Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Идентификация и картирование участков ДНК, специфически связывающихся с ядерным матриксом, на хромосоме 19 человека

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Fischer D. F., van Drunen С. M., Winkler G. S., van de Putte P., and Backendorf C. (1998). Involvement of a nuclear matrix association region in the regulation of the SPRR2A keratinocyte terminal differentiation marker. Nucleic Acids Res 26: 528 894. Nikolaev L. G., Tsevegiyn Т., Akopov S. В., Ashworth L. K., and Sverdlov E. D. (1996). Construction of a chromosome specific library of human MARs… Читать ещё >

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • ВВЕДЕНИЕ 6 ОБЗОР ЛИТЕРАТУРЫ. Доменная организация генетического материала в клеточном ядре
  • I. Упаковка генетического материала в клеточном ядре
  • II. Остаточные структуры интерфазного ядра и их биохимический состав
    • II. 1. Белки остаточной ядерной оболочки
    • 11. 2. Белки остаточного ядрышка
    • 11. 3. Белки внутреннего ядерного матрикса 14 II. 4. Минорные белки
    • II. 5. Другие компоненты ядерного матрикса
  • III. ДНК в составе ядерного матрикса, ее свойства и функции
    • III. 1. Определение и способы получения ДНК ядерного матрикса 18 III.2. Структурные особенности ДНК ядерного матрикса 20 III. 3. Функции ДНК ядерного матрикса
      • 111. 3. 1. Петельные домены
      • 111. 3. 2. Тканеспецифичность доменов
      • 111. 3. 3. Нейтрализация эффекта положения
      • 111. 3. 4. S/MARs как участки интеграции ретровирусных векторов
      • 111. 3. 5. S/MARs в составе ретроэлементов
  • IV. Белки специфически связывающиеся с S/MAR-элементами
  • V. Доменная структура хроматина в геномном контексте
    • V. 1. S/MARs и петлевые домены
    • V. 2. S/MARs и геномные последовательности
    • V. 3. Интронные S/MARs
    • V. 4. S/MARs и другие регуляторные элементы генома

Идентификация и картирование участков ДНК, специфически связывающихся с ядерным матриксом, на хромосоме 19 человека (реферат, курсовая, диплом, контрольная)

Основные результаты и выводы.

1. Методом селекции геномных последовательностей, предпочтительно связывающихся с ядерным матриксом, получены и картированы на хромосоме 19 человека 28 новых S/MAR-элементов.

2. Идентифицирован и картирован на хромосоме 19 человека повторяющийся S/MAR-элемент, связанный с семейством генов канцероэмбриональных антигенов (CEA-MAR). Высказано предположение о том, что дупликация генов семейства может происходить по границам петлевых доменов хроматина.

3. Реконструирована доменная структура локуса хромосомы 19 человека длиной 1 млн.п.о., расположенного между маркерами D19S208 и СОХ7А1. S/MAR-элементы подразделяют локус на 10 доменов длиной от 6 до 272 т.п.о. Средний размер домена составляет 88 т.п.о.

4. Семь S/MAR-элементов находятся в интронах генов MAG, APLP1, HSPOX1, NPHS1, CACNA1A и PIN1. Эти гены, кроме PIN 1, экспрессируются тканеспецифично и связаны с наследственными заболеваниями. Такое расположение S/MARs позволяет предположить их участие в регуляции экспрессии данных генов.

1. Adachi Y., Kas E., and Laemmli U. K. (1989). Preferential, cooperative binding of DNA topoisomerase II to scaffoldassociated regions. Embo J 8: 3997−4006.

2. Akopov S. В., Nikolaev L. G., Tyrsin O., Ruzov A. S., and Sverdlov E. D. (1997). 14 sequences from Chinese hamster genome preferentially binding to the nuclear matrix. BioorgKhim 23: 727−731.

3. Alesenko A. V., Krasil’nikov V. A., and Boikov P. I. (1982). Phospholipids as structural elements of the nuclear matrix., Dokl Akad Nauk SSSR 263: 730−3.

4. Allen G. C., Hall G., Jr., Michalowski S., Newman W., Spiker S., Weissinger A. K., and Thompson W. F. (1996). High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. PlanI Cell 8: 899−913.

5. Allen G. C., Hall G. E., Jr., Childs L. C., Weissinger A. K., Spiker S" and Thompson W. F. (1993). Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5: 603−13.

6. Alvarez J. D., Yasui D. H., Niida H., Joh Т., Loh D. Y., and Kohwi-Shigematsu T. (2000). The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 14: 521−535.

7. Antes T. J., Chen J., Cooper A. D., and Levy-Wilson B. (2000). The nuclear matrix protein CDP represses hepatic transcription of the human cholesterol-7alpha hydroxylase gene. J Biol Chem 275: 26 649−60.

8. Ashworth L. K., Batzer M. A., Brandriff В., Branscomb E., de Jong P., Garcia E., Games J. A., Gordon L. A., Lamerdin J. E., Lennon G. and et al. (1995). An integrated metric physical map of human chromosome 19. Nat Genet 11: 422−7.

9. Avramova Z., SanMiguel P., Georgieva E" and Bennetzen J. L. (1995). Matrixattachment regions and transcribed sequences within a long chromosomal continuum containing maize Adhl. Plant Cell 7: 1667−1680.

10. Avramova Z., Tikhonov A., Chen M., and Bennetzen J. L. (1998). Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucleic Acids Res 26: 761−767.

11. Barbashov S. F., Glotov В. O., and Nikolaev L. G. (1984). Evidence for attachment of interphase chromatin to the nuclear matrix via matrix-bound nucleosomes. Biochim Biophys Acta 782: 177−186.

12. Bayer T. A., Cappai R., Masters C. L., Beyreuther K., and Multhaup G. (1999). It all sticks together—the APP-related family of proteins and Alzheimer’s disease. Mol Psychiatry 4: 524−8.

13. Belgrader P., Dey R., and Berezney R. (1991). Molecular cloning of matrin 3. A 125-kilodalton protein of the nuclear matrix contains an extensive acidic domain. J Biol Chem 266: 9893−9.

14. Bell A. C., and Felsenfeld G. (1999). Stopped at the border: boundaries and insulators. Curr Opin Genet Dev 9: 191−8.

15. Benham C., Kohwi-Shigematsu Т., and Bode J. (1997). Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J Mol Biol 274: 181−196.

16. Bentley D. R. (2000). The Human Genome Project—an overview. Med Res Rev 20: 18 996.

17. Berezney R., and Coffey D. S. (1974). Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60: 1410−7.

18. Berezney R., and Coffey D. S. (1977). Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol 73: 616−37.

19. Berezney R" Mortillaro M. J., Ma H., Wei X., and Samarabandu J. (1995). The nuclear matrix: a structural milieu for genomic function. Int Rev Cytol: 1−65.

20. Berrios M., Osheroff N., and Fisher P. A. (1985). In situ localization of DNAtopoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc Natl Acad Sci USA 82: 4142−6.

21. Bidwell J. P., Van Wijnen A. J., Fey E. G., Dworetzky S., Penman S., Stein J. L., Lian J. В., and Stein G. S. (1993). Osteocalcin gene promoter-binding factors are tissue-specific nuclear matrix components. Proc Natl Acad Sci USA 90: 3162−6.

22. Blasquez V. C" Sperry A. 0., Cockerill P. N" and Garrard W. T. (1989). Protein: DNA interactions at chromosomal loop attachment sites. Genome 31: 503−509.

23. Bode J., Bartsch J., Boulikas Т., Iber M., Mielke C., Schubeler D., Seibler J., and Benham C. (1998). Transcription-promoting genomic sites in mammalia: their elucidation and architectural principles. Gene Therapy Mol Biol 1: 551−580.

24. Bode J., Benham C., Knopp A., and Mielke C. (2000). Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements). Crit Rev Eukaryot Gene Expr 10: 73−90.

25. Bode J., Kohwi Y., Dickinson L., Joh Т., Klehr D., Mielke C., and Kohwi-Shigematsu T. (1992). Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255: 195−197.

26. Bode J., and Maass K. (1988). Chromatin domain surrounding the human interferon-beta gene as defined by scaffold-attached regions. Biochemistry 27: 4706−11.

27. Bode J., Schlake Т., Rios-Ramirez M., Mielke C. Stengert M., Kay V., and Klehr-Wirth D. (1995). Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci. Int Rev Cytol: 389−454.

28. Bode J., Stengert-Iber M., Kay V., Schlake Т., and Dietz-Pfeilstetter A. (1996). Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit Rev Eukaryot Gene Expr 6: 115−38.

29. Bonifer C., Hecht A., Saueressig H., Winter D. M., and Sippel A. E. (1991). Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci. J Cell Biochem 47: 99−108.

30. Boulikas Т. (1993). Homeodomain protein binding sites, inverted repeats, and nuclear matrix attachment regions along the human beta-globin gene complex. J Cell Biochem 52: 23−36.

31. Boulikas T. (1995). Chromatin domains and prediction of MAR sequences. Int Rev Cytok 279−388.

32. Boulikas T. (1996). Common structural features of replication origins in all life forms. J Cell Biochem 60: 297−316.

33. Boulikas Т., and Kong C. F. (1993). Multitude of inverted repeats characterizes a class of anchorage sites of chromatin loops to the nuclear matrix. J Cell Biochem 53: 1−12.

34. Brotherton Т., Zenk D., Kahanic S., and Reneker J. (1991). Avian nuclear matrix proteins bind veiy tightly to cellular DNA of the beta-globin gene enhancer in a tissue-specific fashion. Biochemistry 30: 5845−5850.

35. Brun C., Surdej P., and Miassod R. (1993). Relationship between scaffold-attachedregions, sequences replicating autonomously in yeast, and a chromosomal replication origin in the Drosophila rDNA. Exp Cell Res 208: 104−14.

36. Brylawski B. P., Cohen S. M., Cordeiro-Stone M., Schell M. J., and Kaufman D. G. (2000). On the relationship of matrix association and DNA replication. Crit Rev Eukaryot Gene Expr 10: 91−99.

37. Buckler-White A. J., Humphrey G. W., and Pigiet V. (1980). Association of polyoma T antigen and DNA with the nuclear matrix from lyrically infected 3T6 cells. Cell 22: 37−46.

38. Buhrmester H., von Kries J. P., and Stratling W. H. (1995). Nuclear matrix protein ARBP recognizes a novel DNA sequence motif with high affinity. Biochemistry 34: 41 084 117.

39. Cai S., and Kohwi-Shigematsu T. (1999). Intranuclear relocalization of matrix binding sites during T cell activation detected by amplified fluorescence in situ hybridization. Methods 19: 394−402.

40. Carrero-Valenzuela R. D., Quan F., Lightowlers R., Kennaway N. G., Litt M., and Forte M. (1991). Human cytochrome с oxidase subunit VIb: characterization and mapping of a multigene family. Gene 102: 229−36.

41. Chatteijee P. K., and Flint S. J. (1986). Partition of El A proteins between soluble and structural fractions of adenovirus-infected andtransformed cells. J Virol 60: 101 826.

42. Chattopadhyay S., Kaul R., Charest A., Housman D., and Chen J. (2000). SMAR1, a novel, alternatively spliced gene product, binds the Scaffold/Matrix-associated region at the T cell receptor beta locus. Genomics 68: 93−6.

43. Chimera J. A., and Musich P. R. (1985). The association of the interspersed repetitive Kpnl sequences with the nuclear matrix. J Biol Ghem 260: 9373−9.

44. Cockerill P. N. (1990). Nuclear matrix attachment occurs in several regions of the IgH locus. Nucleic Acids Res 18: 2643−2648.

45. Cockerill P. N., and Garrard W. T. (1986). Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Gell 44: 273−282.

46. Cockerill P. N., Yuen M. H., and Garrard W. T. (1987). The enhancer of theimmunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J Biol Ghem 262: 5394−5397.

47. Cook P. R., and Brazell I. A. (1980). Mapping sequences in loops of nuclear DNA by their progressive detachment from the nuclear cage. Nucleic Acids Res 8: 2895−906.

48. Cupo J. F. (1991). Electrophoretic analysis of nuclear matrix proteins and the potential clinical applications. JGhromatogr 569: 389−406.

49. Dang Q., Auten J., and Plavec I. (2000). Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J Virol 74: 2671−8.

50. Dang Q., Walker D., Taylor S., Allan C., Chin P., Fan J., and Taylor J. (1995). Structure of the hepatic control region of the human apolipoprotein E/C-1 gene locus. J Biol Chem 270: 22 577−85.

51. Davie J. R. (1995). The nuclear matrix and the regulation of chromatin organization and function. Int Rev Cytol 162A: 191−250.

52. Deppert W., and Schirmbeck R. (1995). The nuclear matrix and virus function. Int Rev Cytol: 485−537.

53. Deppert W., and Von Der Weth A. (1990). Functional interaction of nuclear transport-defective simian virus 40 large T antigen with chromatin and nuclear matrix. J Virol 64: 838−46.

54. Dickinson L. A., Dickinson C. D., and Kohwi-Shigematsu T. (1997). An atypicalhomeodomain in S ATB1 promotes specific recognition of the key structural element in a matrix attachment region. J Biol Chem 272: 11 463−11 470.

55. Dickinson L. A., Joh Т., Kohwi Y., and Kohwi-Shigematsu T. (1992). A tissue-specific MAR/S AR DN A-binding protein with unusual binding site recognition. Cell 70: 631−45.

56. Dickinson L. A., and Kohwi-Shigematsu T. (1995). Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol Cell Biol 15: 456−465.

57. Dijkwel P. A., and Hamlin J. L. (1995). Origins of replication and the nuclear matrix: the DHFR domain as a paradigm. Int Rev Cytol 162A: 455−484.

58. Dillon N., and Grosveld F. (1994). Chromatin domains as potential units of eukaryotic gene function. Curr Opin Genet Dev 4: 260−4.

59. Dillon N., and Sabbattini P. (2000). Functional gene expression domains: defining the functional unit of eukaryotic gene regulation. Bioessays 22: 657−65.

60. Dreyfuss G., Matunis M. J., Pinol-Roma S., and Burd C. G. (1993). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289−321.

61. Dworetzky S. I., Wright K. L., Fey E. G., Penman S., Lian J. В., Stein J. L., and Stein G. S. (1992). Sequence-specific DNA-binding proteins are components of a nuclear matrix-attachment site. Proc Natl Acad Sci USA 89: 4178−4182.

62. Fackelmayer F. O., Dahm K., Renz A., Ramsperger U., and Richter A. (1994). Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 221: 749−757.

63. Fernandez M. A., Baron В., Prigent M., Toledo F., Buttin G., and Debatisse M. (1997). Matrix attachment regions and transcription units in a polygenic mammalian locus overlapping two isochores. J Cell Biochem 67: 541−551.

64. Ferraro A., Altieri F., Coppari S., Eufemi M., Chichiarelli S., and Turano C. (1999). Binding of the protein disulfide isomerase isoform ERp60 to the nuclear matrix-associated regions of DNA. J Cell Biochem 72: 528−539.

65. Ferraro A., Cervoni L., Eufemi M., Altieri F., and Turano C. (1996). Comparison of DNA-protein interactions in intact nuclei from avian liver and erythrocytes: a cross-linking study. J Cell Biochem 62: 495−505.

66. Finch J. Т., and Klug A. (1976). Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A 73: 1897−901.

67. Fischer D. F., van Drunen С. M., Winkler G. S., van de Putte P., and Backendorf C. (1998). Involvement of a nuclear matrix association region in the regulation of the SPRR2A keratinocyte terminal differentiation marker. Nucleic Acids Res 26: 528 894.

68. Flemming W. (1882). «Zellsubstanz, Kern und Zelltheilung,», Leipzig.

69. Forrester W. C., Fernandez L. A., and Grosschedl R. (1999). Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer-promoter interactions. Genes Dev 13: 3003−3014.

70. Forrester W. C., van Genderen C., Jenuwein Т., and Grosschedl R. (1994). Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science 265: 1221−1225.

71. Franke W. W., Kleinschmidt J. A., Spring H., Krohne G., Gmnd C., Trendelenburg M. F., Stoehr M., and Scheer U. (1981). A nucleolar skeleton of protein filaments demonstrated in amplified nucleoli of Xenopus laevis. J Cell Biol 90: 289−99.

72. Frontali M., Novelletto A., Annesi G., and Jodice C. (1999). CAG repeat instability, cryptic sequence variation and pathogeneticity: evidence from different loci. Philos Trans R Soc bond В Biol Sci 354: 1089−94.

73. Gasser S. M., and Laemmli U. K. (1986). Cohabitation of scaffold binding regions with upstream/enhancer elements of thr ee developmentally regulated genes of D. inelanogaster. Cell 46: 521−30.

74. Gasser S. M., Laroche Т., Falquet J., Boy de la Tour E., and Laemmli U. K. (1986). Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 188: 613−29.

75. Getzenberg R. H. (1994). Nuclear matrix and the regulation of gene expression: tissue specificity. J Cell Biochem 55: 22−31.

76. Gevorkian E. S., Iavroian Z. V., and Panosian G. A. (1987). Lipid composition of the rat liver nuclear matrix as affected by hydrocortisone., Biull Eksp Biol Med 104: 171−4.

77. Geyer P. K. (1997). The role of insulator elements in defining domains of gene expression. C. urr Opin Genet Dev 7: 242−8.

78. Gindullis F., and Meier I. (1999). Matrix attachment region binding protein MFP1 is localized in discrete domains at the nuclear envelope. Plant Cell 11:1117−1128.

79. Gohring F., and Fackelmayer F. O. (1997). The scaffold/matrix attachment regionbinding protein hnRNP-U (SAF-A) is directly bound to chromosomal DNA in vivo: a chemical cross-linking study. Biochemistry 36: 8276−8283.

80. Goyenechea В., Klix N., Yelamos J., Williams G. Т., Riddell A., Neuberger M. S., and Milstein C. (1997). Cells strongly expressing Ig (kappa) transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. Embo J16: 3987−3994.

81. Hakes D. J., and Berezney R. (1991). Molecular cloning of matrin F/G: A DNA binding protein of the nuclear matrix that contains putative zinc finger motifs. Proc Natl Acad Sci USA 88: 6186−90.

82. Hale M. A., and Garrard W. T. (1998). A targeted kappa immunoglobulin genecontaining a deletion of the nuclear matrix association region exhibits spontaneous hyper-recombination in pre-B cells. Mol Immunol 35: 609−620.

83. Hancock R., and Boulikas T. (1982). Functional organization in the nucleus. Int Rev Cytol 79: 165−214.

84. Jack R. S., and Eggert H. (1992). The elusive nuclear matrix. Eur J Biochem 209: 503−9.

85. Jackson С. E., D O. N., and Bank A. (1995). Nuclear factor binding sites in human beta globin 1VS2. J Biol Chem 270: 28 448−28 456.

86. Jackson D. A., Bartlett J., and Cook P. R. (1996). Sequences attaching loops of nuclear and mitochondrial DNA to underlying structures in human cells: the role of transcription units. Nucleic Acids Res 24: 1212−1219.

87. Jackson D. A., Dickinson P., and Cook P. R. (1990). Attachment of DNA to thenucleoskeleton of HeLa cells examined using physiological conditions. Nucleic Acids Res 18: 4385−4393.

88. Jackson D. A., Dolle A., Robertson G., and Cook P. R. (1992). The attachments of chromatin loops to the nucleoskeleton. Cell Biol Int Rep 16: 687−696.

89. Jarman A. P., and Higgs D. R. (1988). Nuclear scaffold attachment sites in the human globin gene complexes. Embo J 7: 3337−3344.

90. Jen J. (1999). Calcium channelopathies in the central nervous system. Curr Opin Neurobiol 9: 274−80.

91. Jenuwein Т., Forrester W. C., Femandez-Herrero L. A., Laible G., Dull M., and Grosschedl R. (1997). Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385: 269−272.

92. Johansen К. M. (1996). Dynamic remodeling of nuclear architecture during the cell cycle. J Cell Biochem 60: 289−96.

93. Kalos M., and Fournier R. E. (1995). Position-independent transgene expressionmediated by boundary elements from the apolipoprotein В chromatin domain. Mol Cell Biol 15: 198−207.

94. Kas E., and Chasin L. A. (1987). Anchorage of the Chinese hamster dihydrofolatereductase gene to the nuclear scaffold occurs in an intragenic region. J Mol Biol 198: 677−692.

95. Kaufmann S. H. (1989). Additional members of the rat liver lamin polypeptide family. Structural and immunological characterization. J Biol С hem 264: 13 946−55.

96. Kaufmann S. H. (1992). Expression of nuclear envelope lamins A and С in human myeloid leukemias. Cancer Res 52: 2847−53.

97. Kaufmann S. H., Mabry M., Jasti R., and Shaper J. H. (1991). Differential expression of nuclear envelope lamins A and С in human lung cancer cell lines. Cancer Res 51: 581−6.

98. Kawabata Y., Katunuma N., and Sanada Y. (1980). Characteristics of proline oxidase in rat tissues. JBiochem (Tokyo) 88: 281−3.

99. Kay V., and Bode J. (1994). Binding specificity of a nuclear scaffold: supercoiled, single-stranded, and scaffold-attached-region DNA. Biochemistry 33: 367−74.

100. Kipp M., Schwab B. L., Przybylski ML, Nicotera P., and Fackelmayer F. O. (2000b). Apoptotic cleavage of scaffold attachment factor A (SAF-A) by caspase-3 occurs at a noncanonical cleavage site. J Biol Chem 275: 5031−5036.

101. Kirillov A., Kistler В., Mostoslavsky R., Cedar H., Wirth Т., and Bergman Y. (1996). A role for nuclear NF-kappaB in B-cell-specific demethylation of the Igkappa locus. Nat Genet 13: 435−41.

102. Kiryanov G. I., Smirnova T. A., and Polyakov V. (1982). Nucleomeric organization of chromatin. Eur J Biochem 124: 331−8.

103. Klehr D., Maass K., and Bode J. (1991). Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry 30: 1264−70.

104. Kohwi-Shigematsu Т., Maass K., and Bode J. (1997). A thymocyte factor SATB1suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry 36: 12 005;10.

105. Kolosha V. O., and Martin S. L. (1997). In vitro properties of the first ORF protein from mouse L1NE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc Natl Acad Sci USA 94: 10 155−60.

106. Konat G. W. (1996). Chromatin structure and transcriptional activity of MAG gene. Acta Neurobiol Exp 56: 281−5.

107. Marie C., and Hyrien O. (1998). Remodeling of chromatin loops does not account for specification of replication origins during Xenopus development. Chromosoma 107: 155−165.

108. Marsden M. P., and Laemmli U. K. (1979). Metaphase chromosome structure: evidence for a radial loop model. Cell 17: 849−58.

109. Meier I., Phelan Т., Gmissem W., Spiker S., and Schneider D. (1996). MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA. Plant Cell 8: 2105−15.

110. Meyer K. N., Kjeldsen E., Straub Т., Knudsen B. R., Hickson I. D., Kikuchi A., Kreipe H., and Boege F. (1997). Cell cycle-coupled relocation of types I and II topoisomerases and modulation of catalytic enzyme activities. J Cell Biol 136: 77 588.

111. Miassod R., Razin S. V., and Hancock R. (1997). Distribution of topoisomerase IImediated cleavage sites and relation to structural and functional landmarks in 830 kb of Drosophila DNA. Nucleic Acids Res 25: 2041;2046.

112. Michalowski S. M., Allen G. C., Hall G. E., Jr., Thompson W. F., and Spiker S. (1999). Characterization of randomly-obtained matrix attachment regions (MARs) from higher plants. Biochemistry 38: 12 795−12 804.

113. Mielke C., Kohwi Y., Kohwi-Shigematsu Т., and Bode J. (1990). Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry 29: 7475−85.

114. Mielke C., Maass K., Tummler M., and Bode J. (1996). Anatomy of highly expressing chromosomal sites targeted by retroviral vectors. Biochemistry 35: 2239−52.

115. Mirkovitch J., Gasser S. M., and Laemmli U. K. (1988). Scaffold attachment of DNA loops in metaphase chromosomes. J Mol Biol 200: 101−109.

116. Mirkovitch J., Mirault M. E., and Laemmli U. K. (1984). Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39: 223−232.

117. Mirkovitch J., Spierer P., and Laemmli U. K. (1986). Genes and loops in 320,000 base-pairs of the Drosophila melanogaster chromosome. J Mol Biol 190: 255−258.

118. Mironov N. M., Lobanenkov V. V., and Goodwin G. H. (1986). The distribution of nuclear proteins and transcriptionally-active sequences in rat liver chromatin fractions. Exp Cell Res 167: 391−9.

119. Morisawa G., Han-Yama A., Moda I., Tamai A., Iwabuchi M., and Meshi T. (2000). AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domain-homologous region In Process Citation., Plant Cell 12: 1903;1916.

120. Mortillaro M. J., and Berezney R. (1998). Matrin CYP, an SR-rich cyclophilin that associates with the nuclear matrix and splicing factors. J Biol Chem 273: 8183−92.

121. Nabirochkin S., Ossokina M., and Heidmann T. (1998). A nuclear matrix/scaffoldattachment region co-localizes with the gypsy retrotransposon insulator sequence. J Biol Chem 273: 2473−2479.

122. Nagel G., and Grunert F. (1995). From genes to proteins: the nonspecific cross-reacting antigens. Tumour Biol 16: 17−22.

123. Nakagomi K., Kohwi Y., Dickinson L. A., and Kohwi-Shigematsu T. (1994). A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol Cell Biol 14: 1852−1860.

124. Nakayasu H., and Berezney R. (1991). Nuclear matrins: identification of the major nuclear matrix proteins. Proc Natl Acad Sci USA 88: 10 312−6.

125. Namciu S. J., Blochlinger К. В., and Fournier R. E. (1998). Human matrix attachment regions insulate transgene expression from chromosomal position effects in Drosophila melanogaster. Mol Cell Biol 18: 2382−2391.

126. Nikolaev L. G., Akopov S. В., Chernov I. P., Glotov В. O., Ashworth L. K., and Sverdlov E. D. (1998). Position of 19 regions of DNA binding to nuclear matrix (MAR) on human chromosome 19. Dokl Akad Nauk 361: 409−411.

127. Nikolaev L. G., Tsevegiyn Т., Akopov S. В., Ashworth L. K., and Sverdlov E. D. (1996). Construction of a chromosome specific library of human MARs and mapping of matrix attachment regions on human chromosome 19. Nucleic Acids Res 24: 13 301 336.

128. Nishizawa M., Tanabe K., and Takahashi T. (1984). DNA polymerases and DNAtopoisomerases solubilized from nuclear matrices of regenerating rat livers. Biochem Biophys Res Commun 124: 917−24.

129. Oancea A. E., Bemi M., and Shulman M. J. (1997). Expression of the (recombinant) endogenous immunoglobulin heavy-chain locus requires the intronic matrix attachment regions. Mol Cell Biol 17: 2658−2668.

130. Oesterreich S., Lee A. V., Sullivan Т. M., Samuel S. K., Davie J. R., and Fuqua S. A. (1997). Novel nuclear matrix protein НЕТ binds to and influences activity of the HSP27 promoter in human breast cancer cells. J Cell Biochem 67: 275−286.

131. Opstelten R. J., Clement J. M., and Wanka F. (1989). Direct repeats at nuclear matrix-associated DNA regions and their putative control function in the replicating eukaiyotic genome. Chromosoma 98: 422−7.

132. Paul A. L., and Ferl R. J. (1998). Higher order chromatin structures in maize and Arabidopsis. Plant Cell 10: 1349−59.

133. Paulson J. R., and Laemmli U. K. (1977). The structure of histone-depleted metaphase chromosomes. Cell 12: 817−28.

134. Phi-van L., Sellke C., von Bodenhausen A., and Stratling W. H. (1998). An initiation zone of chromosomal DNA replication at the chicken lysozyme gene locus. J Biol С hem 213: 18 300−18 307.

135. Phi-Van L., and Stratling W. H. (1990). Association of DNA with nuclear matrix. Progr Mol Subcell Biol 11: 1−11.

136. Pienta K. J., and Coffey D. S. (1984). A structural analysis of the role of the nuclearmatrix and DNA loops in the organization of the nucleus and chromosome. J Cell Sci Suppl1: 123−35.

137. Pienta K. J., Partin A. W" and Coffey D. S. (1989). Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res 49: 2525−32.

138. Poljak L., Seum C., Mattioni Т., and Laemmli U. K. (1994). SARs stimulate but do not confer position independent gene expression. Nucleic Acids Res 22: 4386−94.

139. Pommier Y., Cockerill P. N., Kohn K. W., and Garrard W. T. (1990). Identification within the simian virus 40 genome of a chromosomal loop attachment site that contains topoisomerase II cleavage sites. J Virol 64: 419−423.

140. Porter S. D., Hu J., and Gilks С. B. (1999). Distal upstream tyrosinase S/MAR-containing sequence has regulatory properties specific to subsets of melanocytes. Dev Genet 25: 40−8.

141. Razin S. V., and Vassetzky Y. S. (1992). Domain organization of eukaryotic genome. Cell Biol Int Rep 16: 697−708.

142. Reeves R., and Chang D. (1983). Investigations of the possible functions forglycosylation in the high mobility group proteins. Evidence for a role in nuclear matrix association. J Biol Chem 258: 679−87.

143. Renz A., and Fackelmayer F. O. (1996). Purification and molecular cloning of the scaffold attachment factor В (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA. Nucleic Acids Res 24: 843−849.

144. Replogle-Schwab R., Pienta K. J., and Getzenberg R. H. (1996). The utilization of nuclear matrix proteins for cancer diagnosis. Cril Rev Eukaryot Gene Expr 6: 10 313.

145. Rogaev E. I. (1999). Genetic factors and a polygenic model of Alzheimer’s disease., Genetika 35: 1558−71.

146. Rollini P., Namciu S. J., Marsden M. D., and Foumier R. E. (1999). Identification and characterization of nuclear matrix-attachment regions in the human serpin gene cluster at 14q32.1. Nucleic Acids Res 27: 3779−3791.

147. Romig H., Fackelmayer F. O., Renz A., Ramsperger U., and Richter A. (1992).

148. Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. Embo J11: 3431−3440.

149. Romig H., Ruff J., Fackelmayer F. 0., Patil M. S" and Richter A. (1994).

150. Characterisation of two intronic nuclear-matrix-attachment regions in the human DNA topoisomerase I gene. Eur J Biochem 221: 411−419.

151. Roti Roti J. L., Wright W. D., and VanderWaal R. (1997). The nuclear matrix: a target for heat shock effects and a determinant for stress response. Crit Rev Eukaryot Gene Expr 7: 343−60.

152. Sakkers R. J., Brunsting J. F., Filon A. R., Kampinga H. H., Konings A. W., and.

153. Mullenders L. H. (1999). Altered association of transcriptionally active DNA with the nuclear-matr ix after heat shock. Int J Radial Biol 75: 875−883.

154. Samuel S. K., Minish Т. M., and Davie J. R. (1997). Altered nuclear matrix protein profiles in oncogene-transformed mouse fibroblasts exhibiting high metastatic potential. Cancer Res 57: 147−51.

155. Schachner M., and Bartsch U. (2000). Multiple functions of the myelin-associated glycoprotein MAG (siglec- 4a) in formation and maintenance of myelin. Glia 29: 154−65.

156. Scheuermann R. H., and Chen U. (1989). A developmental-specific factor binds to suppressor sites flanking the immunoglobulin heavy-chain enhancer. Genes Dev 3: 1255−66.

157. Schirmbeck R., and Deppert W. (1987). Specific interaction of simian virus 40 large T antigen with cellular chromatin and nuclear matrix during the course of infection. J Virol 61: 3561−9.

158. Scott К. C., Taubman A. D., and Geyer P. K. (1999). Enhancer blocking by the.

159. Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics 153: 787−798.

160. Shrivastava A., and Calame K. (1994). An analysis of genes regulated by the multifunctional transcriptional regulator Yin Yang-1. Nucleic Acids Res 22: 5151−5.

161. Singh G. В., Kramer J. A., and Krawetz S. A. (1997). Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res 25: 14 191 425.

162. Smit A. F., Toth G., Riggs A. D., and Jurka J. (1995). Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246: 401−417.

163. Stein G. S., Stein J. L., Lian J. В., van Wijnen A. J., and Montecino M. (1996a).

164. Functional interrelationships between nuclear structure and transcriptional control: contributions to regulation of cell cycleand tissue-specific gene expression. J Cell Biochem 62: 198−209.

165. Stein G. S., Stein J. L., Van Wijnen A. J., and Lian J. B. (1996b). Transcriptional control of cell cycle progression: the histone gene is a paradigm for the Gl/S phase and proliferation/differentiation transitions. Cell Biol Int 20: 41−9.

166. Stenoien D., Sharp Z. D., Smith C. L., and Mancini M. A. (1998). Functional subnuclear partitioning of transcription factors. J Cell Biochem 70: 213−21.

167. Sterky F., and Lundeberg J. (2000). Sequence analysis of genes and genomes. J Biotechnol 76: 1−31.

168. Stief A., Winter D. M., Stratling W. H., and Sippel A. E. (1989). A nuclear DNAattachment element mediates elevated and position-independent gene activity. Nature 341: 343−345.

169. Stratling W. H., and Yu F. (1999). Origin and roles of nuclear matrix proteins. Specific functions of the MAR-binding protein MeCP2/ARBP. Crit Rev Eukaryot Gene Expr 9: 311−318.

170. Streydio C., Swillens S., Georges M., Szpirer C., and Vassart G. (1990). Structure, evolution and chromosomal localization of the human pregnancy-specific beta 1 glycoprotein gene family. Genomics 6: 579−92.

171. Strissel P. L., Dann H. A., Pomykala H. M., Diaz M. O., Rowley J. D., and Olopade О. I. (1998). Scaffold-associated regions in the human type I interferon gene cluster on the short arm of chromosome 9. Genomics 47: 217−29.

172. Subirana J. A., Munoz-Guerra S., Aymami J., Radermacher M., and Frank J. (1985). The layered organization of nucleosomes in 30 nm chromatin fibers. Chromosoma 91: 377−90.

173. Sun J. M., Chen H. Y., and Davie J. R. (1994). Nuclear factor 1 is a component of the nuclear matrix. J Cell Biochem 55: 252−63.

174. Sun Т. Т., Zhao H., Provet J., Aebi U., and Wu X. R. (1996). Formation of asymmetric unit membrane during urothelial differentiation. Mol BioI Rep 23: 3−11.

175. Surdej P., Brandli D., and Miassod R (1991). Scaffold-associated regions and repeated or cross-hybridizing sequences on an 800 kilobase DNA stretch of the Drosophila X chromosome. Biol Cell 73: 111−20.

176. Thomas J. O. (1984). The higher order structure of chromatin and histone HI. J Cell Sci SuppI 1: 1−20.

177. Thompson J. D., Higgins D. G., and Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673−80.

178. Tikhonov A. P., Bennetzen J. L., and AvramovaZ. V. (2000). Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Plant Cell 12: 249−64.

179. Tsongalis G. J., Coleman W. В., Smith G. J., and Kaufman D. G. (1992). Partialcharacterization of nuclear matrix attachment regions from human fibroblast DNA using Alu-polymerase chain reaction. Cancer Res 52: 3807−3810.

180. Tsutsui K., Tsutsui K., Okada S., Watarai S., Seki S., Yasuda Т., and Shohmori T.1993). Identification and characterization of a nuclear scaffold protein that binds the matrix attachment region DNA. J Biol Chem 268: 12 886−12 894.

181. Valle D., Goodman S. I., Applegarth D. A., Shih V. E., and Phang J. M. (1976). Type II hyperprolinemia. Deltal-pyrroline-5-carboxylie acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. J Clin Invest 58: 598−603.

182. Vorburger K" Lehner C. F., Kitten G. Т., Eppenberger H. M., andNigg E. A. (1989). A second higher vertebrate B-type lamin. cDNA sequence determination and in vitro processing of chicken lamin B2. J Mol Biol 208: 405−15.

183. Vukmirovic O. G., and Tilghman S. M. (2000). Exploring genome space see comments. Nature 405: 820−2.

184. Wang D. M., Taylor S., and Levy-Wilson B. (1996). Evaluation of the function of the human apolipoprotein В gene nuclear matrix association regions in transgenic mice. J Lipid Res 37: 2117−24.

185. Weitzel J. M., Buhrmester H., and Stratling W. H. (1997). Chicken MAR-binding protein ARBP is homologous to rat methyl-CpGbinding protein MeCP2. Mol Cell Biol 17: 5656−66.

186. Woodcock C. L., Grigoryev S. A., Horowitz R. A., and Whitaker N. (1993). A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc Natl Acad Sci USA 90: 9021−5.

187. Yi M., Wu P., Trevorrow K. W., Claflin L., and Garrard W. T. (1999). Evidence that the Igkappa gene MAR regulates the probability of premature V-J joining and somatic hypermutation. J Immunol 162: 6029−6039.

188. Zhong X. P., Carabana J., and Krangel M. S. (1999). Flanking nuclear matrix attachment regions synergize with the T cell receptor delta enhancer to promote V (D)J recombination. P roc Natl Acad Sci USA 96: 11 970;11975.

189. Zong R. Т., Das C., and Tucker P. W. (2000). Regulation of matrix attachment region-dependent, lymphocyte-restricted transcription through differential localization within promyelocytic leukemia nuclear bodies. Embo J19: 4123−33.1. Благодарности.

Показать весь текст
Заполнить форму текущей работой