Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Характеристика ckit позитивных резидентных стволовых клеток миокарда у больных ишемической болезнью сердца

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Количество с-кй+ клеток в миокарде ушка ПП наибольшее у женщин моложе 60 лет, оно положительно коррелирует с выраженностью атеросклероза коронарных артерий и дилатации ЛП, но не зависит от наличия факторов риска сердечно-сосудистых заболеваний (артериальной гипертонии, сахарного диабета, гиперлипидемии, ожирения, курения) и ИМ в анамнезе. В миокарде ушка ПП, аневризмы у больных ИБС… Читать ещё >

Содержание

  • СПИСОК СОКРАЩЕНИЙ АКТУАЛЬНОСТЬ ПРОБЛЕМЫ НАУЧНАЯ НОВИЗНА ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ ВНЕДРЕНИЕ В ПРАКТИКУ ОБЗОР ЛИТЕРАТУРЫ Регенеративный потенциал сердца
  • Применение стволовых клеток для лечения болезней сердечнососудистой системы
  • Клеточная терапия инфаркта миокарда
  • Клеточная терапия хронической ИБС и постинфарктной сердечной недостаточности
  • Резидентные стволовые клетки сердца
  • I. slet-1 клетки
  • Sp-популяция
  • С—kit позитивные клетки
  • Клетки, образующие кардиосферы
  • Sca-1 клетки
  • Клеточная ниша
  • Активация стволовых клеток сердца
  • Перспективы примения стволовых клеток сердца для регенерации миокарда
  • Стволовые клетки сердца при патологии миокарда и старении
  • Стволовые клетки сердца при остром инфаркте миокарда и отдаленном постинфарктном периоде
  • Стволовые клетки сердца при диабетической кардиомиопатии
  • Старение миокарда и стволовые клетки сердца

Характеристика ckit позитивных резидентных стволовых клеток миокарда у больных ишемической болезнью сердца (реферат, курсовая, диплом, контрольная)

выводы.

1. В миокарде ушка ПП, аневризмы у больных ИБС и в неповрежденном миокарде присутствуют с—кк+ клетки, характеризующиеся экспрессией маркеров стволовых клеток (ШЖ1, С-те!-, ЮБ-Ш, 1Ч-кадгерин) и отсутствием гематопоэтических маркеров (СБ34, СБ45) — количество этих клеток в неповрежденном миокарде обратно коррелирует с возрастом (г — 0,78- р<0,0001).

2. В миокарде ушка ПП больных ИБС и в неповрежденном миокарде часть с-кй+ стволовых клеток сердца пролиферирует и дифференцируется в клетки-предшественники кардиомиоцитов и гладкомышечных клетокв ткани аневризмы ЛЖ с-кй+ клетки не пролиферируют, не экспрессируют маркеров дифференцировки в кардиомиоциты и клетки сосудов и экспрессируют ингибитор клеточного цикла р21 С1рА? аГ1.

3. Количество с-кй+ клеток в миокарде ушка ПП наибольшее у женщин моложе 60 лет, оно положительно коррелирует с выраженностью атеросклероза коронарных артерий и дилатации ЛП, но не зависит от наличия факторов риска сердечно-сосудистых заболеваний (артериальной гипертонии, сахарного диабета, гиперлипидемии, ожирения, курения) и ИМ в анамнезе.

4. Разработанная методика, сочетающая использование метода эксплантной культуры и последующей иммуномагнитной селекции, позволяет получить обогащенную культуру с-кй+ СКС из операционных образцов миокарда человека.

5. Пролиферативный потенциал культивируемых c-kit+ клеток, получаемых из ткани ушка ПП выше, чем у клеток, получаемых из ткани аневризмыкультивируемые c-kit+ клетки ушка ПП обладают клоногенностью и экспрессируют гены плюрипотентности (Oct4, Sox2, Klf4, C-myc, Nanog).

6. Культивируемые c-kit+ клетки ушка ПП могут быть индуцированы к начальным этапам кардиомиоцитарной дифференцировки и к эндотелиальной дифференцировке, способны формировать капилляроподобные структуры in vitro и секретируют ангиогенные факторы роста (VEGF и HGF) — c-kit+ клетки, полученные из аневризмы, способны только к начальным этапам кардиомиоцитарной дифференцировки.

1. Волкова, О. В. Эмбриогенез и возрастная гистология внутренних органов человека / О. В. Волкова, М. И. Пекарский. М.: Изд-во Медицина, 1976. — 286 с.

2. Дергилев, К. В. Аневризма левого желудочка возможный источник резидентных стволовых клеток сердца / К. В. Дергилев, К. А. Рубина, З. И. Цоколаева и др. // Цитология. — 2010. — Т. 52. — № 11. — С. 31−41.

3. Жеденев, В. Н. Легкие и сердце животных и человека / В. Н. Жеденев. М.: Изд-во Советская наука, 1954. — 162 с.

4. Костырев, O.A. Авторадиографическое исследование синтеза ДНК в мышечных и соединительнотканных клетках сердца при его повреждении изопропилнорадреналином / O.A. Костырев, Т.А. Леонтьева// Бюл. Экспер. Биол. Мед. 1973. — № 76. — С. 108−110.

5. Хроническая сердечная недостаточность / Ф. Т. Агеев и др. М.: Изд-во Гэотар-медиа, 2010. — 336 с.

6. Цыб А. Ф. Получение и использование в медицине клеточных культур из мезенхимальных стволовых клеток костного мозга человека / А. Ф. Цыб, А. Г. Коноплянников, А. И. Колесникова // Вестник АМН. 2004. — № 9. — С. 71−76.

7. Abdel-Latif, A., Bolli R., Tleyjeh I.M., et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and metaanalysis // Arch Intern Med. 2007. — V. 167. — № 10. — P. 989−97.

8. Abu-Issa, R., Waldo K., Kirby M.L., et al. Heart fields: one, two or more? // Dev Biol. 2004. — V. 272. — № 2. — P. 281−5.r.

9. Aghila Rani, K.G., Jayakumar K., Srinivas G., et al. Isolation of t ckit-positive cardiosphere-forming cells from human atrial biopsy // Asian.

10. Cardiovasc Thorac Ann. 2008. — № 16. — P. 50−56.

11. Akagi, M., Hamada K., Nishioka E., et al. Role of histamine H3 < receptor on hypoxia-reoxygenation-induced cardiac dysfunction in guineapigs // Methods Find Exp Clin Pharmacol. 1995. — № 17. — P. 30−5.f.

12. Alhadlaq, A., Mao J J. Mesenchymal stem cells: isolation and therapeutics // Stem Cells Dev. 2004. — V. 13. — № 4. — P. 436−48.

13. Amado, LC, Saliaris A.P., Schuleri K.H., et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction // Proc Natl Acad Sci USA.- 2005. V.102. — № 32. -P. 11 474−9.

14. Andersen, D.C., Andersen P., Schneider M., et al. Murine «cardiospheres» are not a source of stem cells with cardiomyogenic potential // Stem Cells. 2009. — № 27. — P. 1571−81.

15. Anversa, P. Cardiac stem cells and the failing heart / P. Anversa, K. Urbanek, C. Bearzi // Cardiovascular regeneration and stem cell therapy. Blackwell publishing. 2007. — P. 201−211.

16. Anversa, P., Kajstura J., Leri A., et al. Life and death of cardiac stem cells: a paradigm shift in cardiac biology // Circulation. — 2006. — V. 113.-№ 11. -P.1451−63.

17. Anversa, P., Kajstura J., Nadal-Ginard B., et al. Primitive cells and tissue regeneration // Circ. Res. — 2003. V.92. P. 579−582.

18. Anversa, P., Rota M., Urbanek K., et al. Myocardial aging—a stem cell problem // Basic Res Cardiol. 2005. — V. 100. — № 6. — P. 48 293.

19. Arsic, N., Mamaeva D., Lamb N.J., et al. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages // Exp Cell Res. 2008. — V. 314. — № 6. — P. 1266−80.

20. Asahara, T., Murohara T., Sullivan A., et al. Isolation of putative progenitor endothelial cells for angiogenesis // Science. 1997. — V. 275.-P. 964−967.

21. Asakura, A., Komaki M., Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation // Differentiation. 2001. — V.68. — № 5. — P. 245−53.

22. Asakura, A., Rudnicki M.A. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation // Exp Hematol. 2002. — V. 11.-P. 133SM5.

23. Askari, A.T., Unzek S., Popovic Z.B., et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy // Lancet. 2003. — V. 362. — № 9385. — P. 697 703.

24. Assmus, B., Honold J., Schachinger V., et al. Transcoronary transplantation of progenitor cells after myocardial infarction // N Engl J Med.-2006.-V. 355.-№ 12.-P. 1222−32.

25. Assmus, B., Schachinger V., Teupe C., et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) // Circulation. 2002. — V. 106. — № 24. — P. 3009−17.

26. Avilion, A.A., Nicolis S.K., Pevny L.H., et al. Multipotent cell lineages in early mouse development depend on SOX2 function // Genes Dev. 2003. — V. 17. — № 1. — P. 1260.

27. Badorff, C., Brandes R.P., Popp R., et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes // Circulation. 2003. — V. 107. — № 7. — P. 1024−32.

28. Barile, L., Messina E., Giacomello A., et al. Endogenous cardiac stem cells // Prog Cardiovasc Dis. 2007. — V. 50. — № 1. — P. 3148.

29. Bartek, J., Lukas J. Pathways governing Gl/S transition and their response to DNA damage // FEBS Lett. 2001. — V. 490. — № 3. — P. 117−22.

30. Bartunek, J., Wijns W., Heyndrickx G.R., Vanderheyden M., et al. Timing of intracoronary bone-marrow-derived stem cell transplantation after ST-elevation myocardial infarction // Nat Clin Pract Cardiovasc Med. 2006. — V. 25. — № 1. — P. 52−6.

31. Battle, E., Henderson J.T., Beghtel H., et al. Beta catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB // Cell. 2002. — V. 111. — P. 251−263.

32. Bearzi, C., Leri A., Lo Monaco F., et al. Identification of a coronary vascular progenitor cell in the human heart // Proc Natl Acad Sci USA. 2009. — V. 106. — № 37. — P. 15 885−90.

33. Bearzi, C., Rota M., Hosoda T., et al. Human cardiac stem cells // Proc Natl Acad Sci USA.- 2007. V. 104. — № 35. — P. 14 068−73.

34. Beitnes, J.O., Hopp E., Lunde K., et al. Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study // Heart. 2009. — V. 95. — № 24. — P. 1983;9.

35. Belema Bedada, F., Technau A., Ebelt H., et al. Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells // Mol Cell Biol. 2005. — V. 25. — № 21. — P. 9509−19.

36. Beltrami, A.P., Barlucchi L., Torella D., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration // Cell. -2003. V. 114. — P. 763−768.

37. Beltrami, A.P., Urbanek K., Kajstura J., et al. Evidence that human cardiac myocytes divide after myocardial infarction // N. Engl. J. Med. 2001. — V. 344. — P. 1750−1757.

38. Bergmann, O., Bhardwaj R.D., Bernard S., et al. Evidence for cardiomyocyte renewal in humans // Science. 2009. — V. 324 — P. 98−102.

39. Bolli, R, Anversa P. Stem cells and cardiac aging. / R. Bolli, P. Anversa // Cardiovascular regeneration and stem cell therapy. Blackwell publishing.-2007.-P. 171−183.

40. Boni, A., Urbanek K., Nascimbene A., et al. Notchl regulates the fate of cardiac progenitor cells // Proc Natl Acad Sci USA.- 2008. V. 105.-№ 40.-P. 15 529−34.

41. Brooks, G., Poolman R.A., McGill C.J., et al. Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytes // J Mol Cell Cardiol. 1997. — V. 29. P. 2261−71.

42. Broudy, V.C. Stem cell factor and hematopoiesis // Blood. -1997. V. 90. — № 4. — P. 1345−64.

43. Brugarolas, J., Moberg K., Boyd S.D., et al. Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein169mediated G1 arrest after gamma-irradiation // Proc Natl Acad Sci U S A. -1999. V. 96. — № 3. — P. 1002−7.

44. Bucher, O. Z. Problem der Amitose // Handb. Allgem. Pathol. -1971.-V. 11.—P. 626−699.

45. Buckingham, M., Meilhac S., Zaffran S., et al. Building the mammalian heart from two sources of myocardial cells // Nat Rev Genet. -2005. V. 6. — № 11. — P. 826−35.

46. Buckingham, M., Montarras D. Skeletal muscle stem cells // Curr Opin Genet Dev. 2008. — V. 18. — № 4. — P. 330−6.

47. Cai, C.L., Liang X., Shi Y., et al. Isll identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart // Dev Cell. 2003. — V. 5. P. 877−89.

48. Cai, C.L., Martin J.C., Sun Y., et al. A myocardial lineage derives from Tbxl8 epicardial cells // Nature. 2008. — V. 454. — № 72. — P. 104−8.

49. Campion, D.R. The muscle satellite cell: a review // Int Rev Cytol. 1984. — V. 87. P. 225−251.

50. Capasso, J.M., Bruno, S., Cheng, W., et al. Ventricular loading is coupled with DNA synthesis in adult cardiac myocytes after acute and chronic myocardial infarction in rats // Circ Res. — 1992. V. 71 — P. 13 791 389.

51. Case, J., Mead L.E., Bessler W.K., et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors // Exp Hematol. 2007. — V. 35.-№ 7.-P. 1109−18.

52. Ceradini, D.J., Kulkarni A.R., Callaghan M.J., et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 // Nat Med. 2004. — V. 10. P. 858−64.

53. Challen, G.A., Bertoncello I., Deane J.A., et al. Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity // J Am Soc Nephrol. 2006. — V. 17. P. 1 896 912.

54. Chen, S.L., Fang W.W., Qian J., et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction // Chin Med J (Engl). -2004.-V. 117.-№ 10.-P. 1443−8.

55. Chien, K.R., Domian I.J., Parker K.K., et al. Cardiogenesis and the complex biology of regenerative cardiovascular medicine // Science. -2008. V. 322. — № 5907. — P. 1494−7.

56. Chimenti, C., Kajstura J., Torella D., et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure // Circ Res. 2003. — V. 93. — № 7. — P. 604−13.

57. Chimenti, I., Smith R.R., Li T.S., et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice // Circ Res. 2010. — V. 106. P. 971−80.

58. Cho, H.J., Lee N., Lee J.Y., et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart // J Exp Med. 2007. — V. 204. — № 13. — P. 325 769.

59. Chowdary, D.R., Dermody J J., Jha K.K., et al. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway // Mol Cell Biol. 1994. — V. 14. — № 3. — P. 1997;2003.

60. Church, M.K., el-Lati S., Caulfield J.P. Neuropeptide-induced secretion from human skin mast cells // Int Arch Allergy Appl Immunol. -1991.-V. 94. — № 1. P. 310−8.

61. Cleland, J.G., McGowan J. Heart failure due to ischaemic heart disease: epidemiology, pathophysiology and progression // J Cardiovasc Pharmacol. 1999. — V. 33. — № 3. — P. 17−29.

62. Dai, W., Hale S.L., Martin B.J., et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: shortand long-term effects // Circulation. 2005. — V. 112. — № 2. — P. 214−23.

63. Davani, S., Muret P., Royer B. et al. Ischaemic preconditioning and mast cell histamine release: microdialysis of isolated rat hearts // Pharmacol. Res. 2002. — V. 45. P. 383−390.

64. Davis, D.R., Zhang Y., Smith R.R., et al. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue // PLoS One. 2009. — V. 4. — № 9. — P. 7195−10.

65. Dergilev, K., Rubina K., Sysoeva V., et al. C-kit positive cells of the heart contain mast cells and cardiac progenitor cells populations // 5th Annual Meeting of the German Society for Stem Cell Research. 2010.

66. Di1 Meglio, F., Castaldo C., Nurzynska D., et al. Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart // J Mol Cell Cardiol. -2010. V. 49. — № 5. — P. 719−27.

67. Dib, N., Campbell A., Jacoby D.B., et al. Safety and feasibility of percutaneous autologous skeletal myoblast transplantation in the coil-infarcted swine myocardium // J Pharmacol Toxicol Methods. 2006. — V. 54.-№ 1.-P. 71−7.

68. Dib, N., McCarthy P., Campbell A., et al. Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy // Cell Transplant. 2005. — V. 14. — № 1. — P. 11−9.

69. Dodou, E., Verzi M.P., Anderson J.P., et al. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development // Development. 2004. — V. 131-P. 3931−3942.

70. Ebelt, H., Jungblut M., Zhang Y., et al. Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines // Stem Cells. 2007. — V. 25. — № 1. -P. 236−44.

71. Engels, W., Reiters P.H., Daemen M.J., et al. Transmural changes in mast cell density in rat heart after infarct induction in vivo // J Pathol. 1995. — V. 177. — № 4. — P. 423−9.

72. Fan, L., Chen L., Chen X., et al. A meta-analysis of stem cell mobilization by granulocyte colony-stimulating factor in the treatment of acute myocardial infarction // Cardiovasc Drugs Ther. — 2008. V. 22. -№ 1 -P. 45−54.

73. Fazel, S., Cimini M., Chen L., et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines // J Clin Invest. 2006. — V. 116. — № 7. — P. 1865−77.

74. Fernandez-Aviles, F., San Roman J.A., Garcia-Frade J., et al. Experimental and clinical regenerative capability of human bone marrow172cells after myocardial infarction // Circ Res. 2004. — V. 95. — № 7. — P. 742−8.

75. Fiordaliso, F., Leri A., Cesselli D., et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death // Diabetes. 2001. — V. 50. — № 10. — P. 2363−75.

76. Flaherty, M.P., Abdel-Latif A., Li Q., et al. Noncanonical Wntll signaling is sufficient to induce cardiomyogenic differentiation in unfractionated bone marrow mononuclear cells // Circulation. 2008. — V. 117.-№ 17.-P. 2241−52.

77. Fodinger, M., Fritsch G., Winkler K., et al. Origin of human mast cells: development from transplanted hematopoietic stem cells after allogeneic bone marrow transplantation // Blood. 1994. — V. 84. — № 9. -P. 2954−9.

78. Fuchs, E., Tumbar T., Guasch G. Socializing with the neighbors: stem cells and their niche // Cell. 2004. — V. 116. — P. 769−778.

79. Fuchs, S., Kornowski R., Weisz G., et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease // Am J Cardiol. 2006. — V. 97. — № 6. — P. 823−9.

80. Fukuda, K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering //Artif Organs.-2001.-V. 25.-P. 187−93.

81. Galli, S.J., Wershil B.K. Mouse mast cell cytokine production: role in cutaneous inflammatory and immunological responses // Exp Dermatol. 1995. — V. 4. — № 2. — P. 240−9.

82. Gambini, E., Pompilio G., Biondi A., et al. C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment // Cardiovasc Res. 2011. — V. 89. — № 2. — P. 362−73.

83. Ge J, Li Y, Qian J, Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI) // Heart. 2006. — V. 92. — № 12. — P. 1764−7.

84. Germani, A., Limana F., Capogrossi M. Activation of the local regenerative system of the heart. / A. Germani, F. Limana, M. Capogrossi // Cardiovascular regeneration and stem cell therapy. Blackwell publishing. -2007.-P. 95−103.

85. Giorgio, M., Migliaccio E., Orsini F., et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis // Cell. 2005. — V. 122. — № 2. — P. 221−33.

86. Gnecchi, M., He H., Noiseux N., et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement // FASEB J. 2006. — V. 20. — № 6. — P. 661−9.

87. Gnecchi, M., Zhang Z., Ni A., et al. Paracrine mechanisms in adult stem cell signaling and therapy // Circ Res. 2008. — V. 103. — № 11. -P.1204−19.

88. Gonzalez, A., Rota M., Nurzynska D., et al. Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan // Circ Res. 2008. — V. 102. — № 5. — P. 597−606.

89. Goodel, M.A., Brose K., Paradis G., et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo // J Exp Med. 1996. — V. 183. — P. 1797−1806.

90. Goumans, M.J., de Boer T.P., Smits A.M., et al. TGF-betal induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro // Stem Cell Res. 2008. — V. 1. — P. 138−49.

91. Goumans, M.J., Liu Z., ten Dijke P. TGF-beta signaling in vascular biology and dysfunction // Cell Res. 2009. — V. 19. — № 1. — P. 116−27.

92. Grauss, R.W., Winter E.M., van Tuyn J., et al. Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction // Am J Physiol Heart Circ Physiol. 2007. — V. 293. — № 4. — P. 2438−47.

93. Grundmann, E. Histologische Untersuchungen uder die Wirkungen experimentallen Sauerstoffmangels auf das Katzen Herz // Beitr. Pathol. Anat. Allgem. Pathol. 1951. — V. 111. — P. 36−76.

94. Gude, N.A., Emmanuel G., Wu W., et al. Activation of Notch-mediated protective signaling in the myocardium // Circ Res. 2008. — V. 102. № 9. -P. 1025−35.

95. Guo, Y., He J., Wu J., et al. Locally Overexpressing Hepatocyte Growth Factor Prevents Post-ischemic Heart Failure by Inhibition of.

96. Apoptosis via Calcineurin-mediated Pathway and Angiogenesis // Arch Med Res.-2008.-V. 39.-№ 2.-P. 179−88.

97. Haag, M., Van Linthout S., Schroder S.E., et al. Endomyocardial biopsy derived adherent proliferating cells a potential cell source for cardiac tissue engineering // J Cell Biochem. — 2010. — V. 109. -P. 564−75.

98. Haltiwanger, R.S., Busby S., Grove K., et al. O-glycosylation of nuclear and cytoplasmic proteins: regulation analogous to phosphorylation? // Biochem Biophys Res Commun. 1997. — V. 231. -№ 2. — P. 237−42.

99. Hara, M., Matsumori A., Ono K., et al. Mast cells cause apoptosis of cardiomyocytes and proliferation of other intramyocardial cells in vitro // Circulation. 1999. — V. 100. — № 13. — P. 1443−9.

100. Hara, M., Ono K., Hwang M.W., et al. Evidence for a role of mast cells in the evolution to congestive heart failure // J Exp Med. 2002. -V. 195.-№ 3. -P. 375−81.

101. Harada, M., Qin Y., Takano H., et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes // Nat Med. 2005. — V. 11. — № 3. — P. 305−11.

102. Hatzistergos, K.E., Quevedo H., Oskouei B.N., et al. Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation // Circ Res. 2009. — V. 116. — № 27. — P. 15 885−90.

103. Heil, M., Ziegelhoeffer T., Mees B., Schaper W., et al. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware // Circ Res. 2004. — V. 94. -№ 5.-P. 5734.

104. Herreros, J., Prosper F., Perez A., et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction // Eur Heart J. 2003. — V. 24.-№ 22.-P. 2012;20.

105. Hierlihy, A.M., Seale P., Lobe C.G., et al. The post-natal heart contains a myocardial stem cell population // FEBS Lett. 2002. — V. 530. -P.239−43.

106. Honda, M., Kurisaki A., Ohnuma K., et al. N-cadherin is a useful marker for the progenitor of cardiomyocytes differentiated from mouse ES cells in serum-free condition // Biochem Biophys Res Commun. -2006.-V. 351.-№ 4.-P. 877−82.

107. Hosoda, T., D’Amario D., Cabral-Da-Silva M.C., et al. Clonality of mouse and human cardiomyogenesis in vivo // Proc Natl Acad Sci USA.- 2009. — V. 106.-№ 40.-P. 169−174.

108. Ieda, M., Fu J.D., Delgado-Olguin P., et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors // Cell. 2010. — V. 142. — № 3. — P. 375−86.

109. Imanishi, T., Moriwaki C., Hano T., et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension // J Hypertens. 2005. — V. 23. -№ 10.-P. 1831−7.

110. Ince, H., Petzsch M., Rehders T.C., et al. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction // J Endovasc Ther. 2004. — V. 11.6. P. 695−704.

111. Itahana, K., Dimri G., Campisi J. Regulation of cellular senescence by p53 // Eur J Biochem. 2001. — V. 268. — № 10. — P. 278 491.

112. Itzhaki-Alfia, A., Leor J., Raanani E., et al. Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells // Circulation. 2009. — V. 120. — P. 2559−66.

113. Jackson, K.A., Majka S.M., Wang H., et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells // J Clin Invest 2001. — V. 107. — № 11. — P. 1395102.

114. Jahn, T., Seipel P., Coutinho S., et al. Analysing c-kit internalization using a functional c-kit-EGFP chimera containing the fluorochrome within the extracellular domain // Oncogene. — 2002. V. 21. № 29. P. 4508−20.

115. Janssens, S., Dubois C., Bogaert J., et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial // Lancet. -2006.-V. 367.-№ 9505.-P. 113−21.

116. Jiang, Y., Jahagirdar B.N., Reinhardt R.L., et al. Pluripotency of mesenchymal stem cells derived from adult marrow // Nature. 2002. — V. 418.-№ 68 -P.41−9.

117. Johnston, P.V., Sasano T., Mills K., et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy // Circulation. 2009. — V. 120. -№ 12.-P. 1075−83.

118. Kajstura, J., Leri A., Finato N., et al. Myocyte proliferation in end-stage cardiac failure in humans // Proc Natl Acad Sci USA.- 1998. -V. 95.-P. 8801−5.

119. Kajstura, J., Pertoldi B., Leri A., et al. Telomere shortening is an in vivo marker of myocyte replication and aging // Am J Pathol. 2000. — V. 156.-№ 3.-P. 813−9.

120. Kajstura, J., Rota M., Whang B., et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion // Circ Res. 2005. — V. 96. — P. 127−37.

121. Kajstura, J., Urbanek K., Perl S., et al. Cardiomyogenesis in the adult human heart II Circ Res. 2010. — V. 107. — P. 305−15.

122. Kajstura, J., Urbanek K., Rota M^ et al. Cardiac stem cells and myocardial disease // J Mol Cell Cardiol. 2008. — V. 45. — № 4. — P. 50 513.

123. Kaminski, A., Ma N., Donndorf P., et al. Endothelial NOS is required for SDF-lalpha/CXCR4-mediated*peripheral-endothelial adhesion of c-kit+ bone marrow stem cells // Lab Invest. 2008. — V. 88. — № 1. — P. 58−69.

124. Kattman, S.J., Huber T.L., Keller G.M. Multipotent flk-l+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages // Dev Cell. 2006. — V. 11. — № 5. -P. 723−32.

125. Kawada, H., Fujita J., Kinjo K., et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction // Blood. 2004. — V. 104. — P. 3581−7.

126. Kawaguchi, N., Smith A.J., Waring C.D., et al. C-kitpos GATA—4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signaling // PLoS One. 2010. — V. 5. — № 12. — P. 142−8.

127. Kawamoto, A., Gwon H.C., Iwaguro H., et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia // Circulation. 2001. — V. 103. — № 5. — P. 634−7.

128. Kelly, R.G., Brown N.A., Buckingham M.E. et al. The arterial pole of the mouse heart forms from FgflO-expressing cells in pharyngeal mesoderm // Dev Cell. 2001. — V. 1. — № 3. — P. 435−40.

129. Kennedy, R.H., Hauer-Jensen M., Joseph J. Cardiac function in hearts isolated from a rat model deficient in mast cells // Am J Physiol Heart Circ Physiol. 2005. — V. 282. — № 2. — P. 632−7.

130. Kim, C.F., Jackson E.L., Woolfenden A.E., et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer // Cell. — 2005.-V. 121.-P. 823−35.

131. Kinnaird, T., Stabile E., Burnett M.S., et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms // Circulation. 2004. — V. 109. — № 12. — P. 1543−9.

132. Kirshenbaum, A.S., Kessler S.W., Goff J.P., et al. Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells // J Immunol. 1991. — V. 146. — № 5. — P. 1410−5.

133. Kitajima, S., Takagi A., Inoue T., et al. MesPl and MesP2 are essential for the development of cardiac mesoderm // Development. — 2000. -V. 127.-№ 15.-P. 3215−26.

134. Kong, D., Melo L.G., Gnecchi M., et al. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries // Circulation. 2004. — V. 110. — № 14. — P. 2039;46.

135. Koninckx, R., Daniels A., Windmolders S., et al. Mesenchymal stem cells or cardiac progenitors for cardiac repair? A comparative study // Cell Mol Life Sci. 2010. — V. 112. — № 4. — P. 885−94.

136. Koyanagi, M., Bushoven P., Iwasaki M., et al. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells // Circ Res. 2007. — V. 101. — № 11. — P. 1139−45.

137. Koyanagi, M., Urbich C., Chavakis E., et al. Differentiation of circulating endothelial progenitor cells to a cardiomyogenic phenotype depends on E-cadherin // FEBS Lett. 2005. — V. 579. — № 27. — P. 6060−6.

138. Kubo, H., Jaleel N., Kumarapeli A., Berretta R.M., et al. Increased cardiac myocyte progenitors in failing human hearts // Circulation. .- 2008. V. 118. — № 6. — P. 649−57.

139. Kucia, M., Dawn B., Hunt G., et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction // Circ Res. 2004. — V. 95. — № 12.-P. 1191−9.

140. Kudo, M., Wang Y., Wani M.A., et al. Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart // J Mol Cell Cardiol. 2003. — V. 35. — № 9. — P. 1113−9.

141. Kunz, G.A., Liang G., Cuculi F., et al. Circulating endothelial progenitor cells predict coronary artery disease severity // Am Heart J. -2006.-V. 152. -№ 1. P. 190−5.

142. Kwon, J.S., Kim Y.S., Cho A.S., Cho H.H., et al. The novel role of mast cells in the microenvironment of acute myocardial infarction // J Mol Cell Cardiol. 2011. — V. 50. — № 5. — P. 814−25.

143. Kyo, S., Takakura M., Kanaya T., et al. Estrogen activates telomerase // Cancer Res. 1999. — V. 59. — № 23. — P. 5917−21.

144. Laflamme, M.A., Myerson D., Saffitz J.E., et al. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts // Circ Res. 2002. — V. 90. — № 6. — P. 634−40.

145. Laugwitz, K.L., Moretti A., Lam J., et al. Postnatal isll+ cardioblasts enter fully differentiated cardiomyocyte lineages // Nature. — 2005. V. 433. — P. 647−653.

146. Leobon, B.3 Garcin I., Menasche P., et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host // Proc Natl Acad Sei USA.- 2003. V. 100. — № 13. — P. 780 811.

147. Leri, A. Cardiac stem cells and their niches / A. Leri, P. An versa // Cardiovascular regeneration and stem cell therapy. Blackwell publishing. 2007. — P. 87−95.

148. Leri, A., Kajstura J., Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration // Physiol. Rev. 2005. — V. 85. -P. 1373−1416.

149. Levi, R. Effects of exogenous and immunologically released histamine on the isolated heart: A quantitative comparison // J. Pharmacol. Exp. Ther. 1972. — V. 182. — P. 227−238.

150. Li, F., Wang X., Capasso J.M., et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development // J Mol Cell Cardiol. 1996. — V. 28. — P. 1737-^6.

151. Li, S.Y., Du M., Dolence E.K., et al. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycationendproducts and protein modification // Aging Cell. 2005. — V. 4. — № 2. -P. 57−64.

152. Liang, S.X., Tan T.Y., Gaudry L., et al. Differentiation and migration of Scal+/CD31- cardiac side population cells in a murine myocardial ischemic model // Int J Cardiol. 2010. — V. 138. — P. 40−9.

153. Limana, F., Germani A., Zacheo A., et al. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation // Circ Res. 2005. — V. 97. — № 8. — P. 73−83.

154. Lin, Y., Weisdorf D.J., Solovey A., et al. Origins of circulating endothelial cells and endothelial outgrowth from blood // J Clin Invest. — 2000.-V. 105.-№ 1. P. 71−7.

155. Linask, K.K., Knudsen K.A., Gui Y.H., et al. N-cadherin-catenin interaction: necessary component of cardiac cell compartmentalization during early vertebrate heart development // Dev Biol. 1997. — V. 185. — № 2. — P. 148−164.

156. Lindbaek, S., Schneider M., Hansen J.L., et al. Cardiac regeneration by resident stem and progenitor cells in the adult heart // Basic Res. Cardiol. 2007. — V. 102. — P. 101−114.

157. Linke, A., Mtiller P., Nurzynska D., et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function // Proc Natl Acad Sci USA. 2005. — V. 102. — № 25. — P. 8966−71.

158. Losordo, D.W., Schatz R.A., White C.J., et al. Intramyocardial transplantation of autologous CD34+ stem* cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial // Circulation. 2007. -V. 115.-№ 25. -P. 3165−72.

159. Lunde, K., Solheim S., Aakhus S., et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction // N Engl J Med. 2006. — V. 355. — № 12. — P. 1199−209.

160. Mackins, CJ., Kano S., Sevedi N. et al. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion //J. Clin. Invest 2006. — V. 116. -P. 1063−1070.

161. Makino, S., Fukuda K., Miyoshi S., et al. Cardiomyocytes can be generated from marrow stromal cells in vitro // J Clin Invest. 1999. — V. 103. -P: 697−705:

162. Marone, G., de Crescenzo G., Adt M., et al. Immunological characterization and functional importance of human heart mast, cells // Immunopharmacology. 1995. — V. 31. — № 1. — P. 1−18.

163. Martin, C.M., Meeson A.P., Robertson S. M, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart // Dev Biol. 2004. — V. 265.-P. 262−75.

164. Martin-Rendon, E., Brunskill S.J., Hyde C.J., et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review // Eur Heart J. 2008. — V. 29. — № 15. — P. 1807−18.

165. Masini, E., Bianchi S., Gambassi F., et al. Ischemia reperfusion injury and histamine release in isolated and perfused guinea-pig heart: pharmacological interventions //Agents. Actions. 1990. — V. 30i — P. 198 201.

166. Matsuda, T., Fujio Y., Nariai T., et al. N-cadherin signals through Racl determine the localization of connexin 43 in cardiac myocytes // J Mol Cell Cardiol. 2006. — V. 40. — № 4. — P. 495−502.

167. Matsuura, K., Nagai T., Nishigaki N., et al. Adult Cardiac Seal-positive Cells Differentiate into Beating Cardiomyocytes // J Biol Chem. — 2004. V. 279.-P. 11 384−91.

168. Mazhari, R., Hare J.M. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche // Nat Clin Pract Cardiovasc Med. 2007. — V. 4. — P. 21−6.

169. Melo, L.G., Pachori A.S., Kong D., et al. Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism // Circulation. 2004. — V. 109. — № 20. — P. 2386−93.

170. Menasche, P., Alfien O., Janssens S., et al The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation // Circulation. 2008. — V. 117. — № 9. — P. 1189−200.

171. Menasche, P., Hagege A.A., Vilquin J.T., et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction // J Am Coll Cardiol. 2003. — V. 41. — № 7. — P. 1078−83.

172. Messina, E., De Angelis L., Frati G., et al. Isolation and expansion of adult cardiac stem cells from human and murine heart // Circ Res. 2004. — V. 95. — P. 911−921.

173. Messina, E., Giacomello A. Diabetic cardiomyopathy: a «cardiac stem cell disease» involving p66Shc, an attractive novel molecular target for heart failure therapy // Circ Res. 2006. — V. 99. — № 1. — P. 4552.

174. Metcalfe, D.D., Baram D., Mekori Y.A. Mast cells // Physiol Rev. 1997. — V. 77. — № 4. — P. 1033−79.

175. Meyer, G.P., Wollert K.C., Lotz J., et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial // Eur Heart J. 2009. — V. 30. — № 24. -P. 2978−84.

176. Mimeault, M., Batra S.K. Aging of tissue-resident adult stem/progenitor cells and their pathological consequences // Panminerva Med. 2009. — V. 51. — № 2. — P. 57−79.

177. Miyagi, S., Masui S., Niwa H., et al. Consequence of the loss of Sox2 in the developing brain of the mouse // FEBS Lett. 2008. — V. 582. -№ 18.-P. 2811−5.

178. Moretti, A., Bellin M., Jung C.B., et al. Mouse and human induced pluripotent stem cells as a source for multipotent Isll+ cardiovascular progenitors // FASEB J. 2010. — V. 24. — P. 700−11.

179. Moretti, A., Caron L., Nakano A., et al. Multipotent embryonic isll+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification // Cell. 2006. — V. 127. — P. 1151−65.

180. Murohara, T. Angiogenesis and vasculogenesis for therapeutic neovascularization // Nagoya J Med Sci. 2003. — V. 66. — № 2. — P. 1−7.

181. Muriy, C.E., Field L.J., Menasche P. Cell-based cardiac repair: reflections at the 10-year point // Circulation. 2005. — V. 112. — P. 317 483.

182. Nakagawa, M., Koyanagi M., Tanabe K., et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts // Nat Biotechnol. 2008; 26(1): 101—6. 2008. — V. 26. — № 1. -P. 101−6.

183. Nichols, J., Zevnik B., Anastassiadis K., et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 // Cell. 1998. — V. 95. — № 3. — P. 379−91.

184. Oh, H., Bradfute S.B., Gallardo T.D., et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction // Proc Natl Acad Sci USA. 2003. — V. 100. — P. 12 313−8.

185. Okayama, Y., Kawakami T. Development, migration, and survival of mast cells // Immunol Res. 2006. — V. 34. — № 2. — P. 97−115.

186. Olivetti, G., Giordano G., Corradi D., et al. Gender differences and aging: effects on the human heart // J Am Coll Cardiol. 1995. — V. 26. — № 4. — P. 1068−79.

187. Olivetti, G., Melissari M., Capasso J.M., et al. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy // Circ Res. 1991. — V. 68. — № 6. — P. 1560−8.

188. Orlic D. Adult bone marrow stem cells regenerate myocardium in ischemic heart disease // Ann. N. Y. Acad. Sci. 2003. — V. 196. — № 37. -P. 152−157.

189. Orlic D. BM stem cells and cardiac repair: where do we stand in 2004? // Cytotherapy. 2005. — V. 7. — P. 3−15.

190. Orlic, D., Kajstura J., Chimenti S., et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival // Proc Natl Acad Sci US A.-2001.-V. 98.-№ 18.-P. 10 344−9.

191. Ott, I., Keller U., Knoedler M., et al. Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction // FASEB J. 2005. — V. 19. — № 8. — P. 992−4.

192. Pagani, F.D., DerSimonian H., Zawadzka A., et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium inhumans. Histological analysis of cell survival and differentiation // J Am Coll Cardiol. 2003. — V. 41. — № 5. — P. 879−88.

193. Palladini, G., Tozzi R., Perlini S. Cardiac mast cells in the transition to heart failure: innocent bystanders or key actors? // J Hypertens. -2003.-V. 21.-№ 10.-P. 1823−5.

194. Pallante, B.A., Duignan I., Okin D., et al. Bone marrow Oct¾+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms // Circ Res. 2007. — V. 100. — № 1. — P. 1−11.

195. Palmer, T.D., Willhoite A.R., Gage F.H., et al. Vascular niche for adult hippocampal neurogenesis // J Comp Neurol. 2000. — V. 425. -№ 4. — P. 479−94.

196. Parikh, V. and Singh M. Cardiac mast cell stabilization and cardioprotective effect of ischemic preconditioning in isolated rat heart // J. Cardiovasc. Pharmacol. 1998. — V. 31. — P. 779−785.

197. Parikh, V. and Singh M. Possible role of adrenergic component and cardiac mast cell degranulation in preconditioning-induced cardioprotection // Pharmacol. Res. 1999. — V. 40. — P. 129−137.

198. Parikh, V. and Singh M. Resident cardiac mast cells and the cardioprotective effect of ischemic preconditioning in isolated rat heart // J. Cardiovasc. Pharmacol. 1997. — V. 30. — P. 149−156.

199. Patel, A.N., Geffner L., Vina R.F., et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study // J Thorac Cardiovasc Surg. 2005. — V. 130.-№ 6.-P. 1631−8.

200. Patella, V., Marino I., Arbustini E., et al. Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy // Circulation. 1998. — V. 97. — № 10. — P. 971−8.

201. Peichev, M., Naiyer A.J., Pereira D., et al. Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors // Blood. 2000. — V. 95. — № 3. — P. 952−8.

202. Perin, E.C., Dohmann H.F., Borojevic R., et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure // Circulation. 2003. — V. 107. — № 18. — P. 2294−302.

203. Pfister, O., Mouquet F., Jain M., et al. CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation // Circ Res. 2005. — V. 97. — № 1. — P. 52−61.

204. Pfitzer, P. Amitosis: a historical misinterpretation? // Pathol. Res. Pract. 1980. — V. 167. — P. 292−300.

205. Pittenger, M.F., Mackay A.M., Beck S.C., et al. Multilineage potential of adult human mesenchymal stem cells // Science. 1999. — V. 284.-P. 143−147.

206. Poelmann, R.E., Lie-Venema H., Gittenberger-de Groot A.C., et al. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development // Tex Heart Inst J. 2002. — V. 29. — № 4. -P. 255−61.

207. Polesskaya, A., Seale P., Rudnicki M.A. Wnt signaling induces the myogenic specification of resident CD45 adult stem cells during muscle regeneration // Cell. 2003. — V. 113. — P. 841−52.

208. Poolman, R.A., Brooks G. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia tohypertrophy // J Mol Cell Cardiol. 1998. — V. 30. — P. 2121−35.

209. Pouly, J., Bruneval P., Mandet C., et al. Cardiac stem cells in the real world // J Thorac Cardiovasc Surg. 2008. — V. 135. — P. 673−8.

210. Povsic, T.J., O’Connor C.M. Cell therapy for heart failure: the need for a new therapeutic strategy // Expert Rev Cardiovasc Ther. 2010. -V. 8.-P. 1107−26.

211. Powell, E.M., Mars W.M., Levitt P., et al. Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon // Neuron. 2001. — V. 30. — № 1. — P. 79−89.

212. Quaini, F., Urbanek K., Beltrami A.P., et al. Chimerism of the transplanted heart //N. Engl. J. Med. 2002. — V. 346. — P. 5−15.

213. Radice, G.L., Rayburn H., Matsunami H., et al. Developmental defects in mouse embryos lacking N-cadherin // Dev Biol. 1997. — V. 181. -№ 1. — P. 64−78.

214. Rangappa, S., Entwistle J.W., Wechsler A.S., Kresh J.Y. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype // J Thorac Cardiovasc Surg. 2003. — V. 126.-№ 1.-P. 124−32.

215. Reginato, M.J., Mills K.R., Paulus J.K., et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis // Nat Cell Biol. 2003. — V. 5. — № 8. — P. 73310.

216. Reinecke, H., Poppa V., Murry C.E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting // J Mol Cell Cardiol. 2002. — V. 34. — № 2. — P. 241−9.

217. Reiss, K., Cheng W., Ferber A., et al. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice // Proc Natl Acad Sci USA.- 1996. V. 93.-№ 16.-P. 8630−5.

218. Reubinoff, B.E., Pera M.F., Fong C.Y., et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro // Nat Biotechnol. 2000. — V. 18. — № 4. — P. 399−404.

219. Reyes, M., Dudek A., Jahagirdar B., et al. Origin of endothelial progenitors in human postnatal bone marrow // J Clin Invest. 2002. — V. 109.-№ 3.-P. 337—46.

220. Rota, M., Boni A., Urbanek K., et al. Nuclear targeting of Akt enhances ventricular function and myocyte contractility // Circ Res. 2005. -V. 97.-№ 12.-P. 1332−41.

221. Rota, M., Kajstura J., Hosoda T., et al. Bone marrow cells adopt the cardiomyogenic fate in vivo // Proc Natl Acad Sci USA.- 2007. V. 104. — № 45. — P." 17 783−8.

222. Rota, M., LeCapitaine N., Hosoda T., et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene // Circ Res. 2006. — V. 99. — № 1. — P. 42−52.

223. Rothenberg, M.E. Eosinophilia // N Engl J Med. 1998. — V. 338.-№ 22. — P. 1592−600.

224. Rubart, M., Field L.J. Stem cell differentiation: cardiac repair // Cells Tissues Organs. 2008. — V. 188. — P. 202−11.

225. Rumyantsev, P.P., Kassem A.M. Cumulative induces of DNA synthezing myocytes in different compartments of the ray heart muscle following extensive left ventricular infarction // Virchows Arch. 1976. -V. 20.-P. 329−342.

226. Saga, Y., Kitajima S., Miyagawa-Tomita S. Mespl expression is the earliest sign of cardiovascular development // Trends Cardiovasc Med. 2000. — V. 10. — № 8. — P. 345−52.

227. Sandstedt, J., Jonsson M., Lindahl A., et al. C-kit+ CD45- cells found in the adult human heart represent a population of endothelial progenitor cells // Basic Res Cardiol. 2010. — V. 105. — № 4. — P. 545−56.

228. Santone, D.J., Shahani R., Rubin B.B., et al. Mast cell stabilization improves cardiac contractile function following hemorrhagic shock and resuscitation // Am J Physiol Heart Circ Physiol. 2008. — V. 294.-№ 6.-P. 2456−64.

229. Satija, N.K., Singh V.K., Verma Y.K., et al. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine // J Cell Mol Med. 2009. — V. 13. — P. 4385−402.

230. Schachinger, V., Erbs S., Elsasser A., et al. REPAIR-AMI Investigators. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction // N Engl J Med. 2006. — V. 355. — № 12. — P. 121 021.

231. Scherschel, J.A., Soonpaa M.H., Srour E.F., et al. Adult bone marrow-derived cells do not acquire functional attributes of cardiomyocytes when transplanted into peri-infarct myocardium // Mol Ther. 2008. — V. 16.-№ 6.-P. 1129−37.

232. Schuldiner, M., Yanuka O., Itskovitz-Eldor J., et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells // Proc Natl Acad Sci USA.- 2000. V. 97. — № 21. -P. 11 307−12.

233. Segers, V.F., Tokunou T., Higgins L.J., et al. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction // Circulation. 2007. — V. 116. — № 15. — P. 1683−92.

234. Shakoory B., Fitzgerald S.M., Lee S.A., et al. The role of human mast cell-derived cytokines in eosinophil biology // J Interferon Cytokine Res. 2004. — V. 24. — № 5. — P. 271−81.

235. Shaw, P., Freeman J., Bovey R., et al. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged188residues at the carboxy-terminus // Oncogene. 1996. — V. 12. — № 4. — P. 921−30.

236. Sheikh, A.Y., Lin S.A., Cao F. Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium // Stem Cells. 2007. — V. 25. — P. 2677−84.

237. Shenje, L.T., Field L.J., Pritchard C.A., et al. Lineage tracing of cardiac explant derived cells // PLoS One. 2008. — V. 3. — P. 929−37.

238. Shiota, N., Rysa J., Kovanen P.T., et al. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease // J Hypertens. -2003.-V. 21.-№ 10.-P. 1935;44.

239. Silva, G.V., Litovsky S., Assad J.A., et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model // Circulation. 2005. — V. 111. — № 2. — P. 150−6.

240. Singh, V.P., Le B., Khode R., et al. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis // Diabetes. 2008. — V. 57. — № 12. -P. 3297−306.

241. Smart, N., Risebro C.A., Melville A.A., et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization // Nature. 2007. — V. 445. — № 7124. — P. 177−82.

242. Smith, R.R., Barile, L., Cho, H.C., et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens // Circulation. 2007. — V. 115. — P. 896−908.

243. Soonpaa, M.H., Kim K.K., Pajak L., et al. Cardiomyocyte DNA synthesis and binucleation during murine development // Am J Physiol. -1996.-V. 272.-P. 2183−9.

244. Stamm, C., Westphal B., Kleine H.D., et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration // Lancet. -2003. V. 361. — № 9351. — P. 45−6.

245. Stangl, V., Baumann G., Stangl K., Felix SB. Negative inotropic mediators released from the heart after myocardial ischaemia-reperfusion // Cardiovasc Res. 2002. — V. 53. — № 1. — P. 12−30.

246. Stastna, M., Chimenti I., Marban E., Van Eyk JE. Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes // Proteomics. 2010. — V. 10. — № 2. — P. 245−53.

247. Steinert, W., Phitzer P., Friedrich G., Stoepel K. DNS-synthese im Herzen vonRatten mit renalem Hochdruck bei Langzeitinfusion von H3-Thymidine // Beitr. Pathol. 1974. — V. 153. — P. 165−177.

248. Strauer, B.E., Brehm M., Zeus T., et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans // Circulation. 2002. — V. 106. — № 15. — P. 1913;8.

249. Sun, J., Sukhova G.K., Yang M., et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice // J Clin Invest. 2007. — V. 117. — № 11. — P. 3359−68.

250. Takahashi, K., Okita K., Nakagawa M., et al. Induction of pluripotent stem cells from fibroblast cultures // Nat Protoc. 2007. — V. 2. -№ 12.-P. 3081−9.

251. Takahashi, K., Tanabe K., Ohnuki M., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell.-2007.-V. 131.-№ 5.-P. 861−72.

252. Takahashi, K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. — V. 126. — № 4. — P. 663−76.

253. Tang, Y.L., Qian K., Zhang Y.C., et al. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cell-derived factor-1 alpha (SDF-lalpha) treatment // Regul Pept. -2005. V. 123. — № 1. — P. 1−8.

254. Tateishi, K., Ashihara E., Honsho S., et al. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling // Biochem Biophys Res Commun. 2007. — V. 352. — № 3. -P. 635−41.

255. Tateishi, K., Ashihara E., Takehara N., et al. Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration // J Cell Sci. 2007. — V. 120. — P. 1791−800.

256. Terada, N., Hamazaki T., Oka M., et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion // Nature. -2002. V. 416. — № 68. — P. 542−5.

257. Thiery, J.P., Sleeman J.P.Complex networks orchestrate epithelial-mesenchymal transitions // Nat Rev Mol Cell Biol.. 2006. — V. 7.-№ 2.-P. 131−42.

258. Tillmanns, J., Rota M., Hosoda T., et al. Formation of large coronary arteries by cardiac progenitor cells // Proc Natl Acad Sci USA.— 2008. V. 105. — № 5. — P. 1668−73.

259. Toma, C., Pittenger M.F., Cahill K.S., et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart // Circulation. 2002. — V. 105. — № 1. — P. 93−8.

260. Tomita, S., Li R.K., Weisel R.D., et al. Autologous transplantation of bone marrow cells improves damaged heart function // Circulation. 1999. — V. 100. — № 2. — P. 247−256.

261. Tomita, Y., Matsumura K., Wakamatsu Y., et al. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart // J Cell Biol. 2005. — V. 170. — P. 1135−46.

262. Torella, D., Ellison G.M., Mendez-Ferrer S., et al. Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration // Nature Clinical Practice. 2006. — V. 3. — P. 8−13.

263. Torella, D., Rota M., Nurzynska D., et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression // Circ Res. 2004. — V. 94. — № 4. — P. 514−24.

264. Traktuev, D.O., March K.L., Tkachuk V.A., et al. Adipose tissue stromal cells multipotent cells with therapeutic potential for stimulation of angiogenesis in tissue ischemia // Kardiologiia. — 2006. — V. 46.-№ 6.-P. 53−63.

265. Tsutsui, H., Matsushima S., Kinugawa S., et al. Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart // Hypertens Res. 2007. — V. 30. — № 5. -P. 439−49.

266. Urbanek, K., Cesselli D., Rota M., et al. Stem cell niches in the adult mouse heart // Proc Natl Acad Sci USA. 2006. — V. 103. — № 24. — P. 9226−31.

267. Urbanek, K., Quaini F., Tasca G., et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy // Proc. Natl. Acad. Sci.USA. 2003. — V. 100. — P. 10 440−10 445.

268. Urbanek, K., Torella D., Sheikh F., et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure // Proc Natl Acad Sci USA. 2005. — V. 102. — № 24. — P. 8692−7.

269. Vasa, M., Fichtlscherer S., Aicher A., et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease // Circ Res. — 2001. — V. 89. —№ 1. P. 1−7.

270. Wada, A.M., Smith T.K., Osier M.E., et al. Epicardial/Mesothelial cell line retains vasculogenic potential of embryonic epicardium // Circ Res. 2003. — V. 92. — № 5. — P. 525−31.

271. Wagers, A.J., Conboy I.M. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis // Cell. 2005. — V. 122. — № 5. — P. 659−67.

272. Wandzioch, E., Edling C.E., Palmer R.H., et al. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines // Blood. 2004. — V. 104. — № 1. -P. 51−7.

273. Wang, X., Hu Q., Nakamura Y., et al. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling // Stem Cells. 2006. — V. 24. — P. 1779−88.

274. Wang, X., Willenbring H., Akkari Y., et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes // Nature. 2003. -V. 422. — № 69. — P. 897−901.

275. Wang, Y., Haider H.Kh., Ahmad N., et al. Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts // J Mol Cell Cardiol. 2006. — V. 41. — № 3. — P. 478−87.

276. Wassmann, S., Werner N., Czech T., Nickenig G. Improvement of endothelial function by systemic transfusion of vascular progenitor cells // Circ Res. 2006. — V. 99. — № 8. — P. 74−83.

277. Watt, F.M., Hogan B.L. Out of Eden: stem cells and their niches // Science. 2000. — V. 287. — № 5457. — P. 1428−30.

278. Welle, M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase // J Leukoc Biol. 1997. — V. 61. — № 3. — P. 233−45.

279. Welm, B.E., Tepera S.B., Venezia T., et al. Sca-l (pos) cells in the mouse mammary gland represent an enriched progenitor cell population // Dev Biol. 2002. — V. 245. — P. 42−56.

280. Werner, N., Kosiol S., Schiegl T., et al. Circulating endothelial progenitor cells and cardiovascular outcomes // N Engl J Med. 2005. — V. 353.-№ 10.-P. 999−1007.

281. Widera, D., Zander C., Heidbreder M., et al. Adult palatum as a novel source of neural crest-related stem cells // Stem Cells. 2009. — V. 27.-№ 8.-P. 1899−910.

282. Williams, C.M., Galli S.J. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease // J Allergy Clin Immunol. 2000. — V. 105. — № 5. — P. 847−59.

283. Wolff, A.A. and Levi R. Histamine and cardiac arrhythmias // Circ. Res. 1986. — V. 58. — P. 1−16.

284. Wollert, K.C., Meyer G.P., Lotz J., et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial // Lancet. 2004. — V. 364. -№ 9429.-P. 141−8.

285. Wright, N.A. Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer // Int J Exp Pathol. -2000.-V. 81.-№ 2.-P. 117−43.

286. Wu, S.M., Fujiwara Y., Cibulsky S.M., et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart // Cell. 2006. — V. 127. — № 6. — P. 1137−50.

287. Xin, L., Lawson D.A., Witte O.N. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis // Proc Natl Acad Sci USA.- 2005. V. 102.-P. 6942−7.

288. Yamahara, K., Fukushima S., Coppen S.R., et al. Heterogeneic nature of adult cardiac side population cells // Biochem Biophys Res Commun. 2008. — V. 371. — № 4. — P. 615−20.

289. Yang, C., Zhang Z.H., Lu S.H., et al. Transplantation of cord blood endothelial progenitor cells ameliorates limb ischemia // Zhonghua Yi Xue ZaZhi.-2003.-V. 83.-№ 16.-P. 1437−41.

290. Yeh, E.T., Zhang S., Wu H.D., et al. Transdifferentiation of human peripheral blood CD34±enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo // Circulation. 2003. — V. 108. — № 17. — P. 2070;3.

291. Yoshimoto, M., Shinohara T., Heike T., et al. Direct visualization of transplanted hematopoietic cell reconstitution in intact mouse organs indicates the presence of a niche // Exp Hematol. 2003. — V. 31.-№ 8.-P. 733—40.

292. Zhang, C.H., Lu J., Yu X.J., et al. Ameliorative effect of Captopril and Valsarian on an animal model of diabetic cardiomyopathy // Biol Pharm Bull. 2008. — V. 31. — № 11. — P. 2045;9.

293. Zhang, J., Huang C., Wu P., et al. Differentiation induction of cardiac c-kit positive cells from rat heart into sinus node-like cells by 5— azacytidine // Tissue Cell. 2011. — V. 43. — № 2. — P. 67−74.

294. Zhang, J., Wilson G.F., Soerens A.G., et al. Functional cardiomyocytes derived from human induced pluripotent stem cells // Circ Res.-2009.-V. 104.-№ 4.-P. 30−41.

295. Zhang, M., Methot D., Poppa V., et al. Cardiomyocyte grafting for cardiac repair: graft cell death and antideath strategies // J Mol Cell Cardiol. 2001. — V. 33. — P. 907−21.

296. Zhang, Z., Vuori K., Reed J.C., Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression // Proc Natl Acad Sci USA.- 1995. V. 92. — № 13. — P. 61 615.

297. Zhou, B., Ma Q., Rajagopal S., et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart // Nature. — 2008.-V. 454.-№ 7200.-P. 109−113.

298. Zhou, Y., Pan P., Yao L., et al. CD117-positive cells of the heart: progenitor cells or mast cells? // J Histochem Cytochem. 2010. — V. 58.-P. 309−16.

299. Zohlnhofer, D., Ott I., Mehilli J., et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial // JAMA. 2006. — V. 295. — № 9. -P. 1003−10.

Показать весь текст
Заполнить форму текущей работой