Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

Роль Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ РНК-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… взаимодСйствий Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Данная Ρ€Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π½Π° ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ², ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΡ… Ρ€ΠΎΠ»ΠΈ Π² ΡΡ‚ΠΎΠΌ процСссС. ΠŸΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ указания Π½Π° Ρ€ΠΎΠ»ΡŒ ΡƒΠ±ΠΈΠΊΠΈΠ²ΠΈΡ‚ΠΈΠ½-протСасомной систСмы Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΡ‹ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ влияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² этой систСмы Π½Π° ΠΈΠΌΠΏΠΎΡ€Ρ‚ ВРК1. ДСлСния ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡˆΠ΅ΡΡ‚ΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • 1. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
    • 1. 1. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ…
      • 1. 1. 1. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Tetrahymena
      • 1. 1. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ трипаносоматид
      • 1. 1. 2. Π°. ΠžΡ‚Ρ€ΡΠ΄ Kinetoplastidae
        • 1. 1. 2. 6. ΠžΡ‚Ρ€ΡΠ΄ Leishmania
      • 1. 1. 3. Π”Ρ€ΡƒΠ³ΠΈΠ΅ прСдставитСли ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ…
    • 1. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 1. 3. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ растСний
    • 1. 4. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…
  • 2. Π£Π±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-протСасомная систСма Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²
    • 2. 1. Π’Π²Π΅Π΄Π΅Π½ΠΈ Π΅
    • 2. 2. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ УПБ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅
    • 2. 3. Π£Π±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ систСма Π² S. cerevisiae
    • 2. 4. 26S протСасома: строСниС ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
      • 2. 4. 1. 20. S ΡΡƒΠ±Ρ‡Π°ΡΡ‚ΠΈΡ†Π°, ΠΈΠ»ΠΈ каталитичСскоС ядро
      • 2. 4. 2. 19S рСгуляторная субчастица
    • 2. 5. Π“Π΄Π΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ протСасомы Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅?
    • 2. 6. Π£Π·Π½Π°Π²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ†Π΅ΠΏΠ΅ΠΉ
      • 2. 6. 7. ΠŸΡ€ΠΎΡ‚Π΅Π°ΡΠΎΠΌΠ½Ρ‹Π΅ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, ΡƒΠ·Π½Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Π΅ Ρ†Π΅ΠΏΠΈ
      • 2. 6. 2. Π•Π— ΠΈ Π•4 Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ субстратов ΠΊ ΠΏΡ€ΠΎΡ‚СасомС
      • 2. 6. 3. Доставка субстратов ΠΊ ΠΏΡ€ΠΎΡ‚СасомС посрСдством Cdc48 ΠΈ Π΅Π³ΠΎ кофакторовАΠͺ
      • 2. 6. 4. Π¨Π°ΠΏΠ΅Ρ€ΠΎΠ½Ρ‹ ΠΈ ΠΈΡ… ΠΊΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ Π² Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²
    • 2. 7. UFD ΠΏΡƒΡ‚ΡŒ. «' '. DOA1 ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ UFD-nymu
    • 2. 8. НСпротСолитичСская Ρ€ΠΎΠ»ΡŒ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½Π° ΠΈ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅
      • 2. 8. 1. ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ½ΠΎΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
      • 2. 8. 2. БвязываниС ΠΌΠΎΠ½ΠΎΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ Π΄ΠΎΠΌΠ΅Π½Π°ΠΌΠΈ
      • 2. 8. 3. ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½Π°
  • A. Π£Π±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ измСняСт Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ Π±Π΅Π»ΠΊΠΎΠ²
  • Π‘. Π£Π±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ влияСт Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π±Π΅Π»ΠΊΠΎΠ²
  • B. Π£Π±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ Π±Π΅Π»ΠΎΠΊ-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Π΅ взаимодСйствия
  • Π“. Π£Π±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ влияСт Π½Π° Π½Π°ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
  • Π”. Π£Π±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ участвуСт Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²
    • 2. 9. Π˜Π½Π΄ΡƒΠΊΡ†ΠΈΡ УПБ ΠΈ ΠΊΠ°ΡΠΊΠ°Π΄ΠΎΠ² ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ шок
  • 3. Π•Π½ΠΎΠ»Π°Π·Π° — гликолитичСский Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚
  • ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π« Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π―
  • ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
  • Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹
  • ΠšΠΎΠΌΠΌΠ΅Ρ€Ρ‡Π΅ΡΠΊΠΈΠ΅ Π½Π°Π±ΠΎΡ€Ρ‹
  • АнтитСла
  • ΠŸΡ€ΠΈΠ±ΠΎΡ€Ρ‹ ΠΈ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅
  • 1. Π¨Ρ‚Π°ΠΌΠΌΡ‹ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ Π»ΠΈΠ½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    • 1. 1. Π¨Ρ‚Π°ΠΌΠΌΡ‹ Escherichia col
    • 1. 2. Π¨Ρ‚Π°ΠΌΠΌΡ‹ Saccharomyces cerevisiae
    • 1. 3. Линия ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
  • 2. Условия выращивания ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ²
  • Π”Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ срСды
  • 3. Π“Π΅Π½Π½ΠΎ-ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Π΅ конструкции
  • 4. Π“Π΅Π½Π½ΠΎ-ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 4. 1. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½Π°Ρ цСпная рСакция (ПЦР)
    • 4. 2. РасщСплСниС Π”ΠΠš эндонуклСазами рСстрикции ΠΈ Π΄Π΅Ρ„осфорилированиС
    • 4. 3. Π›ΠΈΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
    • 4. 4. ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ транскрипция ΠΈ Π°ΠΌΠΏΠ»ΠΈΡ„икация
  • 5. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π”ΠΠš ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ БэнгСра
  • 6. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. col
  • 7. Врансформация Saccharomyces cerevisiae ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
  • 8. Врансформация Saccharomyces cerevisiae Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΎΠΉ ΠΊΠ”ΠΠš
  • 9. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ² ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ S. cerevisiae
  • 10. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹, содСрТащСй ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ URA3, ΠΈΠ· Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
  • 11. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ активности Ρ€-Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΈΠ΄Π°Π·Ρ‹
    • 11. 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ активности Ρ€-Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΈΠ΄Π°Π·Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π° Π½ΠΈΡ‚Ρ€ΠΎΡ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Π½Ρ‹Ρ… Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ…
    • 11. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ активности Ρ€-Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΈΠ΄Π°Π·Ρ‹ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ раствора X-gal Π² 0.5% Π°Π³Π°Ρ€Π΅
  • 12. Π‘ΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°Π½ΠΈΠ΅ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • 13. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π”ΠΠš ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • 14. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… РНК ΠΈΠ· Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 14. 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
    • 14. 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… РНК
  • 15. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарных ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… РНК ΠΈΠ· Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • 16. Гибридизация ΠΏΠΎ ΠΠΎΠ·Π΅Ρ€Π½Ρƒ
  • 17. Western-гибридизация
  • 18. ΠœΠ΅Ρ‡Π΅Π½ΠΈΠ΅ Ρ‚Π ΠΠš для Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π°
  • 19. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Π°ΠΌ? ΡŽΠ°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ РНК ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠ΅Ρ€ΠΉΠΎΠ΄Π°Ρ‚Π½ΠΎΠ³ΠΎ окислСния ΠΈ ΠΌΠ΅Ρ‡Π΅Π½ΠΈΡ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ РНК-Π»ΠΈΠ³Π°Π·Ρ‹
  • 20. Вранспорт Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΌΠ΅Ρ‡Π΅Π½Π½ΠΎΠΉ ВРК1 Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
    • 20. 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°, способного Π½Π°ΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ ΠΈΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 20. 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 20. 3. ИсслСдованиС ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° РНК Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
  • 21. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
  • 22. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΈΠ· Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π±Ρ‹ΠΊΠ°
  • 23. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ активности протСасомы in vitro
  • 24. Локализация ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
    • 24. 1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ 358-ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
    • 24. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ 358-ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • 25. Локализация Π—53-ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… Π΅Π½ΠΎΠ»Π°Π· Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • 26. ΠšΠΎΠ½Ρ„ΠΎΠΊΠ°Π»ΡŒΠ½Π°Ρ микроскопия ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • 27. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ энзиматичСской активности гликолитичСских Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
  • 28. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ, ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½ΠΎΠΉ внСшними ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°ΠΌΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • 29. Π”Π²ΡƒΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ элСктрофорСз ΠΏΠΎ Π¨Π°Π³Π΅Ρ€Ρƒ ΠΈ Ρ„ΠΎΠ½ Π―Π³ΠΎΠ²Ρƒ
    • 29. 4. Western-гибридизация BN-PAGE
  • 30. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ
  • 31. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ масс-спСктромСтричСского Π°Π½Π°Π»ΠΈΠ·Π°
    • 31. 1. Визуализация Π±Π΅Π»ΠΊΠΎΠ² Π² ΠŸΠΠΠ“
    • 31. 2. РасщСплСниС Π±Π΅Π»ΠΊΠΎΠ² трипсином Π² Π³Π΅Π»Π΅
    • 31. 3. MALDI- TOF Π°Π½Π°Π»ΠΈΠ·
  • РЕЗУЛЬВАВЫ И ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
  • 1. Поиск ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π²Ρƒ- ΠΈ Ρ‚Ρ€ΠΈΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… систСм Π² Π΄Ρ€ΠΎΠΆΠΆΠ°Ρ…
    • 1. 1. Поиск Π±Π΅Π»ΠΊΠΎΠ², Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… с pre-Msklp Π² Π΄Π²ΡƒΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмС
      • 1. 1. 1. ΠœΠ΅Ρ‚ΠΎΠ΄ Π΄Π²ΡƒΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы Π² Π΄Ρ€ΠΎΠΆΠΆΠ°Ρ…
      • 1. 1. 2. Π‘ΠΊΡ€ΠΈΠ½ΠΈΠ½Π³ Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊ ΠΊΠ”ΠΠš для поиска Π±Π΅Π»ΠΊΠΎΠ², ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… pre-Msklp
    • 1. 2. Поиск Π±Π΅Π»ΠΊΠΎΠ², Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… с ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ‚Π ΠΠš
    • 1. 3. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ€ΠΎΠ»ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π°
      • 1. 3. 1. Роль ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-протСасомной систСмы Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš
  • A. ВозмоТная Ρ€ΠΎΠ»ΡŒ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ протСасомы Rpnl3p Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš
  • Π‘. Doalp ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ UFD-ΠΏΡƒΡ‚ΠΈ
  • B. ВлияниС остановки каталитичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ УПБ Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° ВРК1 Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
  • Π’.1. Анализ уровня ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ², Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹Ρ… ΠΏΠΎ ΠΊΠ°Ρ‚алитичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ протСасомы
  • Π’.2. ИспользованиС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π° протСасомы ΠΈ Ρ†ΠΈΡΡ‚Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°Π· MG
    • 1. 3. 2. Анализ Ρ€ΠΎΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π°
  • A. РСгулятор транскрипции Mthl
  • Π‘. Π˜Π½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½-ΠΊΠΈΠ½Π°Π· — PILI
  • B. Π‘Π΅Π»ΠΊΠΈ, спСцифичСски ΡΠ²ΡΠ·Ρ‹Π²Π°Π²ΡˆΠΈΠ΅ΡΡ с Π’РК1 Π² Ρ‚Ρ€ΠΈΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмС, — PNC1 ΠΈ
  • LEU
  • Π“. Π’ранспортСр магния — ALR
  • Π”. РНК-зависимыС Ρ…Π΅Π»ΠΈΠΊΠ°Π·Ρ‹ DRS1 ΠΈ SEN
  • 2. НовыС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΅Π½ΠΎΠ»Π°Π·Ρ‹ ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš
    • 2. 1. Анализ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π΅Π½ΠΎΠ»Π°Π·Ρ‹ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ in vivo с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Western-Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ
    • 2. 2. Локализация Π•ΠΏΠΎ2Ρ€, ΠΌΠ΅Ρ‡Π΅Π½Π½ΠΎΠΉ YFP, Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 2. 3. Π•Π½ΠΎΠ»Π°Π·Π°, связанная с ΠΌΠΈΡ‚охондриями, являСтся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ?
  • 3. Анализ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… комплСксов, содСрТащих Π΅Π½ΠΎΠ»Π°Π·Ρƒ
  • A. ИспользованиС Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π½Π°Ρ‚ΠΈΠ²ΠΈΠΎΠ³ΠΎ элСктрофорСза
  • Π‘. ИспользованиС ΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΠΈ с Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌΠΈ ΠΊ Π΅Π½ΠΎΠ»Π°Π·Π΅
  • B. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… двумя ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ
  • Π’Π«Π’ΠžΠ”Π«

Роль Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ РНК-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… взаимодСйствий Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠœΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ обСспСчСниС ΠΊΠ»Π΅Ρ‚ΠΎΠΊ энСргиСй Π·Π° ΡΡ‡Π΅Ρ‚ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования. Для ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ собствСнной Π”ΠΠš ΠΈ ΡΠΈΡΡ‚Π΅ΠΌΡ‹ биосинтСза Π±Π΅Π»ΠΊΠ°, ΠΎΠ΄Π½Π°ΠΊΠΎ большоС число ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ» импортируСтся Π² ΠΎΡ€Π³Π°Π½Π΅Π»Π»Ρ‹ ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹. Π‘Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² Ρ€ΡΠ΄Π΅ случаСв Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π±Π΅Π»ΠΊΠΈ, Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈ Ρ‚Π ΠΠš. К Π½Π°ΡΡ‚ΠΎΡΡ‰Π΅ΠΌΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π±Ρ‹Π» ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ Ρƒ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ…, ряда растСний, сумчатых ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρƒ ΠΏΠΎΡ‡ΠΊΡƒΡŽΡ‰ΠΈΡ…ся Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ пСрСноса Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΈ Π΅Π³ΠΎ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ отличаСтся ΠΎΡ‚ Π²ΠΈΠ΄Π° ΠΊ Π²ΠΈΠ΄Ρƒ.

Π’ ΡΠ»ΡƒΡ‡Π°Π΅ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ импортируСтся Π΄Π²Π° Π²ΠΈΠ΄Π° Ρ‚Π ΠΠš — Ρ‚Π ΠΠšΠ¬ΡƒΡΠΈΠΈ (Martin et al., 1979) ΠΈ Ρ‚Π ΠΠšΡ1ΠΏ (Reinehardt et al., 2005). Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš являСтся высокоспСцифичным процСссом, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ΄Π½Π° ΠΈΠ· Π΄Π²ΡƒΡ… ΠΈΠ·ΠΎΠ°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ‹Ρ… Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ‚Π ΠΠš (Ρ‚Π ΠΠš yscаправляСтся Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ вторая (Ρ‚Π ΠΠšΠ¬Ρƒ>ΠΈΠΈ) присутствуСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅. Π’Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ Π² Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ довольно Π±Π»ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π ΠΠš ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ объяснСно отличиями Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ этих Ρ‚Π ΠΠš (Entelis et al., 1998). Π‘Π»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ сСлСкции ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ опосрСдован Π±Π΅Π»ΠΊΠ°ΠΌΠΈ, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ с Ρ‚Π ΠΠš. Π Π°Π½Π΅Π΅ Π² Π½Π°ΡˆΠ΅ΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ для ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° ВРК1 Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ цитоплазматичСской Π»ΠΈΠ·ΠΈΠ»-Ρ‚Π ΠΠš-синтСтазы, Π·Π°Ρ‚Π΅ΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π΅Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ с ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠΌ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ·ΠΈΠ»-Ρ‚Π ΠΠš-синтСтазы (pre-Msklp) (Tarassov et al., 1995b). Однако присутствия Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ВРК1 ΠΈ pre-Msklp Π½Π΅ Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎ для ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° ВРК1 Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ, Ρ‡Ρ‚ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ Π½Π΅ΠΎΠ±Ρ…одимости Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π΅Π΅ ΠΈΠΌΠΏΠΎΡ€Ρ‚, Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π°.

Данная Ρ€Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π½Π° ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ², ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΡ… Ρ€ΠΎΠ»ΠΈ Π² ΡΡ‚ΠΎΠΌ процСссС. ΠŸΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ указания Π½Π° Ρ€ΠΎΠ»ΡŒ ΡƒΠ±ΠΈΠΊΠΈΠ²ΠΈΡ‚ΠΈΠ½-протСасомной систСмы Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΡ‹ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ влияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² этой систСмы Π½Π° ΠΈΠΌΠΏΠΎΡ€Ρ‚ ВРК1.

Π’ΠΎ Π²Ρ€Π΅ΠΌΡ выполнСния Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² Π½Π°ΡˆΠ΅ΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅, ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π½Π° ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ гликолитичСского Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° — Π΅Π½ΠΎΠ»Π°Π·Ρ‹ — Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš (Н.ЭнтСлис, Π½Π΅ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅). Π’Π°ΠΊΠΆΠ΅ Π½Π΅Π΄Π°Π²Π½ΠΎ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΅Π½ΠΎΠ»Π°Π·Π° Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ гликолитичСскими Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ присутствуСт Π²ΠΎ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Π²Π½Π΅ΡˆΠ½ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Arabidopsis thaliana (Giege et al., 2003). Помимо этого извСстно, Ρ‡Ρ‚ΠΎ гликолитичСскиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Ρ€Π°Π΄ΠΎΠΌ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΡ‹ Π³, А ΠΈ ΠΊ ΡΠ»ΠΈΡ‚. (Π Π΅ ΠΠ³Π΅Π½Ρ‚ΠΎΠ² ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ β€’ —Ρ‚ комплСкса/ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹ Π±Ρ‹Ρ‚ΡŒ участиС Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ. Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ ΠΌΡ‹ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅ Ρ€ΠΎΠ»ΡŒ Π΅Π½ΠΎΠ»Π°Π·Ρ‹ Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš, Π΅Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΠ»ΠΈ поиск ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… комплСкс с Π΅Π½ΠΎΠ»Π°Π·ΠΎΠΉ.

ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ исслСдованиС Ρ€ΠΎΠ»ΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π ΠΠš-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… взаимодСйствий Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ.

Для этого Π² Ρ…ΠΎΠ΄Π΅ исслСдования ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Π΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹, ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π°, с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΠΈ Ρ‚Ρ€ΠΈΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСм Π² Π΄Ρ€ΠΎΠΆΠΆΠ°Ρ….

2. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ влияниС выявлСнных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΠΈΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ.

3. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Ρ€ΠΎΠ»ΡŒ гликолитичСского Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° — Π΅Π½ΠΎΠ»Π°Π·Ρ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ — Π² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅ Ρ‚Π ΠΠš.

4. ΠžΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ Π΅Π½ΠΎΠ»Π°Π·Ρ‹ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ с Π΅Π½ΠΎΠ»Π°Π·ΠΎΠΉ.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ 9 Π±Π΅Π»ΠΊΠΎΠ², Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… с ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ‚Π ΠΠš ΠΈ Π΅Π΅ ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΡ‡ΠΈΠΊΠΎΠΌpre-Msklp, ΠΈ ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ся ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° ВРК1.

2. ДСлСния ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡˆΠ΅ΡΡ‚ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² (DOAI, LEU9, МВН1, PILI, PNC1, RPN13) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ эффСктивности ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ‚Π ΠΠš. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ рСпрСссорами ΠΈΠΌΠΏΠΎΡ€Ρ‚Π°.

3. Показана прямая коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ протСолитичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ протСасомы 26S ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ.

4. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ гликолитичСский Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π΅Π½ΠΎΠ»Π°Π·Π° 2 частично Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π½Π° Π²Π½Π΅ΡˆΠ½Π΅ΠΉ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ Π² ΡΠΎΡΡ‚Π°Π²Π΅ макромолСкулярного комплСкса, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡƒΡŽ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²ΡƒΡŽ Ρ‚Π ΠΠš Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ.

5. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΅Π½ΠΎΠ»Π°Π·Π° 2 спСцифичСски взаимодСйствуСт с ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ‚Π ΠΠš Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ Π½Π΅ΠΏΠΎΡΡ€Π΅Π΄ΡΡ‚Π²Π΅Π½Π½ΠΎ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ участиС Π² Π΅Π΅ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π΅.

6. РСконструирована систСма ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ‚Π ΠΠš Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΈΠ· ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ².

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π’.Π . ΠΈ Π“ΠΎΠ»ΠΎΠ²Π°Π½ΠΎΠ² Π•.И. 1984 ВозмоТная Ρ€ΠΎΠ»ΡŒ TPHKILys Π² ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠΈ участков ΠΏΡ€Π΅-мРНК, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… рСгуляторноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для сплайсинга. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология 18:277−285.
  2. Adams, Π‘.Π‘., Jakovljevic, J., Roman, J., Harnpicharnchai, P. ΠΈ Woolford, J.L., Jr. (2002) Saccharomyces cerevisiae nucleolar protein Nop7p is necessary for biogenesis of 60S ribosomal subunits. Rna, 8,150−165.
  3. Adhya, S., Ghosh, Π’., Das, A., Bera, S.K. ΠΈ Mahapatra, S. (1997) Role of an RNA-binding protein in import of tRNA into Leishmania mitochondria. J Biol Chem, 272, 21 396−21 402.
  4. Ahmadzadeh, M., Horng, А. ΠΈ Colombini, M. (1996) The control of mitochondrial respiration in yeast: a possible role of the outer mitochondrial membrane. Cell Biochem Fund, 14,201−208.
  5. Akashi, K., Hirayama, J., Takenaka, M., Yamaoka, S., Suyama, Y., Fukuzawa, H. ΠΈ Ohyama, K. (1997) Accumulation of nuclear-encoded tRNA (Thr) (AGU) in mitochondria of the liverwort Marchantia polymorpha. Biochim Biophys Acta, 1350, 262−266.
  6. Akashi, K., Sakurai, K., Hirayama, J., Fukuzama, H. ΠΈ Ohyama, K. (1996) Occurence of nuclear-encoded tRNAIle in mitochondria of the liverwort Marchantia polymorpha. Curr. Genet., 30,181−185.
  7. Alfonzo, J.D., Blanc, V., Estevez, A.M., Rubio, M.A. ΠΈ Simpson, L. (1999) Π‘ to U editing of the anticodon of imported mitochondrial tRNA (Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. Embo J, 18, 7056−7062.
  8. Amerik, A., Swaminathan, S., Krantz, B.A., Wilkinson, K.D. ΠΈ Hochstrasser, M. (1997) In vivo disassembly of free polyubiquitin chains by yeast Ubpl4 modulates rates of protein degradation by the proteasome. Embo J, 16,4826−4838.
  9. Baumeister, W., Walz, J., Zuhl, F. ΠΈ Seemuller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell, 92,367−380.
  10. Ben-Neriah, Y. (2002) Regulatory functions of ubiquitination in the immune system. Nat Immunol, 3,20−26.
  11. Bergmeyer H.U., G.K.G.M.V., 2nd edn. Academic Press, New York. (1974) Enzymes as Biochemical Reagents. Academic Press, New York.
  12. Berry, M.D. h Boulton, A.A. (2000) Glyceraldehyde-3-phosphate dehydrogenase h apoptosis. JNeurosci Res, 60,150−154.
  13. Bertolaet, B.L., Clarke, D.J., Wolff, M., Watson, M.H., Henze, M., Divita, G. h Reed, S.I. (2001) UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol, 8,417−422.
  14. Bhattacharyya, S.N. h Adhya, S. (2004) tRNA-triggered ATP hydrolysis h generation of membrane potential by the leishmania mitochondrial tRNA import complex. J Biol Chem, 279, 11 259−11 263.
  15. Bhattacharyya, S.N., Chatteijee, S. h Adhya, S. (2002) Mitochondrial RNA import in Leishmania tropica: aptamers homologous to multiple tRNA domains that interact cooperatively or antagonistically at the inner membrane. Mol Cell Biol, 22,43 724 382.
  16. Bhattacharyya, S.N., Chatterjee, S., Goswami, S., Tripathi, G., Dey, S.N. h Adhya, S. (2003) «Ping-pong» interactions between mitochondrial tRNA import receptors within a multiprotein complex. Mol Cell Biol, 23, 5217−5224.
  17. Bhattacharyya, S.N., Mukherjee, S. h Adhya, S. (2000) Mutations in a tRNA import signal define distinct receptors at the two membranes of Leishmania mitochondria. Mol Cell Biol, 20, 7410−7417.
  18. Boer, P.H. h Gray, M.W. (1988) Transfer RNA genes h the genetic code in Chlamydomonas reinhardtii mitochondria. Curr Genet, 14, 583−590.
  19. Borner, G.V., Morl, M., Janke, A. h Paabo, S. (1996a) RNA editing changes the identity of a mitochondrial tRNA in marsupials. Embo J, 15, 5949−5957.
  20. Borner, G.V., Morl, M., Janke, A. h Paabo, S. (1996b) RNA editing changes the identity of a mitochondrial tRNA in marsupials. Embo J, 15, 5949−5957.
  21. Boumans, H., Grivell, L.A. h Berden, J.A. (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem, 273,4872−4877.
  22. Braun, B.C., Glickman, M., Kraft, R., Dahlmann, B., Kloetzel, P.M., Finley, D. h Schmidt, M. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol, 1,221−226.
  23. Casalone, E., Barberio, C., Cavalieri, D. h Polsinelli, M. (2000) Identification by functional analysis of the gene encoding alpha-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Yeast, 16, 539−545.
  24. Cascio, P., Call, M., Petre, B.M., Walz, T. h Goldberg, A.L. (2002) Properties of the hybrid form of the 26S proteasome containing both 19S h PA28 complexes. Embo J, 21,2636−2645.
  25. Cavarelli, J. h Moras, D. (1993) Recognition of tRNAs by aminoacyl-tRNA synthetases. Faseb J, 7, 79−86.
  26. Chang, D.D. h Clayton, D.A. (1987) A mammalian mitochondrial RNA processing activity contains nucleus- encoded RNA. Science, 235, 1178−1184.
  27. Charriere, F., Tan, T.H. h Schneider, A. (2005) Mitochondrial initiation factor 2 of Trypanosoma brucei binds imported formylated elongator-type tRNA (Met). J Biol Chem, 280, 15 659−15 665.
  28. Chen, D.H., Shi, X. h Suyama, Y. (1994) In vivo expression h mitochondrial import of normal h mutated tRNA (thr) in Leishmania. Mol Biochem Parasitol, 64, 121−133.
  29. Chiu, N., Chiu, A. h Suyama, Y. (1975) Native h imported transfer RNA in mitochondria. J Mol Biol, 99,37−50.
  30. Chung, N., Jenkins, G., Hannun, Y.A., Heitman, J. h Obeid, L.M. (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chern, 275,17 229−17 232.
  31. Crane, D.I., Kalish, J.E. h Gould, S.J. (1994) The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugating enzyme required for peroxisome assembly. J Biol Chem, 269, 21 835−21 844.
  32. Crausaz Esseiva, A., Marechal-Drouard, L., Cosset, A. h Schneider, A. (2004) The T-stem determines the cytosolic or mitochondrial localization of trypanosomal tRNAsMet. Mol Biol Cell, 15,2750−2757.
  33. Crespo, J.L., Helliwell, S.B., Wiederkehr, C., Demougin, P., Fowler, B., Primig, M. h Hall, M.N. (2004) NPR1 kinase h RSP5-BUL½ ubiquitin ligase control GLN3-dependent transcription in Saccharomyces cerevisiae. J Biol Chem, 279,37 512−37 517.
  34. Delage, L., Duchene, A.M., Zaepfel, M. h Marechal-Drouard, L. (2003) The anticodon h the D-domain sequences are essential determinants for plant cytosolic tRNA (Val) import into mitochondria. Plant J, 34,623−633.
  35. Delley, P.A. h Hall, M.N. (1999) Cell wall stress depolarizes cell growth via hyperactivation of RHOl. J Cell Biol, 147, 163−174.
  36. DeMarini, D.J., Winey, M., Ursic, D., Webb, F. h Culbertson, M.R. (1992) SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol Cell Biol, 12,2154−2164.
  37. Di Fiore, P.P., Polo, S. h Hofmann, K. (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol, 4, 491−497.
  38. Dieckmann, T., Withers-Ward, E.S., Jarosinski, M.A., Liu, C.F., Chen, I.S. h Feigon, J. (1998) Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nat Struct Biol, 5,1042−1047.
  39. Diekert, K., de Kroon, A.I., Kispal, G. h Lill, R. (2001) Isolation h subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods Cell Biol, 65,37−51.
  40. Dietrich, A., Marechal-Drouard, L., Carneiro, V., Cosset, A. h Small, I. (1996a) A single base change prevents import of cytosolic tRNA (Ala) into mitochondria in transgenic plants. Plant J, 10,913−918.
  41. Dietrich, A., Small, I., Cosset, A., Weil, J.H. h Marechal-Drouard, L. (1996b) Editing h import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie, 78, 518−529.
  42. Dietrich, A., Weil, J.H. h Marechal-Drouard, L. (1992) Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol, 8,115−131.
  43. Doersen, Π‘.J., Guerrier-Takada, Π‘., Altman, S. ΠΈ Attardi, G. (1985) Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J Biol Chem, 260,5942−5949.
  44. Dorner, M., Altmann, M., Paabo, S. ΠΈ Morl, M. (2001) Evidence for Import of a Lysyl-tRNA into Marsupial Mitochondria. Mol Biol Cell, 12, 2688−2698.
  45. Entelis, N.S., Kieffer, S., Kolesnikova, O.A., Martin, R.P. ΠΈ Tarassov, I.A. (1998) Structural requirements of tRNALys for its import into yeast mitochondria. Proc Natl Acad Sei USA, 95,2838−2843.
  46. Entelis, N.S., Kolesnikova, O.A., Dogan, S., Martin, R.P. ΠΈ Tarassov, I.A. (2001) 5 S rRNA ΠΈ tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem, 276,45 642−45 653.
  47. Entelis, N.S., Krasheninnikov, I.A., Martin, R.P. ΠΈ Tarassov, I.A. (1996) Mitochondrial import of a yeast cytoplasmic tRNA (Lys): possible roles of aminoacylation ΠΈ modified nucleosides in subcellular partitioning. FEBS Lett, 384,3842.
  48. Entian, K.D., Meurer, Π’., Kohler, H., Mann, K.H. ΠΈ Mecke, D. (1987) Studies on the regulation of enolases ΠΈ compartmentation of cytosolic enzymes in Saccharomyces cerevisiae. Biochim Biophys Acta, 923,214−221.
  49. Esseiva, A.C., Naguleswaran, A., Hemphill, А. ΠΈ Schneider, A. (2004) Mitochondrial tRNA import in Toxoplasma gondii. J Biol Chem, 279,42 363−42 368.
  50. , S. ΠΈ Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature, 340,245−246.
  51. Fisher, R.D., Wang, Π’., Alam, S.L., Higginson, D.S., Robinson, H., Sundquist, W.I. ΠΈ Hill, C.P. (2003) Structure ΠΈ ubiquitin binding of the ubiquitin-interacting motif. J Biol Chem, 278,28 976−28 984.
  52. , H.A. ΠΈ Yaffe, M.P. (1997) Mutational analysis of Mdmlp function in nuclear ΠΈ mitochondrial inheritance. J Cell Biol, 138,485−494.
  53. , H.A. ΠΈ Yaffe, M.P. (1999) A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J Cell Biol, 145,1199−1208.
  54. Flick, K.M., Spielewoy, N., Kalashnikova, T.I., Guaderrama, M., Zhu, Q., Chang, H.C. ΠΈ Wittenberg, C. (2003) Grrl-dependent inactivation of Mthl mediates glucose-induced dissociation of Rgtl from HXT gene promoters. Mol Biol Cell, 14,32 303 241.
  55. , M. (2004) VDAC function in a cellular context. Topics in Current Genetics., 8.
  56. Frothingham, R., Meeker-O'Connell, W.A., Talbot, E.A., George, J.W. ΠΈ Kreuzer, K.N. (1996) Identification, cloning, ΠΈ expression of the Escherichia coli pyrazinamidase ΠΈ nicotinamidase gene, pncA. Antimicrob Agents Chemother, 40, 1426−1431.
  57. Galan, J.M., Moreau, V., ИгС, Π’., Volln, Π‘. ΠΈ Haguenauer-Tsapis, R. (1996) Ubiquitination mediated by the Npilp/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem, 271,10 946−10 952.
  58. Gallo, C.M., Smith, D.L., Jr. ΠΈ Smith, J.S. (2004) Nicotinamide clearance by Pncl directly regulates Sir2-mediated silencing ΠΈ longevity. Mol Cell Biol, 24,1301−1312.
  59. Ghislain, M., Dohmen, R.J., Levy, F. ΠΈ Varshavsky, A. (1996) Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. Embo J, 15,4884−4899.
  60. Giege, P., Heazlewood, J.L., Roessner-Tunali, U., Millar, A.H., Fernie, A.R., Leaver,
  61. C.J. h Sweetlove, L.J. (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell, 15,2140−2151.
  62. Gillman, E.C., Slusher, L.B., Martin, N.C. h Hopper, A.K. (1991) MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial h cytoplasmic tRNA. Mol Cell Biol, 11,2382−2390.
  63. Glickman, M.H. h Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82,373−428.
  64. Glickman, M.H. h Raveh, D. (2005) Proteasome plasticity. FEES Lett, 579,32 143 223.
  65. Glickman, M.H., Rubin, D.M., Fried, V.A. h Finley, D. (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol, 18, 3149−3162.
  66. Glickman, M.H., Rubin, D.M., Fu, H., Larsen, C.N., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Vierstra, R., Baumeister, W., Fried, V. h Finley, D. (1999) Functional analysis of the proteasome regulatory particle. Mol Biol Rep, 26,21−28.
  67. Glover, K.E., Spencer, D.F. h Gray, M.W. (2001a) Identification h structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem, 276,639−648.
  68. Glover, K.E., Spencer, D.F. h Gray, M.W. (2001b) Identification h structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem, 276,639−648.
  69. , A.L. (1972) Degradation of abnormal proteins in Escherichia coli (protein breakdown-protein structure-mistranslation-amino acid analogs-puromycin). Proc Natl Acad Sci USA, 69,422−426.
  70. , A.L. (2003) Protein degradation h protection against misfolded or damaged proteins. Nature, 426, 895−899.
  71. Goswami, S., Chatteijee, S., Bhattacharyya, S.N., Basu, S. h Adhya, S. (2003) Allosteric regulation of tRNA import: interactions between tRNA domains at the inner membrane of Leishmania mitochondria. Nucleic Acids Res, 31, 5552−5559.
  72. Gottlob, K., Majewski, N., Kennedy, S., Knel, E., Robey, R.B. h Hay, N. (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis h mitochondrial hexokinase. Genes Dev, 15,1406−1418.
  73. Graier-Vazeille, X., Bathany, K., Chaignepain, S., Camougra, N., Manon, S. h Schmitter, J.M. (2001) Yeast mitochondrial dehydrogenases are associated in a supramolecular complex. Biochemistry, 40, 9758−9769.
  74. Groll, M., Bajorek, M., Kohler, A., Moroder, L., Rubin, D.M., Huber, R., Glickman, M.H. h Finley, D. (2000) A gated channel into the proteasome core particle. Nat Struct Biol, 7,1062−1067.
  75. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D. h Huber, R. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 386,463 471.
  76. Groll, M., Heinemeyer, W., Jager, S., Ullrich, T., Bochtler, M., Wolf, D.H. h Huber, R. (1999) The catalytic sites of 20S proteasomes h their role in subunit maturation: a mutational h crystallographic study. Proc Natl Acad Sci USA, 96,10 976−10 983.
  77. , T. (1993) Mechanisms h regulation of Mg2+ efflux h Mg2+ influx. Miner Electrolyte Metab, 19,259−265.
  78. Haglund, K., Shimokawa, N., Szymkiewicz, I. h Dikic, I. (2002) Cbl-directed monoubiquitination of CIN85 is involved in regulation of lign-induced degradation of EGF receptors. Proc Natl Acad Sci USA, 99, 12 191−12 196.
  79. Halestrap, A.P. h Brennerb, C. (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore h key player in cell death. Curr MedChem, 10, 1507−1525.
  80. Hancock, K. h Hajduk, S.L. (1990) The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem, 265,19 208−19 215.
  81. Hartmann-Petersen, R., Wallace, M., Hofmann, K., Koch, G., Johnsen, A.H., Hendil, K.B. h Gordon, C. (2004) The Ubx2 h Ubx3 cofactors direct Cdc48 activity to proteolytic h nonproteolytic ubiquitin-dependent processes. Curr Biol, 14, 824−828.
  82. Heessen, S., Masucci, M.G. h Dantuma, N.P. (2005) The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol Cell, 18,225−235.
  83. Hicke, L. h Riezman, H. (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligH-stimulated endocytosis. Cell, 84, 277−287.
  84. Hoshikawa, C., Shichiri, M., Nakamori, S. h Takagi, H. (2003) A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gapl permease h stress-induced abnormal proteins. Proc Natl Acad Sci USA, 100, 11 505−11 510.
  85. Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J.W., Gu, W., Cohen, R.E. h Shi, Y. (2002) Crystal structure of a UBP-family deubiquitinating enzyme in isolation h in complex with ubiquitin aldehyde. Cell, 111, 1041−1054.
  86. Huibregtse, J.M., Scheffner, M., Beaudenon, S. h Howley, P.M. (1995) A family of proteins structurally h functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA, 92,2563−2567.
  87. Janke, A., Xu, X. h Arnason, U. (1997) The complete mitochondrial genome of the wallaroo (Macropus robustus) h the phylogenetic relationship among Monotremata, Marsupialia, h Eutheria. Proc Natl Acad Sci USA, 94, 1276−1281.
  88. Jenuwein, T. h Allis, C.D. (2001) Translating the histone code. Science, 293, 1074−1080.
  89. Johnson, E.S., Ma, P.C., Ota, I.M. h Varshavsky, A. (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem, 270,1 744 217 456.
  90. Kaiser, C., Michaelis, S., Mitchell, A. (1994) Methods in yeast Genetics. Cold Spring Harbor Laboratory Press, New York.
  91. Kaminska, J., Kwapisz, M., Grabinska, K., Orlowski, J., Boguta, M., Palamarczyk, G. h Zoladek, T. (2005) Rsp5 ubiquitin ligase affects isoprenoid pathway h cell wall organization in S. cerevisiae. Acta Biochim Pol, 52,207−220.
  92. Kang, R.S., Daniels, C.M., Francis, S.A., Shih, S.C., Salerno, W.J., Hicke, L. h Radhakrishnan, I. (2003) Solution structure of a CUE-ubiquitin complex reveals a conserved mode of ubiquitin binding. Cell, 113, 621−630.
  93. Kaniak, A., Xue, Z., Macool, D., Kim, J.H. h Johnston, M. (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell, 3,221−231.
  94. Kaplun, L., Ivantsiv, Y., Bakhrat, A. h Raveh, D. (2003) DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export. J Biol Chem, 278,48 727−48 734.
  95. Kapushoc, S.T., Alfonzo, J.D., Rubio, M.A. h Simpson, L. (2000) End processing precedes mitochondrial importation h editing of tRNAs in leishmania tarentolae In Process Citation. J Biol Chem, 275, 37 907−37 914.
  96. Kazakova, H.A., Entelis, N.S., Martin, R.P. h Tarassov, I.A. (1999) The aminoacceptor stem of the yeast tRNA (Lys) contains determinants of mitochondrial import selectivity. FEBS Lett, 442, 193−197.
  97. Keil, R.L., Wolfe, D., Reiner, T., Peterson, C.J. h Riley, J.L. (1996) Molecular genetic analysis of volatile-anesthetic action. Mol Cell Biol, 16, 3446−3453.
  98. Kenniston, J.A., Baker, T.A. h Sauer, R.T. (2005) Partitioning between unfolding h release of native domains during ClpXP degradation determines substrate selectivity h partial processing. Proc Natl Acad Sci USA, 102,1390−1395.
  99. Kleinschmidt, J.A., Escher, C. h Wolf, D.H. (1988) Proteinase yscE of yeast shows homology with the 20 S cylinder particles of Xenopus laevis. FEBS Lett, 239, 35−40.
  100. Kohler, A., Cascio, P., Leggett, D.S., Woo, K.M., Goldberg, A.L. h Finley, D. (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase h controls both substrate entry h product release. Mol Cell, 7, 1143−1152.
  101. Kolesnikova, O., Entelis, N., Kazakova, H., Braina, I., Martin, R. P., Tarassov, I. (2002) Targeting of tRNA into mitochondria: the role of anticodon nucleotides. Mitochondrion, The official journal of the Mitochondria Research Society, 2,95−107.
  102. Kolesnikova, O.A., Entelis, N.S., Mireau, H., Fox, T.D., Martin, R.P. h Tarassov, I.A. (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science, 289,1931−1933.
  103. Kraemer, B., Zhang, B., SenGupta, D., Fields, S. h Wickens, M. (2000) Using the yeast three-hybrid system to detect h analyze RNA-protein interactions. Methods Enzymol, 328,297−321.
  104. Krause, J., Hay, R., Kowollik, C. h Brdiczka, D. (1986) Cross-linking analysis of yeast mitochondrial outer membrane. Biochim Biophys Acta, 860, 690−698.
  105. Krogan, N.J., Lam, M.H., Fillingham, J., Keogh, M.C., Gebbia, M., Li, J., Datta, N., Cagney, G., Buratowski, S., Emili, A. h Greenblatt, J.F. (2004) Proteasome involvement in the repair of DNA double-stra breaks. Mol Cell, 16, 1027−1034.
  106. Kumar, R., Marechal-Drouard, L., Akama, K. h Small, I. (1996) Striking differences in mitochondrial tRNA import between different plant species. Mol Gen Genet, 252,404−411.
  107. Laforest, M.J., Delage, L. h Marechal-Drouard, L. (2005) The T-domain of cytosolic tRNAVal, an essential determinant for mitochondrial import. FEBS Lett, 579,1072−1078.
  108. Lakshmanan, J., Mosley, A.L. h Ozcan, S. (2003) Repression of transcription by Rgtl in the absence of glucose requires Stdl h Mthl. Curr Genet, 44, 19−25.
  109. Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L. h Pickart, C.M. (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature, 416, 763−767.
  110. Lassie, M., Blatch, G.L., Kundra, V., Takatori, T. h Zetter, B.R. (1997) Stress-inducible, murine protein mSTIl. Characterization of binding domains for heat shock proteins h in vitro phosphorylation by different kinases. J Biol Chem, 212, 1876−1884.
  111. LeBlanc, A.J., Yermovsky-Kammerer, A.E. h Hajduk, S.L. (1999) A nuclear encoded h mitochondrial imported dicistronic tRNA precursor in Trypanosoma brucei. J Biol Chem, 21 A, 21 071−21 077.
  112. Li, K., Smagula, C.S., Parsons, W.J., Richardson, J.A., Gonzalez, M., Hagler, H.K. h Williams, R.S. (1994) Subcellular partitioning of MRP RNA assessed by ultrastructural h biochemical analysis. J Cell Biol, 124, 871−882.
  113. Liakopoulos, D., Doenges, G., Matuschewski, K. h Jentsch, S. (1998) A novel protein modification pathway related to the ubiquitin system. Embo J, 17,2208−2214.
  114. Lima, B.D. h Simpson, L. (1996) Sequence-dependent in vivo import of tRNAs into the mitochondrion of Leishmania tarentolae. RNA, 2,429−440.
  115. Liu, K., Zhang, X., Lester, R.L. h Dickson, R.C. (2005) The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypkl, Ypk2, h Sch9. J Biol Chem, 280, 22 679−22 687.
  116. Luders, J., DemH, J. h Hohfeld, J. (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 h the proteasome. J Biol Chem, 275,4613−4617.
  117. Lye, L.F., Chen, D.H. h Suyama, Y. (1993) Selective import of nuclear-encoded tRNAs into mitochondria of the protozoan Leishmania tarentolae. Mol Biochem Parasitol, 58,233−245.
  118. , K. (2002) The ubiquitin-associated (UBA) domain: on the path from prudence to prurience. Cell Cycle, 1,235−244.
  119. Magalhaes, P.J., Hreu, A.L. h Schon, E.A. (1998) Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol Biol Cell, 9,2375−2382.
  120. Mahajan, R., Delphin, C., Guan, T., Gerace, L. h Melchior, F. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP 1 to nuclear pore complex protein RanBP2. Cell, 88, 97−107.
  121. Mahapatra, S. h Adhya, S. (1996) Import of RNA into Leishmania mitochondria occurs through direct interaction with membrane-bound receptors. J Biol Chem, 111, 20 432−20 437.
  122. Mahapatra, S., Ghosh, S., Bera, S.K., Ghosh, T., Das, A. h Adhya, S. (1998) The D arm of tRNATyr is necessary h sufficient for import into Leishmania mitochondria in vitro. Nucleic Acids Res, 26,2037−2041.
  123. Mahata, B., Bhattacharyya, S.N., Mukheijee, S. h Adhya, S. (2005) Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA. J Biol Chem, 280, 5141−5144.
  124. Marechal-Drouard, L., Guillemaut, P., Cosset, A., Arbogast, M., Weber, F., Weil, J.H. h Dietrich, A. (1990) Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Res, 18, 3689−3696.
  125. Marres, C.A., de Vries, S. h Grivell, L.A. (1991) Isolation h inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur J Biochem, 195, 857−862.
  126. Martin, R., Schneller, J.M., Stahl, A. h Dirheimer, G. (1979) Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry, 18,4600−4605.
  127. Martin, R.P. h Dirheimer, G. (1983) Two-dimensional polyacrylamide gel electrophoresis in the study of yeast mitochondrial transfer RNA. Mol Biol (Mosk), 17,1117−1125.
  128. , M.R. (1998) Proteasome assembly: biting the hh. Curr Biol, 8, R453−456.
  129. Mayor, T., Lipford, J.R., Graumann, J., Smith, G.T. h Deshaies, R.J. (2005) Analysis of polyubiquitin conjugates reveals that the RpnlO substrate receptor contributes to the turnover of multiple proteasome targets. Mol Cell Proteomics, 4, 741−751.
  130. Maytal-Kivity, V., Reis, N., Hofmann, K. h Glickman, M.H. (2002) MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes h prokaryotes, is critical for Rpnl 1 function. BMC Biochem, 3,28.
  131. McAlister, L. h HoIIh, M.J. (1982) Targeted deletion of a yeast enolase structural gene. Identification h isolation of yeast enolase isozymes. J Biol Chem, 257, 7181−7188.
  132. McCammon, M.T., Hartmann, M.A., Bottema, C.D. h Parks, L.W. (1984) Sterol methylation in Saccharomyces cerevisiae. J Bacteriol, 157,475−483.
  133. Morris, M.C., Kaiser, P., Rudyak, S., Baskerville, C., Watson, M.H. h Reed, S.I. (2003) Cksl-dependent proteasome recruitment h activation of CDC20 transcription in budding yeast. Nature, 423, 1009−1013.
  134. Moskvina, E., Schuller, C., Maurer, C.T., Mager, W.H. h Ruis, H. (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast, 14,1041−1050.
  135. Mukherjee, S., Bhattacharyya, S.N. h Adhya, S. (1999) Stepwise transfer of tRNA through the double membrane of Leishmania mitochondria. J Biol Chem, 274, 31 249−31 255.
  136. Muratani, M. h Tansey, W.P. (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol, 4,192−201.
  137. Neumann, S., Petfalski, E., Brugger, B., Grosshans, H., Wieln, F., Tollervey, D. h Hurt, E. (2003) Formation h nuclear export of tRNA, rRNA h mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep, 4,1156−1162.
  138. Nie, J., McGill, M.A., Dermer, M., Dho, S.E., Wolting, C.D. h McGlade, C.J. (2002) LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. Embo J, 21, 93−102.
  139. Niederacher, D. h Entian, K.D. (1991) Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur J Biochem, 200,311−319.
  140. Ohlmeier, S., Kastaniotis, A.J., Hiltunen, J.K. h Bergmann, U. (2004) The yeast mitochondrial proteome, a study of fermentative h respiratory growth. J Biol Chem, 279, 3956−3979.
  141. Ozean, S. h Johnston, M. (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol, 15,1564−1572.
  142. Palleschi, C., Francisci, S., Zennaro, E. h Frontali, L. (1984) Expression of the clustered mitochondrial tRNA genes in Saccharomyces cerevisiae: transcription h processing of transcripts. Embo J, 3,1389−1395.
  143. Pallotti, F. h Lenaz, G. (2001) Isolation h subfractionation of mitochondria from animal cells h tissue culture lines. Methods Cell Biol, 65,1−35.
  144. , V. (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sei, 58,902−920.
  145. Phelps, A. h Wohlrab, H. (2004) Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A. Biochemistry, 43,6200−6207.
  146. Phizicky, E.M. h Fields, S. (1995) Protein-protein interactions: methods for detection h analysis. Microbiol Rev, 59, 94−123.
  147. , C.M. (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem, 70, 503−533.
  148. , C.M. (2004) Back to the future with ubiquitin. Cell, 116,181−190.
  149. Polo, S., Sigismund, S., Faretta, M., Guidi, M., Capua, M.R., Bossi, G., Chen, H., De Camilli, P. h Di Fiore, P.P. (2002) A single motif responsible for ubiquitin recognition h monoubiquitination in endocytic proteins. Nature, 416,451−455.
  150. Raasi, S., Orlov, I., Fleming, K.G. h Pickart, C.M. (2004) Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. JMol Biol, 341,1367−1379.
  151. Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N. h Bar-Nun, S. (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol, 22,626−634.
  152. Rapaport, D., Taylor, R.D., Kaser, M., Langer, T., Neupert, W. h Nargang, F.E. (2001) Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria. Mol Biol Cell, 12,1189−1198.
  153. Rape, M., Hoppe, T., Gorr, I., Kalocay, M., Richly, H. h Jentsch, S. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD 1/NPL4), a ubiquitin-selective chaperone. Cell, 107, 667−677.
  154. Reed, G.H., Poyner, R.R., Larsen, T.M., Wedekind, J.E. h Rayment, I. (1996) Structural h mechanistic studies of enolase. Curr Opin Struct Biol, 6, 736−743.
  155. Rich, A. h RajBhHary, U.L. (1976) Transfer RNA: molecular structure, sequence, h properties. Annu Rev Biochem, 45, 805−860.
  156. Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C. h Jentsch, S. (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation h proteasomal targeting. Cell, 120, 73−84.
  157. Rinehart, J., Krett, B., Rubio, M.A., Alfonzo, J.D. h Soli, D. (2005) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion. Genes Dev, 19,583−592.
  158. Ripmaster, T.L., Vaughn, G.P. h Woolford, J.L., Jr. (1992) A putative ATP-dependent RNA helicase involved in Saccharomyces cerevisiae ribosome assembly. Proc Natl Acad Sci USA, 89,11 131−11 135.
  159. Rivett, A.J. h Hearn, A.R. (2004) Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, h interactions with viral proteins. Curr Protein Pept Sci, 5,153−161.
  160. Rodeheffer, M.S., Boone, B.E., Bryan, A.C. h Shadel, G.S. (2001) Namlp, a protein involved in RNA processing h translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem, 276, 86 168 622.
  161. Rodriguez, M.S., Gwizdek, C., Haguenauer-Tsapis, R. h Dargemont, C. (2003) The HECT ubiquitin ligase Rsp5p is required for proper nuclear export of mRNA in Saccharomyces cerevisiae. Traffic, 4, 566−575.
  162. Rogers, S., Wells, R. h Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science, 234,364−368.
  163. Rotin, D., Staub, O. h Haguenauer-Tsapis, R. (2000) Ubiquitination h endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. JMembr Biol, 176,1−17.
  164. Rouiller, I., DeLaBarre, B., May, A.P., Weis, W.I., Brunger, A.T., Milligan, R.A. h Wilson-Kubalek, E.M. (2002) Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat Struct Biol, 9, 950−957.
  165. Rubio, M.A., Liu, X., Yuzawa, H., Alfonzo, J.D. h Simpson, L. (2000) Selective importation of RNA into isolated mitochondria from Leishmania tarentolae. Rna, 6,988−1003.
  166. Rusconi, C.P. h Cech, T.R. (1996) Mitochondrial import of only one of three nuclear-encoded glutamine tRNAs in Tetrahymena thermophila. Embo J, 15, 32 863 295.
  167. Russell, N.S. h Wilkinson, K.D. (2004) Identification of a novel 29-linked polyubiquitin binding protein, Ufd3, using polyubiquitin chain analogues. Biochemistry, 43,4844−4854.
  168. Salinas, T., Schaeffer, C., Marechal-Drouard, L. h Duchene, A.M. (2005) Sequence dependence of tRNA (Gly) import into tobacco mitochondria. Biochimie.
  169. , H. (1995) Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol, 260, 190−202.
  170. Schneider, A., Martin, J. h Agabian, N. (1994a) A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol Cell Biol, 14,2317−2322.
  171. Schneider, A., McNally, K.P. h Agabian, N. (1994b) Nuclear-encoded mitochondrial tRNAs of Trypanosoma brucei have a modified cytidine in the anticodon loop. Nucleic Acids Res, 22,3699−3705.
  172. Schnell, J.D. h Hicke, L. (2003) Non-traditional functions of ubiquitin h ubiquitin-binding proteins. J Biol Chem, 278,35 857−35 860.
  173. , R. (1942) The dynamic state of body constituents.
  174. Schuberth, C., Richly, H., Rumpf, S. ΠΈ Buchberger, A. (2004) Shpl ΠΈ Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation. EMBO Rep, 5, 818−824.
  175. SenGupta, D.J., Zhang, Π’., Kraemer, Π’., Pochart, P., Fields, S. ΠΈ Wickens, M. (1996) A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl AcadSci USA, 93, 8496−8501.
  176. Sherrer, R.L., Yermovsky-Kammerer, A.E. ΠΈ Hajduk, S.L. (2003) A sequence motif within trypanosome precursor tRNAs influences abundance ΠΈ mitochondrial localization. Mol Cell Biol, 23, 9061−9072.
  177. Shevchenko, A., Wilm, M., Vorm, О. ΠΈ Mann, M. (1996) Mass spectrometry sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 68, 850−858.
  178. Shi, X., Chen, D.H. ΠΈ Suyama, Y. (1994) A nuclear tRNA gene cluster in the protozoan Leishmania tarentolae ΠΈ differential distribution of nuclear-encoded tRNAs between the cytosol ΠΈ mitochondria. Mol Biochem Parasitol, 65,23−37.
  179. Shih, S.C., Prag, G., Francis, S.A., Sutanto, M.A., Hurley, J.H. ΠΈ Hicke, L. (2003) A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. Embo J, 22,1273−1281.
  180. Shih, S.C., Sloper-Mould, K.E. ΠΈ Hicke, L. (2000) Monoubiquitin carries a novel internalization signal that is appended to activated receptors. Embo J, 19,187 198.
  181. , R.S. ΠΈ Hieter, P. (1989) A system of shuttle vectors ΠΈ yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122,19−27.
  182. , M.A. (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem, 95, 45−52.
  183. Sloper-Mould, K.E., Jemc, J.C., Pickart, C.M. ΠΈ Hicke, L. (2001) Distinct functional surface regions on ubiquitin. J Biol Chem, 276, 30 483−30 489.
  184. Smith, C.J., Ley, A.N., D’Obrenan, P. ΠΈ Mitra, S.K. (1971) The structure ΠΈ coding specificity of a lysine transfer ribonucleic acid from the haploid yeast Saccharomyces cerevisiae alpha S288C. J Biol Chem, 246,7817−7819.
  185. Sollner, Π’., Rassow, J. ΠΈ Pfanner, N. (1991) Analysis of mitochondrial protein import using translocation intermediates ΠΈ specific antibodies. Methods Cell Biol, 34, 345−358.
  186. , J. ΠΈ Wharton, R.P. (1999) Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev, 13,2704−2712.
  187. , J.Y. ΠΈ Π˜Π³Π΅, Π’. (1998) Nitrogen-regulated ubiquitination of the Gapl permease of Saccharomyces cerevisiae. Mol Biol Cell, 9, 1253−1263.
  188. , P.A. (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem, 56, 89−124.
  189. Steinhilb, M.L., Turner, R.S. ΠΈ Gaut, J.R. (2001) The protease inhibitor, MG132, blocks maturation of the amyloid precursor protein Swedish mutant preventing cleavage by beta-Secretase. J Biol Chem, 276,4476−4484.
  190. , GJ. ΠΈ Govers, R. (1999) The ubiquitin-proteasome system ΠΈ endocytosis. J Cell Sci, 112 (Pt 10), 1417−1423.
  191. , Y. (1967) The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis. Biochemistry, 6,2829−2839.
  192. , Y. ΠΈ Eyer, J. (1967) Leucyl tRNA ΠΈ leucyl tRNA synthetase in mitochondria of Tetrahymena pyriformis. Biochem Biophys Res Commun, 28, 746 751.
  193. , Y. ΠΈ Hamada, J. (1978) The mitochondrial ΠΈ cytoplasmic valyl tRNA synthetases in Tetrahymena are indistinguishable. Arch Biochem Biophys, 191,437 443.
  194. Suyama, Y., Jenney, F. ΠΈ Okawa, N. (1987) Two transfer RNA sequences abut the large ribosomal RNA gene in Tetrahymena mitochondrial DNA: tRNA (leu) (anticodon UAA) ΠΈ tRNA (met) (anticodon CAU). Curr Genet, 11, 327−330.
  195. Tan, Π’.Н., Bochud-Allemann, N., Horn, E.K. ΠΈ Schneider, A. (2002a) Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci USA, 99,1152−1157.
  196. Tan, Π’.Н., Pach, R., Crausaz, A., Ivens, А. ΠΈ Schneider, A. (2002b) tRNAs in Trypanosoma brucei: genomic organization, expression, ΠΈ mitochondrial import. Mol Cell Biol, 22,3707−3717.
  197. Tarassov, I., Entelis, N. ΠΈ Martin, R.P. (1995a) An intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic tRNA. J Mol Biol, 245,315−323.
  198. Tarassov, I., Entelis, N. ΠΈ Martin, R.P. (1995b) Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic ΠΈ mitochondrial lysyl-tRNA synthetases. EmboJ, 14,3461−3471.
  199. , I.A. ΠΈ Entelis, N.S. (1992) Mitochondrially-imported cytoplasmic tRNA (Lys)(CUU) of Saccharomyces cerevisiae: in vivo ΠΈ in vitro targetting systems. Nucleic Acids Res, 20,1277−1281.
  200. Thrower, J.S., Hoffman, L., Rechsteiner, M. ΠΈ Pickart, C.M. (2000) Recognition of the polyubiquitin proteolytic signal. Embo J, 19, 94−102.
  201. Tolerico, L.H., Benko, A.L., Aris, J.P., Stanford, D.R., Martin, N.C. ΠΈ Hopper, A.K. (1999) Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear ΠΈ cytosolic locations. Genetics, 151,57−75.
  202. Traboni, C., Cortese, R. ΠΈ Salvatore, F. (1980) Selective 32P-labelling of individual species in a total tRNA population. Nucleic Acids Res, 8,5223−5232.
  203. Ursic, D., DeMarini, D.J. h Culbertson, M.R. (1995) Inactivation of the yeast Senl protein affects the localization of nucleolar proteins. Mol Gen Genet, 249, 571 584.
  204. Ursic, D., Himmel, K.L., Gurley, K.A., Webb, F. h Culbertson, M.R. (1997) The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res, 25,4778−4785.
  205. , A. (2005) Regulated protein degradation. Trends Biochem Sci, 30, 283−286.
  206. Varshavsky, A., Bachmair, A. h Finley, D. (1987) The N-end rule of selective protein turnover: mechanistic aspects h functional implications. Biochem Soc Trans, 15,815−816.
  207. Voges, D., Zwickl, P. h Baumeister, W. (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem, 68,10 151 068.
  208. Von der Haar, F. (1979) Purification of Aminoacyl-tRNA Synthetases. Methods in Enzymology, LIX, 257 267.
  209. Voos, W., von Ahsen, O., Muller, H., Guiard, B., Rassow, J. h Pfanner, N. (1996) Differential requirement for the mitochondrial Hsp70-Tim44 complex in unfolding h translocation of preproteins. Embo J, 15,2668−2677.
  210. Wiebel, F.F. h Kunau, W.H. (1992) The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature, 359,73−76.
  211. Wiedemann, N., Pfanner, N. h Ryan, M.T. (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment h translocation into mitochondria. Embo J, 20, 951−960.
  212. Wilkinson, C.R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., Semple, C. h Gordon, C. (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol, 3, 939−943.
  213. , K.D. (2000) Ubiquitination h deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol, 11,141−148.
  214. , J.E. (2003) Isozymes of mammalian hexokinase: structure, subcellular localization h metabolic function. J Exp Biol, 206,2049−2057.
  215. , T.E. (2002) A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics, 162, 677−688.
  216. Winey, M. h Culbertson, M.R. (1988) Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics, 118, 609−617.
  217. Voet, M., Volckaert, G., Ward, T.R., Wysocki, R., Yen, G.S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M. h Davis, R.W. (1999) Functional characterization of the S. cerevisiae genome by gene deletion h parallel analysis. Science, 285, 901−906.
  218. Witowsky, J.A. h Johnson, G.L. (2003) Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 h MKK4 h activation of the ERK½ h JNK pathways. J Biol Chem, 278,1403−1406.
  219. Wojcik, C. h DeMartino, G.N. (2003) Intracellular localization of proteasomes. Int JBiochem Cell Biol, 35, 579−589.
  220. Wold, F. h Ballou, C.E. (1957a) Studies on the enzyme enolase. I. Equilibrium studies. J Biol Chem, 227, 301−312.
  221. Wold, F. h Ballou, C.E. (1957b) Studies on the enzyme enolase. II. Kinetic studies. J Biol Chem, 227,313−328.
  222. Wolf, D.H. h Hilt, W. (2004) The proteasome: a proteolytic nanomachine of cell regulation h waste disposal. Biochim Biophys Acta, 1695, 19−31.
  223. Wolfe, D., Reiner, T., Keeley, J.L., Pizzini, M. h Keil, R.L. (1999) Ubiquitin metabolism affects cellular response to volatile anesthetics in yeast. Mol Cell Biol, 19, 8254−8262.
  224. Wu, R. h Racker, E. (1959) Regulatory mechanisms in carbohydrate metabolism. III. Limiting factors in glycolysis of ascites tumor cells. J Biol Chem, 234, 1029−1035.
  225. Xie, Y. h Varshavsky, A. (2001) RPN4 is a lign, substrate, h transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci U S A, 98,3056−3061.
  226. Yermovsky-Kammerer, A.E. h Hajduk, S.L. (1999) In vitro import of a nuclearly encoded tRNA into the mitochondrion of Trypanosoma brucei. Mol Cell Biol, 19,6253−6259.
  227. Yoshionari, S., Koike, T., Yokogawa, T., Nishikawa, K., Ueda, T., Miura, K. h Watanabe, K. (1994) Existence of nuclear-encoded 5S-rRNA in bovine mitochondria. FEBS Lett, 338,137−142.
  228. Yuan, H. h Douglas, M.G. (1992) The mitochondrial F1 ATPase alpha-subunit is necessary for efficient import of mitochondrial precursors. J Biol Chem, 267, 14 697−14 702.
  229. Zhang, X., Lester, R.L. h Dickson, R.C. (2004) Pillp h Lsplp negatively regulate the 3-phosphoinositide-dependent protein kinase-Iike kinase Pkhlp h downstream signaling pathways Pkclp h Ypklp. J Biol Chem, 279,22 030−22 038.
  230. Zhaung, Z.P. h McCauley, R. (1989) Ubiquitin is involved in the in vitro insertion of monoamine oxidase B into mitochondrial outer membranes. J Biol Chem, 264, 14 594−14 596.
  231. Zhuang, Z., Hogan, M. h McCauley, R. (1988) The in vitro insertion of monoamine oxidase B into mitochondrial outer membranes. FEBS Lett, 238,185−190.
  232. Zhuang, Z.P., Marks, B. h McCauley, R.B. (1992) The insertion of monoamine oxidase A into the outer membrane of rat liver mitochondria. J Biol Chem, 267, 591 596.
  233. Zizi, M., Forte, M., Blachly-Dyson, E. h Colombini, M. (1994) NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem, 269,1614−1616.
  234. Π‘Π΅Ρ€Π΄Π΅Ρ‡Π½ΠΎ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€ΡŽ Π΄-Ρ€Π° Π›ΠΈ Π‘Π²ΠΈΡ‚Π»ΠΎΠ²Π° Π·Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ выполнСния Π°Π½Π°Π»ΠΈΠ·Π° активности гликолитичСских Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² Π΅Π³ΠΎ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ, ΠžΠΊΡΡ„ΠΎΡ€Π΄, Англия, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π·Π° ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ замСчания Π² ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ².
  235. Π― Ρ…ΠΎΡ‡Ρƒ ΠΏΠΎΠ±Π»Π°Π³ΠΎΠ΄Π°Ρ€ΠΈΡ‚ΡŒ Бильви Π€Ρ€ΠΈΠ°Π½Ρ‚ Π·Π° ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ Ρ†Π΅Π½Π½Ρ‹Π΅ совСты ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ экспСримСнтов.
  236. МнС Ρ‚Π°ΠΊΠΆΠ΅ приятно Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ всСм сотрудникам ΠΊΠ°Ρ„Π΅Π΄Ρ€Ρ‹ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Московского ГосударствСнного УнивСрситСта ΠΈ Π²ΡΠ΅ΠΌΡƒ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Ρƒ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π Π―Π•2735 ΠΏΠΎΠ΄ руководством Π . ΠœΠ°Ρ€Ρ‚ΠΈΠ½Π° Π·Π° ΠΎΠΊΠ°Π·Π°Π½Π½ΡƒΡŽ ΠΏΠΎΠΌΠΎΡ‰ΡŒ, Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ