Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ профилирования ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Evans D.J. h APDiversity in the variable region of Helicobacter pylori cagA gene involves more than simple repetition of a 102-nucleotide sequence. // Biochemical and Biophysical Research Communications. 1998. T. 245. № 3. C. 780βˆ’784. Duret S., Andre A., Renaudin J. Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

На ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ явлСний ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ — самоС Π·Π°Π³Π°Π΄ΠΎΡ‡Π½ΠΎΠ΅ ΠΈΠ· Π²ΡΠ΅Π³ΠΎ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°ΠΌ приходится Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒ Π² ΠΆΠΈΠ·Π½ΠΈ. ΠžΡ‚ΠΊΡƒΠ΄Π° порядок? ΠŸΠΎΡ‡Π΅ΠΌΡƒ порядок, Π° Π½Π΅ Ρ…аос ΠΈ Π±Π΅ΡΠΏΠΎΡ€ΡΠ΄ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ? И Π΅ΡΠ»ΠΈ Π±Ρ‹ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° закономСрности Π½Π΅ ΠΏΡ€ΠΈΠ½ΠΎΡΠΈΠ»Π° с ΡΠΎΠ±ΠΎΠΉ ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ практичСских Π²Ρ‹Π³ΠΎΠ΄, люди Π½ΠΈΠΊΠΎΠ³Π΄Π° Π±Ρ‹ Π½Π΅ ΡΠΎΠ±Π»Π°Π·Π½ΠΈΠ»ΠΈΡΡŒ Π²ΠΎΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΅Π΅ Π² ΡΠ°Π½ Π²Π΅Ρ‡Π½ΠΎΠΉ ΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Π΅ΠΊΠ°Π΅ΠΌΠΎΠΉ истины."

Π›Π΅Π² ШСстов. АпофСоз бСспочвСнности

Π― Π΄ΡƒΠΌΠ°ΡŽ, Ρ‡Ρ‚ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎ Π²ΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΡ€Π°Π²Π½ΠΈΠΌΠΎ с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ испытываСт сСрдцС изобрСтатСля, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ Π²ΠΈΠ΄ΠΈΡ‚ ΠΊΠ°ΠΊ Ρ‚Π²ΠΎΡ€Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ ΠΌΠΎΠ·Π³Π° прСтворяСтся Тизнь. Π’Π°ΠΊΠΈΠ΅ эмоции Π·Π°ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π·Π°Π±Ρ‹Ρ‚ΡŒ ΠΎ Π΅Π΄Π΅, снС, Π΄Ρ€ΡƒΠ·ΡŒΡΡ…, любви, ΠΎΠ±ΠΎ всСм."

Никола ВСсла

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ профилирования ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1) Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹. ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠΌΠ½Ρ‹Ρ… экспСримСнтов для ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ профилирования, Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹.

2) Π‘ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Π±Ρ‹Π»ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Ρ‹ Π°Π½Π½ΠΎΡ‚Π°Ρ†ΠΈΠΈ Π³Π΅Π½ΠΎΠΌΠΎΠ² Mycoplasma gallisepticum, Acholeplasma laidlawii, Spiroplasma melliferum ΠΈ.

Desulfurococcus kamchatkensis.

3) Алгоритмы Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ профилирования изолятов ΠΈ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ², для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π³Π΅Π½ΠΎΠΌΡ‹ Π½Π΅ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΈΠ»ΠΈ сущСствуСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ частичная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ достовСрности Ρ‚Π°ΠΊΠΎΠ³ΠΎ профилирования.

4) Алгоритмы ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ произвСсти систСмный Π°Π½Π°Π»ΠΈΠ· ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΡƒΡŽ Π°Π½Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ сравнСния ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ биологичСски Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Ρ‹Π΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

4.5 Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅.

Π’ Ρ…ΠΎΠ΄Π΅ выполнСния Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π°ΠΌ ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ примСнСния стандартных ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ ΠΏΡ€ΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π°Π½Π½ΠΎΡ‚Π°Ρ†ΠΈΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ мСтодичСскиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹, Π²ΠΎΠΏΠ»ΠΎΡ‰Π΅Π½Π½Ρ‹Π΅ Π² Π²ΠΈΠ΄Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΡƒΠ·ΠΊΠΎΠΌ спСктрС Ρ€Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡, Π½ΠΎ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… Π½Π° ΠΏΠ΅Ρ€Π΅Π΄ΠΎΠ²ΠΎΠΌ ΠΊΡ€Π°Π΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ, постоянно Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π΅ΠΉΡΡ со ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ями, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹ΠΌΠΈ Π»Π°Π²ΠΈΠ½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΌ ростом ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π½Π°Π±ΠΎΡ€ΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΎΠ², основанный Π½Π° ΡΠΈΠ½Ρ‚Π΅Π·Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½ΠΎΠ²Ρ‹Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ ΠΏΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌ дСйствия ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Π½ΠΎ ΠΈ Π²Ρ‹ΡΠΊΠ°Π·Π°Ρ‚ΡŒ прСдполоТСния ΠΎ Π²ΡΠ΅ΠΎΠ±ΡŠΠ΅ΠΌΠ»ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… устройства ΠΆΠΈΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Ρ‚Π΅Ρ… ΠΆΠ΅ Π΄Π°Π½Π½Ρ‹Ρ… Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ мСтодичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»ΠΎ наглядно продСмонстрировано свойство эмСрдТСнтности, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠ΅ для систСмных ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ², ΠΊΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠΉΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ прСдставляСт большСС Ρ‡Π΅ΠΌ сумма ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², ΠΈ ΡƒΠ΄Π°Π΅Ρ‚ся Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊΠΈΠ΅ знания, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ Π±Ρ‹Π»ΠΈ Π±Ρ‹ доступны Π±Π΅Π· обобщСния. ΠŸΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π² ΠΏΠΎΠ»Π½ΠΎΠΌ объСмС.

1.. Peters, W., Heitmann, S. and D’Haese J. Formation and fine structure of peritrophic membranes in the earwig, Forficula auricularia. // Entomol. Gen. 1979. T. 3. C. 241−254.

2. Altschul S.F. h flp. Basic local alignment search tool. // Journal of molecular biology. 1990. T. 215. № 3. C. 403−10.

3. Ammar E.-D. h «p. An attachment tip and pili-like structures in insectand plant-pathogenic spiroplasmas of the class Mollicutes. // Archives of microbiology. 2004. T. 181. № 2. C. 97 105.

4. Arslan D. hp. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae // Proceedings of the National Academy of Sciences. 2011. T. 108. № 42. C. 17 486−91.

5. Awa S.H.I.G.E.Y.U.K.I.K.A.K.I.Z. Phytoplasmas: bacteria that manipulate plants and insects // Molecular Plant Pathology. 2008. T. 9. C. 403−423.

6. Baba T. h /ip. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. // Molecular systems biology. 2006. T. 2. C. 2006.0008.

7. Badger J.H., Olsen G.J. CRITICA: coding region identification tool invoking comparative analysis. // Molecular biology and evolution. 1999. T. 16. № 4. C. 512−24.

8. Boutareaud A. n jp. Disruption of a Gene Predicted To Encode a Solute Binding Protein of an ABC Transporter Reduces Transmission of Spiroplasma citri by the Leafhopper Circulifer haematoceps // Society. 2004. T. 70. № 7. C. 3960−3967.

9. Brosch M. h ap. Comparison of Mascot and XITandem performance for low and high accuracy mass spectrometry and the development of an adjusted Mascot threshold. // Molecular & cellular proteomics: MCP. 2008. T. 7. № 5. C. 962−70.

10. Callister S.J. h /ip. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept // Comparative and General Pharmacology. 2008. № 2.

11. Carle P. h «p. Partial Chromosome Sequence of Spiroplasma citri Reveals Extensive Viral Invasion and Important Gene Decay Partial Chromosome Sequence of Spiroplasma citri Reveals Extensive Viral Invasion and Important Gene Decay f H 2010.

12. Cavalier-Smith T. Nucleomorphs: enslaved algal nuclei. // Current opinion in microbiology. 2002. T. 5. № 6. C. 612−9.

13. Charpentier M., Percheron F. The chitin-degrading enzyme system of a Streptomyces species. // The International journal of biochemistry. 1983. T. 15. № 3. C. 289−92.

14. Chevalier C., Saillard C., Bove J.M. Spiralins of Spiroplasma citri and Spiroplasma melliferum: amino acid sequences and putative organization in the cell membrane. // J. Bacteriol. 1990. T. 172. № 10. C. 6090−6097.

15. Chou H.-H., Holmes M.H. DNA sequence quality trimming and vector removal // Bioinformatics. 2001. T. 17. № 12. C. 1093−1104.

16. Colinge J., Masselot A. Mass spectrometry has married statistics: uncle is functionality, children are selectivity and sensitivity // 2004. T. 3. № 2.

17. Duret S., Andre A., Renaudin J. Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific recombination. // Microbiology (Reading, England). 2005. T. 151. β„– Pt 8. C. 2793−803.

18. Duret S. h Gene disruption through homologous recombination in Spiroplasma citri: an scml-disrupted motility mutant is pathogenic. // Journal of bacteriology. 1999. T. 181. № 24. C. 7449−56.

19. Elias J.E., Gygi S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. //Nature methods. 2007. T. 4. № 3. C. 207−14.

20. Ewing B. h zip. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. // Genome research. 1998. T. 8. № 3. C. 175−85.

21. Fang G., Rocha E., Danchin A. How essential are nonessential genes? // Molecular biology and evolution. 2005. T. 22. № 11. C. 2147−56.

22. Fischer W. h «p. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. // Nucleic acids research. 2010. T. 38. № 18. C. 6089−6101.

23. Fletcher J. n The phytopathogenic mollicute-insect vector interface: a closer look. // Phytopathology. 1998. T. 88. № 12. C. 1351−8.

24. Fraser C.M.M. n jsp. The minimal gene complement of Mycoplasma genitalium. // Science (New York, N.Y.). 1995. T. 270. № 5235. C. 397−403.

25. Gasparich G.E. Spiroplasmas and phytoplasmas: microbes associated with plant hosts. // Biologicals: journal of the International Association of Biological Standardization. 2010. T. 38. № 2. C. 193−203.

26. Gupta N. h «p. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. // Genome research. 2008. T. 18. № 7. C. 1133−42.

27. Jungblut P.R. h jsp. Helicobacter pylori proteomics by 2-DE / MS, 1-DE-LC / MS and functional data mining // Heart. 2010. C. 182−193.

28. Kapp E.A. h ap. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. // Proteomics. 2005. T. 5. № 13. C. 3475−90.

29. Killiny N. h ffp. Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. // Microbiology (Reading, England). 2006. T. 152. β„– Pt 4. C. 1221−30.

30. Kobayashi K. h Ap. Essential Bacillus subtilis genes. // Proceedings of the National Academy of Sciences of the United States of America. 2003. T. 100. № 8. C. 4678−83.

31. Krogh A. h APPredicting transmembrane protein topology with a hidden Markov model: application to complete genomes. // Journal of molecular biology. 2001. T. 305. № 3. C. 56 780.

32. Kwon M.O., Wayadande a C., Fletcher J. Spiroplasma citri Movement into the Intestines and Salivary Glands of Its Leafhopper Vector, Circulifer tenellus. // Phytopathology. 1999. T. 89. № 12. C. 1144−51.

33. Lartigue C. h «p. Creating bacterial strains from genomes that have been cloned and engineered in yeast. // Science (New York, N.Y.). 2009. T. 325. № 5948. C. 1693−6.

34. Llopis P.M. h flp. Spatial organization of the flow of genetic information in bacteria // Nature. 2010. T. 466. № 7302. C. 77−81.

35. Lowe T.M., Eddy S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. //Nucleic acids research. 1997. T. 25. № 5. C. 955−64.

36. Marais a, Bove J.M., Renaudin J. Characterization of the recA gene regions of Spiroplasma citri and Spiroplasma melliferum. // Journal of bacteriology. 1996. T. 178. № 23. C. 7003−9.

37. McGuffin L.J., Bryson K., Jones D.T. The PSIPRED protein structure prediction server. // Bioinformatics (Oxford, England). 2000. T. 16. № 4. C. 404−5.

38. Michalski A., Cox J., Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. // Journal of proteome research. 2011. T. 10. № 4. C. 1785−93.

39. Moskalyk L.A., Oo M.M., Jacobs-Lorena M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. // Insect molecular biology. 1996. T. 5. № 4. C. 261−8.

40. Myers G.S.A. h pp. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. // Genome research. 2006. T. 16. № 8. C. 1031−40.

41. Nakabachi A. h pp. The 160-kilobase genome of the bacterial endosymbiont Carsonella. // Science (New York, N.Y.). 2006. T. 314. № 5797. C. 267.

42. Nakai K., Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. // Trends in biochemical sciences. 1999. T. 24. № 1. C. 34−6.

43. Nesvizhskii A.I. Protein identification by tandem mass spectrometry and sequence database searching. // Methods in molecular biology (Clifton, N.J.). 2007. T. 367. C. 87−119.

44. Nocard, Roux. The microbe of pleuropneumonia. 1896. // Reviews of infectious diseases. 2011. T. 12. № 2. C. 354−8.

45. Ozbek E. h pp. Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. // Journal of invertebrate pathology. 2003. T. 82. № 3. C. 167−75.

46. Peterson S.N.S.N., Fraser C.M.C.M. The complexity of simplicity // Genome Biology. 2001. T. 2. № 2. C. 113.

47. Pop M., Kosack D.S., Salzberg S.L. Hierarchical scaffolding with Bambus. // Genome research. 2004. T. 14. № 1. C. 149−59.

48. Razin S., Yogev D., Naot Y. Molecular biology and pathogenicity of mycoplasmas // Microbiology and Molecular Biology Reviews. 1998. T. 62. № 4. C. 1094−156.

49. Rutherford K. h pp. Artemis: sequence visualization and annotation. // Bioinformatics (Oxford, England). 2000. T. 16. № 10. C. 944−5.

50. Sassetti C.M., Boyd D.H., Rubin E.J. Genes required for mycobacterial growth defined by high density mutagenesis. // Molecular microbiology. 2003. T. 48. № 1. C. 77−84.

51. Schrempf H. Recognition and degradation of chitin by streptomycetes. // Antonie van Leeuwenhoek. 2001. T. 79. № 3−4. C. 285−9.

52. Shigenobu S. hp. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. //Nature. 2000. T. 407. № 6800. C. 81−6.

53. Sutton G.G. h flp. TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects // 1995. T. 1. № 1.

54. Tusnady G.E., Simon I. The HMMTOP transmembrane topology prediction server. // Bioinformatics (Oxford, England). 2001. T. 17. № 9. C. 849−50.

55. Wang P., Granados R.R. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. // Archives of insect biochemistry and physiology. 2001. T. 47. № 2. C. 110−8.

56. Ye F., Melcher U., Fletcher J. Molecular characterization of a gene encoding a membrane protein of Spiroplasma citri. // Gene. 1997. T. 189. № 1. C. 95−100.

57. Ye F. h ap. Extensive chromosome aberrations in Spiroplasma citri Strain BR3. // Biochemical genetics. 1996. T. 34. № 7−8. C. 269−86.

58. Yu J., Wayadande A.C., Fletcher J. Spiroplasma citri Surface Protein P89 Implicated in Adhesion to Cells of the Vector Circulifer tenellus. // Phytopathology. 2000. T. 90. № 7. C. 716−22.

59. Zhang R., Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. //Nucleic acids research. 2009. T. 37. β„– Database issue. C. D455−8.63. http://codonw.sourceforge.net.

60. Unipro UGENE: an open-source bioinformatics toolkithttp://ugene.unipro.ru.65. (http://www.genome.jp/kegg/pathway.html).

61. Glass J.I. h flp. Essential genes of a minimal bacterium // Proc. Natl Acad. Sei. USA. 2006. T. 103. C. 425−430.

62. Koonin E.V., Wolf Y.I. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. // Nucleic acids research. 2008. T. 36. № 21. C. 6688−719.

63. Hutchison III C. a. Global Transposon Mutagenesis and a Minimal Mycoplasma Genome // Science. 1999. T. 286. № 5447. C. 2165−2169.

64. Jain R., Rivera M.C., Lake J. a. Horizontal gene transfer among genomes: the complexity hypothesis. // Proceedings of the National Academy of Sciences of the United States of America. 1999. T. 96. № 7. C. 3801−6.

65. Pereyre S. h xp. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. // PLoS genetics. 2009. T. 5. № 10. C. el 677.

66. Commichau F.M. h ap. Novel activities of glycolytic enzymes in Bacillus subtihs: interactions with essential proteins involved in mRNA processing. // Molecular & cellular proteomics: MCP. 2009. T. 8. № 6. C. 1350−60.

67. Kuhner S. h pp. Proteome organization in a genome-reduced bacterium. // Science (New York, N.Y.). 2009a. T. 326. № 5957. C. 1235−40.

68. Harris J.K. h ap. The Genetic Core of the Universal Ancestor // Genome Research. 2003. β„– February. C. 407−412.

69. Jaffe J.D. h, o-p. The complete genome and proteome of Mycoplasma mobile. // Genome research. 2004. T. 14. № 8. C. 1447−61.

70. Gitai Z. The new bacterial cell biology: moving parts and subcellular architecture. // Cell. 2005. T. 120. № 5. C. 577−86.

71. Rasmussen S., Nielsen H.B., Jarmer H. The transcriptionally active regions in the genome of Bacillus subtilis. // Molecular microbiology. 2009. T. 73. № 6. C. 1043−57.

72. Guell M. h APTranscriptome complexity in a genome-reduced bacterium. // Science (New York, N.Y.). 2009a. T. 326. № 5957. C. 1268−71.

73. Mushegian A.R., Koonin E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes // Proc. Natl Acad. Sci. USA. 1996. T. 93. C. 10 268−10 273.

74. Sharma C.M. h flp. The primary transcriptome of the major human pathogen Helicobacter pylori. //Nature. 2010. T. 464. № 7286. C. 250−5.

75. Allen J.E., Pertea M., Salzberg S.L. Computational gene prediction using multiple sources of evidence. // Genome research. 2004. T. 14. № 1. C. 142−8.

76. Aim R.A., Trust T.J. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. // Journal of molecular medicine (Berlin, Germany). 1999. T. 77. № 12. C. 834−46.

77. Ansong C. h APProteogenomics: needs and roles to be filled by proteomics in genome annotation // Briefings in functional genomics & proteomics. 2008. T. 7. № 1. C. 50−62.

78. Armengaud J. A perfect genome annotation is within reach with the proteomics and genomics alliance. // Current opinion in microbiology. 2009. T. 12. № 3. C. 292−300.

79. Bakke P. h APEvaluation of three automated genome annotations for Halorhabdus utahensis. // PloS one. 2009. T. 4. № 7. C. e6291.

80. Chen W. h APImproving de novo sequencing of peptides using a charged tag and C-terminal digestion. // Analytical chemistry. 2007. T. 79. № 4. C. 1583−90.

81. Delcher A.L. h APImproved microbial gene identification with GLIMMER. // Nucleic acids research. 1999. T. 27. № 23. C. 4636−41.

82. Delcher A.L. h APFast algorithms for large-scale genome alignment and comparison. // Nucleic acids research. 2002. T. 30. № 11. C. 2478−83.

83. Domselaar G.H. Van h APBASys: a web server for automated bacterial genome annotation. //Nucleic acids research. 2005. T. 33. β„– Web Server issue. C. W455−9.

84. Evans D.J. h APDiversity in the variable region of Helicobacter pylori cagA gene involves more than simple repetition of a 102-nucleotide sequence. // Biochemical and Biophysical Research Communications. 1998. T. 245. № 3. C. 780−784.

85. Fisunov G.Y. h APCore proteome of the minimal cell: comparative proteomics of three mollicute species. // PloS one. 2011. T. 6. № 7. C. e21964.

86. Gallien S. h APOrtho-proteogenomics: multiple proteomes investigation through orthology and a new MS-based protocol. // Genome research. 2009. T. 19. № 1. C. 128−35.

87. Guigo R. h up. EGASP: the human ENCODE Genome Annotation Assessment Project. // Genome biology. 2006. T. 7 Suppl 1. C. S2.1−31.

88. Guell M. h Ap. Transcriptome complexity in a genome-reduced bacterium. // Science (New York, N.Y.). 2009b. T. 326. № 5957. C. 1268−71.

89. Hafit D.H. h APTIGRFAMs: a protein family resource for the functional identification of proteins. // Nucleic acids research. 2001. T. 29. № 1. C. 41−3.

90. Hulo N. h «p. Recent improvements to the PROSITE database. // Nucleic acids research. 2004. T. 32. β„– Database issue. C. D134−7.

91. Ihaka R., Gentleman R. R: A Language for Data Analysis and Graphics // 2007.

92. Kuipers E.J. ΠΈ Π΄Ρ€. Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. // The Journal of infectious diseases. 2000. T. 181. β„– l.C. 273−82.

93. Kurzweil R. The Singularity Is Near: When Humans Transcend Biology.: Viking, 2005.

94. Langmead Π’. ΠΈ Π΄Ρ€. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. // Genome biology. 2009. T. 10. № 3. C. R25.

95. Li H. ΠΈ Π΄Ρ€. The Sequence Alignment/Map format and SAMtools. // Bioinformatics (Oxford, England). 2009. T. 25. № 16. C. 2078;9.

96. Marais А. ΠΈ Π΄Ρ€. Metabolism and genetics of Helicobacter pylori: the genome era. // Microbiology and molecular biology reviews: MMBR. 1999. T. 63. № 3. C. 642−74.

97. McDonald L., Beynon R.J. Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. // Nature protocols. 2006. Π’. 1. № 4. C. 1790−8.

98. Meyer F. ΠΈ Π΄Ρ€. GenDB~an open source genome annotation system for prokaryote genomes. //Nucleic acids research. 2003. T. 31. № 8. C. 2187−95.

99. Momynaliev K.T. ΠΈ Π΄Ρ€. Functional Divergence of Helicobacter pylori Related to Early Gastric Cancer research articles // Strain. 2010. C. 254−267.

100. Nielsen H. ΠΈ Π΄Ρ€. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. // Protein engineering. 1997. T. 10. β„– l.C. 1−6.

101. Peterson J.D. ΠΈ Π΄Ρ€. The Comprehensive Microbial Resource. // Nucleic acids research.2001. T. 29. β„– l.C. 123−5.

102. Picotti P., Aebersold R., Domon B. The implications of proteolytic background for shotgun proteomics. // Molecular & cellular proteomics: MCP. 2007. T. 6. № 9. C. 1589−98.

103. Punta M. ΠΈ Π΄Ρ€. The Pfam protein families database. // Nucleic acids research. 2011. T. 40. β„– Dl. C. D290-D301.

104. Sanders W.S. ΠΈ Π΄Ρ€. The proteogenomic mapping tool. // BMC bioinformatics. 2011. T. 12. β„– l.C. 115.

105. Tatusov R.L., Koonin E.V., Lipman D.J. A genomic perspective on protein families. // Science (New York, N.Y.). 1997. T. 278. № 5338. C. 631−7.

106. Tully J.G. ΠΈ Π΄Ρ€. Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. // Science (New York, N.Y.). 1977. T. 195. № 4281. C. 892−4.

107. Valentin-Hansen P., Eriksen M., Udesen C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. // Molecular microbiology. 2004. T. 51. № 6. C. 1525−33.

108. Wang G., Humayun M.Z., Taylor D.E. Mutation as an origin of genetic variability in Helicobacter pylori. // Trends in microbiology. 1999. T. 7. № 12. C. 488−93.

109. Spiroplasma citri genome Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΉ рСсурс. URL: http://iant.toulouse.inra.fr/S.citri.

110. Forster A.C., Church G.M. Towards synthesis of a minimal cell. // Molecular systems biology. 2006. T. 2. C. 45.

111. Eisen J. a. A phylogenomic study of the MutS family of proteins. // Nucleic acids research. 1998. T. 26. № 18. C. 4291−300.

112. Koonin E.V., Mushegian A.R., Bork P. Non-orthologous gene displacement. // Trends in genetics: TIG. 1996. T. 12. № 9. C. 334−6.

113. Gevaert K. h ap. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. // Nature biotechnology. 2003. T. 21. № 5. C. 566−9.

114. Kuhner S. h flp. Proteome organization in a genome-reduced bacterium. // Science (New York, N.Y.). 2009b. T. 326. № 5957. C. 1235−40.

115. Yamazaki S. h np. Proteome Analysis of an Aerobic Hyperthermophilic Crenarchaeon, Aeropyrum pernix K1 *? // Molecular & Cellular Proteomics. 2006. C. 811−823.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ