечкой радиоактивных компонентов в результате ава-рий на АЭС или других предприятиях, при разработке радиоактивных руд и т. п. При авариях на АЭС особённо резко увеличивается загрязнение среды радионуклидами (стронций-90, цезий-137, церий-141, йод-131, рутений-106 и др.). В настоящее врёмя, по данным Международного агентства по атомной энергетике. (МАГАТЭ), число действующих в мире реакторов достигло 426 при их суммарной электрической мощности около 320 ГВт (17% мирового производства электроэнергии).

Ядерная энергетика, при условии строжайшего выполнения необходимых требований, более или менее экологически чище no сравнению с тепло-энергетикой, поскольку исключает вредные вы-бросы в атмосферу (зола, диоксиды, углерода и се-ры, оксиды азота и др.). Так, во Франции быстрое наращивание мощностей АЭС позволило в послед-ние годы значительно уменьшить выбросы диоксида серы и оксидов азота в секторе энерге-тики соответственно на 71 и 60%. В Японии для стабилизации энергообеспечения страны намечает-ся в ближайшие два десятилетия построить около 40 новых АЭС, что удовлетворит 43% энергопотребностей. Однако в целом в мире отмечена тенденция сокращения строительства новых АЭС.

Использование атомной энергии в широких масштабах приво-дит к накоплению радиоактивных отходов. Возникает проблема их захоронения.

1 Источники и характеристика радиационного загрязнения.

1.1 Характеристика радиационного загрязнения.

Научные открытия и развитие физико-химических технологий в XX в. привели к появлению искусственных источников радиации, представляющих большую потенциальную опасность для человечества и всей биосферы. Этот потенциал на много порядков больше естественного радиационного фона, к которому адаптирована вся живая природа.

Естественный радиационный фон обусловлен рассеянной радиоактивностью земной коры, проникающим космическим излучением, потреблением с пищей биогенных радионуклидов и составлял в недавнем прошлом 8—9 микрорентген в час (мкР/ч), что соответствует среднегодовой эффективной эквивалентной дозе (ЭЭД = НD) для жителя Земли в 2 миллизиверта (мЗв). Рассеянная радиоактивность обусловлена наличием в среде следовых количеств природных радиоизотопов с пе-риодом полураспада (T½) более 105 лет (в основном урана и тория), а также 40К, 14С, 226Ra и 222Rn. Газ радон в среднем дает от 30 до 50% естественного фона облучения наземной биоты. Из-за неравномерности распределения источников из-лучения в земной коре существуют некоторые региональные различия фона и его локальные аномалии.

Указанный уровень фона был характерен для доиндустриальной эпохи и в настоящее время несколько повышен техногенными источниками радиоактивности — в среднем до 11— 12 мкР/ч при среднегодовой ЭЭД в 2,5 мЗв. Эту прибавку обусловили:

а) технические источники проникающей радиации (медицинская диагностическая и терапевтическая рентгеновская аппаратура, радиационная дефектоскопия, источники сигналь-ной индикации и т. п.);

б) извлекаемые из недр минералы, топливо и вода;

в) ядерные реакции в энергетике и ядерно-топливном цикле;

г) испытания и применение ядерного оружия. Деятельность человека в несколько раз увеличила число присутствующих в среде радионуклидов и на несколько поряд-ков — их массу на поверхности планеты.

Главную радиационную опасность представляют запасы ядерного оружия и топлива и радиоактивные осадки, которые образовались в результате ядерных взрывов или аварий и утечек в ядерно-топливном цикле — от добычи и обогащения урановой руды до захоронения отходов. В мире накоплены десятки тысяч тонн расщепляющихся материалов, обладающих колоссальной суммарной активностью.

С 1945 по 1996 г. США, СССР (Россия), Великобритания, Франция и Китай произвели в надземном пространстве более 400 ядерных взрывов. В атмосферу поступила большая масса сотен различных радионуклидов, которые постепенно выпали на всей поверхности планеты. Их глобальное количество поч-ти удвоили ядерные катастрофы, произошедшие на террито-рии СССР. Долгоживущие радиоизотопы (углерод-14, цезий-137, стронций-90 и др.) и сегодня продолжают излучать, соз-давая приблизительно 2%-ю добавку к фону радиации. По-следствия атомных бомбардировок, ядерных испытаний и аварий еще долго будут сказываться на здоровье облученных людей и их потомков.

Пока еще трудно говорить о влиянии техногенного превы-шения естественного фона радиации на биоту биосферы. Мы еще не знаем, как может сказаться на биоте океана разгерметизация затопленных контейнеров с радионуклидами и реакторов затонувших подводных лодок. Во всяком случае, можно предпо-лагать некоторое повышение уровня мутагенеза.

Радиационные загрязнения, связанные с технологически нормальным ядерным топливным циклом, имеют локальный характер и доступны для контроля, изоляции и предотвраще-ния эмиссий. Эксплуатация объектов атомной энергетики со-провождается незначительным радиационным воздействием. Многолетние систематические измерения и кон-троль радиационной обстановки не обнаружили серьезного влияния на состояние объектов окружающей природной сре-ды. Дозы облучения населения, проживающего в окрестностях АЭС, не превышают 10 мкЗв/год, что в 100 раз меньше уста-новленного допустимого уровня. Вероятность радиационных аварий реакторов АЭС сейчас оценивается как 10 —4 —10 -5 в год.

1.2 ПО «Маяк»

ПО «Маяк». Самое крупное из известных сейчас скопле-ний радионуклидов находится на Урале, в 70 км к северо-западу от Челябинска на территории производственного объе-динения «Маяк». ПО «Маяк» было создано на базе промыш-ленного комплекса, построенного в 1945—1949 гг. Здесь в 1948 г. был пущен первый в стране промышленный атомный реактор, в 1949 г. — первый радиохимический завод, изготов-лены первые образцы атомного оружия. В настоящее время в производственную структуру ПО «Маяк» входят ряд произ-водств ядерного цикла, комплекс по захоронению высокоак-тивных материалов, хранилища и могильники РАО. Много-летняя деятельность ПО «Маяк» привела к накоплению ог-ромного количества радионуклидов и сильному загрязнению районов Челябинской, Свердловской, Курганской и Тюмен-ской областей. В результате сброса отходов радиохимического производства непосредственно в открытую речную систему Обского бассейна через р. Теча (1949—1951 гг.), а также вследствие аварий 1957 и 1967 гг. в окружающую среду было выброшено 23 млн. Ки активности. Радиоактивное загрязне-ние охватило территорию в 25 тыс. км2 с населением более 500 тыс. человек. Официальные данные о десятках поселков и деревень, подвергшихся загрязнению в результате сбросов ра-диоактивных отходов в р. Теча, появились только в 1993 г.

В 1957 г. в результате теплового взрыва емкости с РАО произошел мощный выброс радионуклидов (церий-144, цирконий-95, стронций-90, цезий-137 и др.) с суммарной активно-стью 2 млн. Ки. Возник «Восточно-Уральский радиоактивный след» длиной до 110 км (в результате последующей миграции даже до 400км) и шириной до 35—50 км (рис. 1.1). Общая площадь загрязненной территории, ограниченной изолинией 0,1 Ки/км2 по стронцию-90, составила 23 тыс. км2. Около 10 тыс. человек из 19 населенных пунктов в зоне наиболее сильного загрязнения с большой задержкой были эвакуирова-ны и переселены.

Зона радиационного загрязнения на Южном Урале расши-рилась вследствие ветрового разноса радиоактивных аэрозолей с пересохшей части технологического водоема № 9 ПО «Маяк» (оз. Карачай) в 1967 г. В настоящее время в этом резервуаре на-ходится около 120 млн Ки активности, преимущественно за счет стронция-90 и цезия-137. Под озером сформировалась линза загрязненных подземных вод объемом около 4 млн м3 и площадью 10 км2. Существует опасность проникновения загрязненных вод в другие водоносные горизонты и выноса радионуклидов в речную сеть.

По данным радиационного мониторинга, выпадения це-зия-137 из атмосферы в районах, расположенных в зоне влияния ПО «Маяк», в течение 1994 г. были в 50—100 раз больше, чем в среднем по стране. Высоким остается и уро-вень загрязнения местности цезием-137 в пойме р. Теча. Кон-центрации стронция-90 в речной воде и в донных отложениях в 100—1000 раз превышают фоновые значения. В каскаде про-мышленных водоемов в верховьях Течи содержится 350 млн м3 загрязненной воды, являющейся по сути низкоактивными от-ходами. Суммарная активность твердых и жидких РАО, нако-пленных в ходе деятельности ПО «Маяк», достигает 1 млрд Ки. Сосредоточение огромного количества РАО, загрязнение по-верхностных водоемов, возможность проникновения загряз-ненных подземных вод в открытую гидрографическую систему Обского бассейна создают исключительно высокую степень радиационного риска на Южном Урале.

1.3 Чернобыль.

Не только нынешнее, но и последующие поко-ления будут помнить Чернобыль и ощущать последствия этой катастрофы. В результате взрывов и пожара при аварии на четвертом энергоблоке ЧАЭС с 26 апреля по 10 мая 1986 г. из разрушенного реактора было выброшено примерно 7,5 т ядер-ного топлива и продуктов деления с суммарной активностью около 50 млн Ки. По количеству долгоживущих радионукли-дов (цезий-137, стронций-90 и др.) этот выброс соответствует 500—600 Хиросимам.

Из-за того, что выброс радионуклидов происходил более 10 суток при меняющихся метеоусловиях, зона основного за-грязнения имеет веерный, пятнистый характер (рис. 1.2). Кроме 30-километровой зоны, на которую пришлась большая часть выброса, в разных местах в радиусе до 250 км были вы-явлены участки, где загрязнение достигло 200 Ки/км2. Общая площадь «пятен» с активностью более 40 Ки/км2 составила около 3,5 тыс. км2, где в момент аварии проживало 190 тыс. человек. Всего радиоактивным выбросом ЧАЭС в разной сте-пени было загрязнено 80% территории Белоруссии, вся север-ная часть Правобережной Украины и 19 областей России. В целом по РФ загрязнение, обусловленное аварией на ЧАЭС, с плотностью 1 Ки/км2 и выше охватывает более 57 тыс. км2, что составляет 1,6% площади ЕТР (табл. 1.1). Уточненные в 1994 г. границы площадей, загрязненных цезием-137, по срав-нению с 1993 г. почти не изменились. Следы Чернобыля обнаружены в большинстве стран Европы (табл. 1.2), а также в Японии, на Филиппинах, в Канаде. Катастрофа приобрела глобальный характер.

И сегодня спустя полтора десятилетия после чернобыль-ской трагедии существуют противоречивые оценки ее пора-жающего действия и причиненного экономического ущерба. Согласно опубликованным в 2000 г. данным из 860 тыс. чело-век, участвовавших в ликвидации последствий аварии, более 55 тыс. ликвидаторов умерли, десятки тысяч стали инвалида-ми. Полмиллиона человек до сих пор проживает на загряз-ненных территориях.

Таблица 1.1. Площади областей и республик России, загрязненных цезием-137 (по состоянию на январь 1995 г.)

Областиреспублики

Общаяплощадьобластиреспублики

тыскм

Площадь загрязнений цезием-137, км2

Ки/км2

1−5

5−15

15−40

>40

1.

Белгородская

27,1

1 620

2.

Брянская

34,9

6 750

2 130

3.

Воронежская

52,4

1 320

4.

Калужская

29,9

3 500

1 419

5.

Курская

29,8

1 220

6.

Липецкая

24,1

1 619

7.

Ленинградская

85,9

8.

Нижегородская

74,8

9.

Орловская

24,7

8 840

10.

Пензенская

43,2

4 130

11.

Рязанская

39,6

5 320

12.

Саратовская

100,2

13.

Смоленская

49,8

14.

Тамбовская

34,3

15.

Тульская

25,7

1 320

1 271

16.

Ульяновская

37,3

1 100

17.

Мордовия

26,2

1 900

18.

Татарстан ,

68,0

19.

Чувашия

18,0

Итого

49 760

2 130

Точных данных о количестве облученных и полученных до-зах нет. Нет и однозначных прогнозов о возможных генетиче-ских последствиях. Подтверждается тезис об опасности дли-тельного воздействия на организм малых доз радиации. В рай-онах, подвергшихся радиоактивному заражению, неуклонно рас-тет число онкологических заболеваний, особенно выражен рост заболеваемости раком щитовидной железы детей.

Таблица 1.2. Средние эффективные эквивалентные дозы радиации для ряда стран Европы в течение первого года после Чернобыльской аварии, мкЗв

Страна

Эффективная эквивалентная доза за первый год

Ожидаемая эффективная эквивалентная доза

Австрия

Финляндия

Болгария

Румыния

Югославия

Греция

Чехия и Словакия

Италия

Норвегия

Польша

Венгрия

СНГ (СССР)

Распространение радиационного загрязнения.

2.1 Радиоактивное загрязнение воздушной среды.

Радиоактивные вещества, попадающие в атмосферу при их добыче, и эксплуатации атомных установок и двигателей, могут представлять опасность. Однако при современном уровне защитной техники этот Источник радиоактивности незначи-телен.

Наибольшее загрязнение атмосферы радиоактивными вещест-вами происходит в результате взрывов атомных и водородных бомб. Каждый такой взрыв сопровождается образованием гран-диозного облака радиоактивной пыли. Взрывная волна огромной силы распространяет ее частицы во всех направлениях, подни-мая их более чем на 30 км. В первые часы после взрыва осажда-ются наиболее крупные частицы, несколько меньшего размера — влечение 5 суток, а мелкодисперсная пыль потоками воздуха пере-носится на тысячи километров и оседает на поверхности земного шара в течение многих лет.

2.2 Радиоактивное загрязнение водной среды.

Основными источниками радиоактивного загряз-нения Мирового океана являются:

загрязнения от испытаний ядерного оружия (в атмосфере до 1963 г.);

загрязнения радиоактивными отходами, ко-торые непосредственно сбрасываются в море;

крупно-масштабные аварии (ЧАОС, аварии судов с атомными реакторами);

захоронение радиоактивных отходов на дне и др. (Израиль и др., 1994).

Во время испытания ядерного оружия, особенно до 1963 г., когда проводи-лись массовые ядерные взрывы, в атмосферу было вы-брошено огромное количество радионуклидов. Так, только на арктическом архипелаге Новая Земля было проведено более 130 ядерных взрывов (только в 1958 г. -46 взрывов), из них 87- в атмосфере.

Отходы от английских и французских атомных заводов загрязнили радиоактивными элементами практически всю Северную Атлантику, особенно Северное, Норвежское, Гренландское, Баренцево и Белое моря. В загрязнение радионуклидами акватории Северного Ледовитого океана некоторый вклад сделан и нашей страной. Работа трех подземных атомных реакторов и радиохимического завода (производство плутония), а также остальных производств в Красноярске-26 привела к загрязнению одной из самых крупных рек мира — Енисея (на .протяжении 1 500 км). Очевидно, что эти, радиоактивные продукты уже попали в Северный Ледовитый океан.

Воды Мирового океана загрязнены наиболее опасными радионуклидами цезия-137, стронция-90, церия-144, иттрия-91, ниобия-95, которые, обладая высокой биоаккумулирующей способностью переходят по пищевым цепям, и концентрируются в морских организмах высших трофических уров-ней, создавая опасность, как для гидробионтов, так и для человека. Различными источниками поступления радионуклидов загрязнены акватории арк-тических морей, так в 1982 г. максимальные загрязнения цезием-137 фиксировались в западной части Баренцева моря, которые в 6 раз превышали глобальное загрязнение вод Северной Атлантики. За 29-летний период наблюдений (1963;1992 гг.) концентрация стронция-90 в Белом и Баренцевом морях уменьшилась лишь в 3−5 раз. Значитель-ную опасность вызывают затопленные в Карском море (около архипелага Новая Земля) 11 тыс. контейнеров с радиоактивными отходами, а также 15 аварийных реакторов с атомных подводных лодок. Работами 3-й советско-американской экспеди-ции 1988 г. установлено, что в водах Берингова и Чукотского моря, концентрация цезия-137 близка к фоновой для районов океана и обусловлена гло-бальным поступлением данного радионуклида из атмосферы за длительный промежуток времени. Однако эти концентрации (0,1,Ки/л) были в 10−50 раз ниже, чем в Черном, Баренцевом, Балтийским и Гренландском, морях, подверженных воздействию локальных источников радиоактивного за-грязнения

Все вышеперечисленное показывает, что чело-век, вероятно, забыл: океан — это мощная кладо-вая минеральных и биологических ресурсов; в частности, он даёт 90% нефти и газа, 90% миро-вой добычи брома, 60% магния и огромное коли-чество, морепродуктов, что важно при увеличивающемся населении нашей планеты. По этому поводу знаменитый исследователь Жак-Ив Кусто напоминает: «…Море — продолжение нашего мира, часть нашей Вселенной, владения, которые мы обязаны, охранять, если хотим выжить».

2.3 Радиоактивное загрязнение почвы.

В связи с широким использованием в народном хозяйстве радиоактивных веществ появилась опасность загрязнения почв радионуклидами. Источники радиации — ядерные установки, ис-пытание ядерного оружия, отходы урановых шахт. Потенциаль-ными источниками, радиоактивного загрязнения могут стать ава-рии на ядерных установках, АЭС (как в Чернобыле, Екатерин-бурге, а также в США, Англии).

В верхнем слое почвы концентрируются радиоактивные стронций и цезий, откуда они попадают в организм животных и человека. Лишайники северных зон обладают повышенной спо-собностью к аккумуляции радиоактивного цезия. Олени, питающиеся ими, накапливают изотопы, а у населения, использующе-го в пищу оленину, в организме в 10 раз больше цезия, чем у, других северных народов.

2.4 Радиоактивное загрязнение растительного и животного мира.

Биологическое накопление свойственно и зеле-ным растениям, которые, аккумулируя опреде-ленные химические элементы, изменяют окраску хвои, листьев, цветков и плодов. Это иногда служит, индикаторным, признаком, при поисках полезных ископаемых. Например, береза и осина в Восточной Сибири накапливает в своей древесине значительные, содержания стронция-90, что приводит к появлению необычной окраски — неестественно зелёного цвета. Сон-трава на южном Урале аккумулирует никель поэтому ее около-цветник вместо фиолетового цвета становится белым, что указывает на высокие концентрации ни-келя в почве. В ареале рассеяния урановых месторождений лепестки иван-чая вместо розовых ста-новятся белыми и ярко-пурпуровыми, у голубики плоды вместо темно-синих становятся белыми и т. д. (Артамонов, 1989).

Радионуклиды, попадая, в окружающую среду, часто рассеиваются и разбавляются в водах, но они могут различными способами накапливаться в живых организмах при движении по пищевым цепям («биологическое накопление. На рис. 2.1 показан процесс накопления стронция-90 по пищевым цепям в небольшом канадском озере Перч-Лейк, принимающим низкоактивные отходы

Рис. 2.1 Накопление стронция-90 в трофических цепях небольшого канадского озера Перч-Лейк. получающего низкоактивные отходы. Цифры указывают средние коэффициенты накопления относительно озерной воды, содержание стронция-90 в которой принято за 1.

Поскольку содержание радионуклида в виде принимается за 1, то его концентрация постепенно возрастает по пищевым цепям. В костях окуня и ондатры его содержание возрастает в 3000—4000 раз по сравнению с концентрацией в воде. Это имеет существенные негативные последствия для живых организмов, включая и человека, и биосферы в целом. Установлено, что коэффициент накопления стронция-90 в раковинах моллюсков днепровских водохранилищ относительно воды достигает 4800 (Францевич и др., 1995). Поэтому при оценке воздействия радионуклидов на среду необходимо учитывать эффект биологического накопления их живыми, организмами и последствия для есте-ственных экосистем.

3 Переработка и нейтрализация радиационных отходов.

Одна из наиболее острых экологических проблем в стране — проблема радиоактивных отходов. Только на предприятиях Ми-натома России (ПО «Маяк», Сибирский химический комбинат, Красноярский горно-химический комбинат) сосредоточены 600 млн. м3 РАО с суммарной активностью 1,5 млрд. Ки. На 29 энергоблоках АЭС хранится 140 тыс. м3 жидких и 8 тыс. м3 отвержденных отходов общей активностью 31 тыс. Ки, а также 120 тыс. м3 излучающих твердых отходов (оборудование, строи-тельный мусор). Ни одна АЭС не имеет полного комплекта уста-новок для подготовки отходов к захоронению. Поставщиками РАО являются также Военно-морской флот (ВМФ), атомный ле-докольный флот, судостроительная промышленность и предпри-ятия неядерного цикла. На их долю приходится 240 тыс. м3 отхо-дов с активностью более 2 млн. Ки.

Одна из наиболее сложных технологических стадий ядерного топливного цикла — переработка отработавшего ядерного топ-лива (ОЯТ) и захоронение РАО. На предприятиях Минатома, Минтранса и ВМФ России хранятся 7800 т ОЯТ с общей активностью 3,9 млрд. Ки. ОЯТ АЭС с реакторами типа РБМК в на-стоящее время не перерабатывается, а ОЯТ от реакторов ВВЭР транспортируется в специальное хранилище с перспективой последующей переработки на строящемся заводе РТ-2 горно-химического комбината в г. Железногорске Красноярского края. Однако строительство этого завода вызывает протесты общест-венности, поскольку существующая технология регенерации ОЯТ связана с образованием большого количества жидких РАО разной степени активности. Наибольшие возражения вызывает решение о возможности приема для временного хранения с це-лью последующей переработки ОЯТ с зарубежных АЭС.

Остаются нерешенными вопросы, связанные с утилизацией атомных подводных лодок, обращением с РАО и ОЯТ на объек-тах ВМФ России. К 1994 г. выведены из эксплуатации 121 атом-ная подводная лодка; для них строятся пункты временного хра-нения. Полностью загружены хранилища ОЯТ Мурманского морского пароходства. Тяжелое положение с хранением РАО сложилось на Тихоокеанском флоте. В связи с аварийным со-стоянием спецтанкера ТНТ-5 в октябре 1993 г. был произведен сброс жидких РАО в Японское море. После запрещения сброса отходов в море количество их неуклонно возрастает.

На большей части территории Российской Федерации мощ-ность экспозиционной дозы (МЭД) гамма-излучения на местно-сти соответствует фоновым значениям и колеблется в пределах 10…20 мкР/ч. В результате радиационного обследования городов и населенных пунктов страны выявлены сотни участков локаль-ного радиоактивного загрязнения, характеризующихся МЭД гам-ма-излучения от десятков мкР/ч до десятков мР/ч (в отдельных случаях — Р/ч). На этих участках находятся утерянные, выбро-шенные или произвольно захороненные источники ионизирую-щих излучений различного назначения, технологические отходы производств и содержащие радионуклиды стройматериалы. Эти загрязнения повышают риск для населения получить опасную дозу облучения в самом неожиданном месте, в том числе и в соб-ственном доме, когда, например, строительные панели становятся мощным источником ионизирующего излучения.

4. Радиационная обстановка в Краснодарском крае.

В 2001 г. радиационная обстановка не претерпела существенных изменений и в основном формировалась под действием естественных Радионуклидов урана-238 (радия-226), тория-232 и продуктов их распада, калия-40, аварийных радиоактивных выбросов Чернобыльской АЭС 1986 г., Космического излучения и техногенных источников ионизирующего Излучения (ИИИ).

Сохраняют актуальность проблемы близповерхностных отложений урансодержащих песчано-глинистых осадочных пород с содержанием урана от 50 до 200 г/т (на отдельных участках до 1000 г/т) и чернобыльского радиоактивного загрязнения территории края цезием-137 (около 23 кКи) и стронцием-90 (около 7 кКи), достигающего на территории Кавказского государственного природного биосферного заповедника (данные аэрогамма-спектрометрии) и в отдельных местах г. Сочи (данные ЦГСЭН и ООО «Радиационная медицина») 2,5 Ки/км2 по цезию-137.

В Краснодарском крае, по данным краевой инспекции Госатомнадзора, 87 предприятий используют НИИ. В это число не входят предприятия, имеющие генерирующие источники. Из них 58 (в соответствии с Нормами радиационной безопасности (НРБ-99) подлежат обязательному лицензированию органами Госатомнадзора. Остальные 29 имеют источники с удельной или суммарной активностью менее установленной в НРБ-99 и не подлежат регламентации. На конец 2000 г. 47 подлежащих лицензированию предприятий имели лицензии Госатомнадзора на право работы с ИИИ.

Радиационный контроль предприятий осуществляется инспекторским составом комитета в соответствии с утвержденными планами проверок, а также в ходе совместных проверок с другими контролирующими и надзорными органами. В 2001 г. проведено 158 проверок (в т.ч. 27 целевых). Выявлено 41 нарушение при обращении с радиоактивными веществами и ИИИ, наложено 11 штрафов на сумму 31 тыс. руб. Контролировались не только предприятия, имеющие ИИИ, но и предприятия, на которых могут образовываться, применяться, обрабатываться, перемещаться искусственные и техногенные естественные радионуклиды (порты, сельскохозяйственные предприятия, предприятия топливно-энергетического комплекса, стройиндустрии и т. д.).

Ввоз грузов из-за границы, на который комитет давал согласование (доменные шлаки для дорожного строительства из Украины), предусматривал обязательное прохождение радиационного контроля на каждую завозимую партию.

Для контроля за ввозом и транзитом через территорию края радиоактивных веществ, отходов и ИИИ на границах с Ростовской областью и Ставропольским краем специализированной организацией «Радиационные контроль» установлено 4 поста дозиметрического контроля. Однако в июле 2001 г., в связи с распоряжением Министерства внутренних дел России о недопустимости нахождения на контрольных постах милиции и ГИБДД других контролирующих служб, 3 поста (в ст. Кущевская, Кавказская и Успенская) были ликвидированы. Силами комитета, ЦГСЭН в Краснодарское крае, специализированной организации «Радиационный контроль» в течение 2001 г. проводился регулярный контроль транзитных грузов, переваливаемых через порты края. Так, в Новороссийском морском торговом порту было проверено около 10 000 вагонов, 12 000 автомобилей и 3000 автоприцепов с идущим на экспорт металлоломом. 18 вагонов, 1 автомобиль и 3 автоприцепа содержали загрязненный радионуклидами металлолом. Эти транспортные средства были после тщательного дозиметрического обследования отправ-лены в адреса поставщиков.

В целом, ведомственный и государственный радиационный контроль обеспечивают безопасность при обращении с ИИИ. Отработанные источники ионизирующего излучения сдаются предприятиями края на Ростовский спецкомбинат «Радон». В 2001 г. на спецкомбинат «Радон» предприятия и организации края сдали на захоронение 2155 (в том числе 2037 дымо-извещателей) отработавших источников ионизирующего излучения (содержа-щих изотопы полония-210, селена-75, иридия-192, стронция-90, цезия-13 7, кобальта-60, талия-204, радия-226, плутония-239) общей активностью около 115 Ки.

На двух радиационно-опасных объектах (РОО) — Троицком йодном заводе (ТЙЗ) и ВНИИ биологической защиты растений (ВНИИ БЗР) до настоящего времени не захоронены должным образом радиоактивные отходы (РАО) и не проведена дезактивация и рекультивация радиационно-загрязненных территорий. Однако заводом и институтом проводилась работа по нормализации радиационной обстановки как за счет собственных средств, так и за счет средств краевого бюджета и экологического фонда (ВНИИ БЗР). Последние были выделены в соответствии с постановлением Законода-тельного собрания Краснодарского края от 27.10.99 г. № 300-П и постанов-лением главы администрации края от 01.04.2000 г. № 144 «О проведении первоочередных работ по ликвидации радиационно-опасного объекта во ВНИИ БЗР г. Краснодара», подготовленным по инициативе ЦГСЭН и комитета природных ресурсов по Краснодарскому краю.

Троицким йодным заводом выполнялись выданные контролирующими и надзорными органами предписания по нормализации радиационной обстановки. В частности, сооружено временное бетонное хранилище слабо радиоактивных отходов, в котором складировано около 100 т радиобарита Ва (Rа)SO4 и загрязненного технологического оборудования. Территория завода в целях снижения внешнего и внутреннего облучения персонала и для подавления пылерадиационного фактора отсыпана слоем грунта с высадкой зеленых насаждений, частично забетонирована. Ежегодно с участием специалистов КНР по Краснодарскому краю, ЦГСЭН в Краснодарском крае, и специализированной организации «Радиационной контроль» проводятся детальные дозиметрические обследования территории завода и гамма-спектрометрические исследования отобранных проб.

В результате проведенных работ радиационная обстановка на заводе в период с 1996 по 2001 гг. улучшилась, что подтверждается упомянутыми радиационными обследованиями. Затраты на эти работы составили 1 832 900 деноминированных рублей. В 1997;1998 гг. завод перешел на новую технологию получения йода с использованием соляной кислоты, практически исключающую образование твердых радиоактивных отходов. Затраты завода на внедрение новой технологии составили более 3 млн руб.

В соответствии с законом РФ «О радиационной безопасности населения» № 3-ФЗ, постановлением Правительства РФ от 27.01.97 г. № 93 и постановлением правительства Краснодарского края от 27.08.98 г. № 27-П, для ТЙЗ разработан «Радиационно-гигиенический паспорт». Индивидуальные годовые эффективные дозы облучения персонала ТЙЗ, в соответствии с радиационно-гигиеническим паспортом за 2000 г., составили: группа, А — 0,187 мЗв, группа Б — 0,115 м3 В. Риски возникновения стохастических эффектов у персонала составили: индивидуальный — 7,1*10-6 случаев в год (при допустимом по НРБ-99 п. 2.1.1. пределе риска 1,0*10-3 случаев в год), коллективный 3,16*10-4 случаев в год. Таким образом, воздействие радиационного фактора ТЙЗ на население близлежащих населенных пунктов (ст.Троицкая и пос. Новотроицкий) пренебрежимо мало в сравнении с естественными источниками облучения (1−2 мЗв за счет радона и естествен-ного фона). Анализ данных медицинской статистики по заболеваемости населения, представленных управлением здравоохранения г. Крымска и Крымского района, показал, что статистически значимая связь онкологических заболеваний с работой ТЙЗ в зоне обслуживания Троицкой участковой больницы не прослеживается.

На ТЙЗ остается нерешенной проблема захоронения около 5000 т слаборадиоактивных отходов (радиобарита), содержащих радий-226 (около 20 кБк/кг), радий-228 (около 20 кБк/кг) и торий-228 (от 7 до 17 кБк/кг), которые частично перемешаны с грунтом, а частично помещены во временной хранилище на территории завода. В 1993 г. Всероссийским проектно-конструкторским и научно-исследовательским объединением ВНИПИЭТ разработано «Технико-экономическое обоснование различных вариантов схем реабилитации радиационно-загрязненных территорий и объектов Троицкого, йодного завода Краснодарского края». Это ТЭО прошло государственную экологическую экспертизу, в результате которой к дальнейшей проработке из пяти вариантов был выбран вариант 4 «Хранение загрязненного грунта навалом на части пруда-отстойника», включающий строительство хвосто-хранилища, его заполнение загрязненным грунтом и дезактивацию территории завода. Стоимость реализации этого проекта в ценах 1993 г. составляла 4902,3 млн руб.

На опытном поле ВНИИ БЗР площадью 2,5 га находится около 5000 м3 загрязненного грунта, а мощность дозы достигает 250 миллирентген в час. За весь период работы на поле с 1971 по 1993 гг. было использовано 9,2 Ки биологически опасных радионуклидов (цезий-137, стронций-90, церий-144 йод-125, рутений-100 и др.) В хранилище института складировано около 10 кюри неиспользуемых радионуклидов (цезий-137, стронций-90, уран-238).

В 2000 г. по договору с НИИ атомных реакторов (НИИ АР, г. Дмитров-град) в ВНИИ БЗР проведена полная физическая инвентаризация ИИИ и РАО Вывоз твердых и жидких ИИИ для утилизации во ВНИИ АР и захоронения на Ростовском спецкомбинате «Радон» запланирован на 1-й квартал 2002 г. Однако, в институте останутся жидкие и твердые радиоактивные отходы, кондиционирование и захоронение которых потребует значительных затрат. Но наибольших затрат потребует дезактивация опытного поля института.

Поэтому, по инициативе комитета, мероприятия по реабилитации радиационно-загрязненных территорий Троицкого йодного завода и ВНИИ БЗР с объемами финансирования 50 и 30 млн руб. соответственно были включены в одобренную Указом президента РФ от 15.06.96 г. № 913 и утвержденную Постановлением правительства РФ от 13.06.96 г. № 702 «федеральную целевую программу по комплексному социально-экономическому развитию Краснодарского края в 1996;2001 гг.». Однако финансирование в рамках этой программы по указанным мероприятиям не проводилось. Комитет также неоднократно обращался в Минатом РФ (последнее письмо на имя министра Адамова Е. О. от 13.04.2000 г. № 01−20/190) с просьбой включить проблемы йодного завода и ВНИИ БЗР в федеральную целевую программу «Ядерная и радиационная безопасность России» на 2000;2006 гг. Но и в этом случае перспектива финансирования весьма проблематична (ответ Минатома от 13.06.2000 г. № 011−2945).

Наличие радиационно-опасного объекта во ВНИИ БЗР, расположенном в черте г. Краснодара, вызывает обоснованную тревогу у населения города, которая поддерживается периодическими, эмоциональными выступлениями СМИ, обращениями к президенту В. В. Путину. В то же время средств края на его ликвидацию явно недостаточно.

В 2000 г. инспекторским составом проведено 36 800 измерений гамма-фона, в том числе на обследуемых предприятиях. Естественный гамма-фон на территории края находится в пределах средних многолетних значений и составляет около 10−20 мкР/час. Аналогичные данные получены Краснодарским центром по гидрометеорологии и мониторингу окружающей среды на 27 станциях наблюдения (СНЛК). Данные по гамма-фону вводятся в компьютерную базу данных и статистически обрабатываются.

По данным ЦГСЭН, в Краснодарском крае вклад в коллективную дозу облучения населения от различных видов облучения составил:

— от деятельности предприятий, использующих источники ионизирующего излучения — 2,21 чел. Зв (0,014%);

— от естественных (природных) источников — 11 670,0 чел. Зв (76,53%);

— от глобальных выпадений и прошлых радиационных аварий — 158,62 чел. Зв (1,04%);

— от медицинских исследований — 3417,45 чел. Зв (22,412%).

Наиболее существенной причиной облучения населения от естественных источников излучения являются радон-222 и строительные материалы местного производства: кирпич, глина, мрамористые известняки, керамзит.

Производственный радиационный контроль за производимой продукцией в необходимом объеме осуществляется только на Новорос-сийском цементном заводе.

Радиационных аварий в течение отчетного года, связанных с переоблучением населения и загрязнением окружающей среды, не зарегистри-ровано.

Для повышения эффективности радиационно-экологического контроля и обеспечения радиационной безопасности населения, персонала и окружающей среды необходимо:

— разработать и утвердить на уровне Российской Федерации экономический механизм ответственности природопользователей за радиационное загрязнение окружающей среды;

— инициировать и поддерживать научно-исследовательские работы в области радиационной экологии и радиационного мониторинга в Краснодар-ском крае, используя имеющийся научный потенциал и лабораторную базу;

— объединить усилия контролирующих органов в области радиа-ционного контроля и радиационной безопасности в части охраны окружающей среды;

— совершенствовать систему радиационного контроля трансграничных грузов;

— добиваться на уровне Правительства Российской Федерации финанси-рования Федеральных целевых программ, в которые включены проблемы радиационной и радиационно-экологической безопасности;

— для подготовки квалифицированных кадров специалистов-экологов включать в учебные программы ВУЗов курсы по радиационной экологии и привлекать к преподавательской работе ведущих ученых и специалистов в области радиационной безопасности и радиационной экологии;

— изыскать средства для финансирования завершения работ по аэрогамма-спектрометрическому обследованию загрязненности территории края гамма-излучающими радионуклидами.

5 Возможные последствия применения ядерного оружия массового поражения

ЯДЕРНАЯ КАТАСТРОФА (военная биосферная катастрофа) — глобальные экологические последствия применения оружия массового уничтожения (ядерного, химического, биологического), что в конечном итоге приведет к разрушению основных природных экосистем Земли. В настоящее время мощность накопленных запасов ядерного оружия в мире составляет около 16−18 *109т, т. е. на каждого жителя планеты приходится более 3,5 т тротилового эквивалента (Рябчиков, 1987). Поэтому в ряде стран (США, Канада, Англия, Германия и др.) проведены исследования по оценке послед-ствий ядерной войны на биосферу в целом, в част-ности смоделировано более 20 различных сценариев. При ядерной катастрофе суммарная мощ-ность взрывов может находиться в пределах от 6500 Мт. (базовый сценарий) до 10−12 тыс. Мт. (жесткий сценарий). Аналогичные работы проведены в Вычислительном центре Российской АН; опубликованы различные варианты сценариев ядерной ката-строфы в работах М. И. Будыко, Ю. А. Израэля, Г. С. Голицына, К. Я. Кондратьева и др.

Результаты проведенных исследовании по данной проблеме указывают на недопустимость ядер-ной войны, которая с неизбежностью приведет к глобальным изменениям климата и к деградации биосферы, в целом (табл. 60).

Таблица 60. Геофизические, (экологические) последствия, основных крупномасштабных поражающих факторов ядерных взрывов (Будыко и др. 1986)

Основные крупномасштаб-ные эффекты (поражающие факторы).

Возможные геофизические последствия

1.Загрязнение биосферы радиоактивными продуктами

Изменениеэлектрических свойств атмосферы, изменение погоды.

Изменение свойств ионосферы.

2.Загрязнение атмосферы аэрозольными продуктами

Изменение радиационных свойств атмосферы. Изменение погоды и климата.

3. Загрязнение атмосферы. различными газообразны-ми веществами (метаном, этиленом и др.)

Тропосферы

Изменение радиационных свойств атмосферы, измене-ние погоды и климата.

Верхней атмосферы

Изменение радиационных свойств верхней атмосферы, нарушение озонного слоя. Изменение возможности прохождения Уфизлучения, изменение климата.

4. Изменение альбедо зем-ной поверхности

Изменение климата.

Видно, что среди возможных геофизических (экологических) последствий применения ядерного оружия следует выделить: массовые радиационные и иные поражения изменение погоды и климата, разрушение озонового слоя, нарушение состояния ионосферы и т. п. К этому необходимо добавить сильное загрязнение атмосферы аэрозольными и газообразными частицами, возникшими в резуль-тате, как взрывов, так и многочисленных пожаров.

По данным М. И. Будыко и др. (1986) при ядерной войне даже при мощности, взрыва 5000 Мт. в атмосферу поступит 9,6 *103 т аэрозолей из кото-рых 80% проникнет в стратосферу. Наличие в ат-мосфере огромного количества аэрозолей, газообразных примесей и дыма ядерных пожаров — все это, приведет к уменьшению притока солнечной радиации к земной поверхности и, конечно, к понижению температуры воздуха не планете примерно на 150С («ядерная зима»). Ожидаемое среднее понижение температуры воздуха над континентами северного полушария Будет составлять более 200С. такой крупный ядерный конфликт ко-ренным образом повлияет на климат в виде наступления темноты («ядерная ночь»), изменит глобальную циркуляцию воздуха и т. д. Следствиями этого будут: прекращение процесса фотосинтеза, вымораживание и уничтожение растительности на огромных территориях, гибель посевов сельскохозяйственных культур и в конечном итоге гибель всего живого и человеческой цивилизации. Также, к последствиям ядерных взрывов следует добавить еще радиацию от разрушенным АЭС (более 420), при этом 85% их расположено именно в северном полушарии. По расчетам медиков, при реализации только базового сценария в северном полушарии около, 60% населения сразу погибнет от ударной волны, ожогов и летальной дозы радиации, 25% будут поражены ионизирующей радиацией и т. д., т. е. будет поставлена под сомнение возможность существования Человека как биологического вида.

Основным путем предотвращения глобальной экологической катастрофы является ликвидации всех видов оружия массового уничтожении, что сможет предотвратить малейшую возможность ядерной войны, в которой не будет ни победителей, ни побежденных, Также для уменьшения вероятности непреднамеренного самоуничтожения населения земли необходимо значительно расширить экологические исследования последствий применения ядерного и другого вида оружия. Как отмечает Н. Н. Моисеев (1990, с.307), «…по существу все собственно экологические проблемы сводятся к соизмерению своих действий с возможностями окружающей среды»

Заключение

Катастрофа на Чернобыльской АЭС, в результате которой значительная территория Белоруссии, Украины и России оказалась пораженной радиоактивными, выбросами, заставляет серьезно за-думаться о технологической дисциплине на атомных электростанциях, часть которых нуждается в реконструкции и модерни-зации.

Осуществляется комплекс дополнительных мер по усилению безопасности эксплуатируемых атомных реакторов. Произведены экологические экспертизы проектов строящихся АЭС и ТЭС и других объектов с атомными энергетическими установками. Реа-лизуется программа использования нетрадиционных, экологи-чески безопасных источников энергии, и строительства опытно-экспериментальных АЭС с различными типами и схемами рас-положения атомных реакторов.

М.И. Будыко. «Современные проблемы экологии» М.:1994г. 307с.

А.П. Акимова. «Экология» М.:2001г.

Доклад правительству России «О состоянии окружающей природной среды Краснодарского края в 2001г». М.: 2002 г.

В.И Цветкова «Экология, Учебник» М.: 1999 г.

5. Петров Н. Н. «Человек в чрезвычайных ситуациях». Учебное пособиеЧелябинск: Южно-Уральское книжное изд-во, 1995 г.

6. Т. Х. Маргулова «Атомная энергетика сегодня и завтра» Москва: Высшая школа, 1996 г.

Показать весь текст
Заполнить форму текущей работой