Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Список литературы. 
Теоретические и клинические основы искусственной вентиляции у младенцев

РефератПомощь в написанииУзнать стоимостьмоей работы

Аверин А. П. Романенко К.В. Пермиссивная гиперкапния в неонатологии — волшебное средство или вынужденная необходимость? Интенсивная терапия 2007; 2. Ranieri VM, Mascia L, Fiore T, et al. Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 1995; 83… Читать ещё >

Список литературы. Теоретические и клинические основы искусственной вентиляции у младенцев (реферат, курсовая, диплом, контрольная)

1. Аверин А. П. Романенко К.В. Пермиссивная гиперкапния в неонатологии — волшебное средство или вынужденная необходимость? Интенсивная терапия 2007; 2.

2. Смагин А. Ю. Профилактика VILI у новорожденных.(презентация доклада) Интенсивная терапия (спец. выпуск 25 — 27 марта 2009г).

3. Фомичев М. В. Респираторная поддержка в неонатологии. Екатеринбург 2004 г.

4. Фомичев М.В.(ред.) Респираторный дистресс новорожденных. Екатеринбург 2007 г.

5. Amato MB, Barbas CS, Medeiros DM, et al. Beneficial effects of the «open lung approach» with low distending pressure in acute respiratory distress syndrome. Am J Resp Crit Care Med 1995; 152: 1835−46.

6. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective — ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 347−54.

7. Ashbaugh DG, Bigelow DB, Petty TL et al. Acute respiratory distress in adults. Lancet 1967; 2: 319−23.

8. Argiras EP, Blakeley CR, Dunnill MC et al. High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 1987; 59: 1278−85.

9. Ballard R, Truog W, Cnaan A et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 2006; 355: 343.

10. Banks B, Seri I, Ishiropulos H. Changes in oxygenation with inhaled nitric oxide in severe bronchopulmonary displasia. Pediatrics 1999; 103: 610.

11. Baquero H, Soliz A, Neira F et al. Oral sidenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized study. Pediatrics 2006; 117: 1077.

12. Bidani A, Tzouanakis A, Cardenas V, Zwischenberger J. Permissive hypercapnia in acute respiratory failure (concepts in emergency and critical care). JAMA 1994; 272: 957.

13. Bigatello L, Patroniti N, Sangalli F. Permissive hypercapnia. Curr Opin Crit Care 2001; 7: 34.

14. Bouhuys A. Physiology and musical instruments. Nature 1969; 221: 1199−1204.

15. von Bethmann AN, Brasch F, Nusing R et al. Hyperventilation induces release of cytokines from perfused mouse lung. Am J Resp Crit Care Med 1998; 157: 263−72.

16. Caruso P, Meireles SI, Reis LFL et al. Low tidal volume ventilation induces proinflammatory and profibrogenic response in lungs of rats. Intensive Care Med 2003; 29; 1808−11.

17. de Chazal I, Hubmayr RD. Novel aspects of pulmonary mechanics in intensive care. B J A 2003; 91: 81−91.

18. Cheema IU, Sinha AK, Kempley ST, Ahluwalia JS. Impact of volume guarantee ventilation on arterial carbon dioxide tension in newborn infants: a randomised controlled trial. Early Hum Dev 2007; 83(3): 183−89.

19. Chiumello D, Pristine G, Baba A et al. Mechanical ventilation affects local and systemic cytokines in an animal model of ARDS. Am J Resp Crit Care Med 1998; 157: A45.

20. Clark RH, Slutsky AS, Gerstmann DR. Lung protective strategies of ventilation in the neonate: what are they? Pediatrics 2000; 105: 112−14.

21. Clark RH, Gerstmann DR, Jobe A. Lung injury in neonates: causes, strategies for prevention and long-term consequences. J Pediatr 2001; 139: 478−86.

22. Coker PJ, Hernandez LA, Peevy KJ et al. Increased sensitivity to mechanical ventilation after surfactant inactivation in young rabbit lungs. Crit Care Med 1992; 20: 634−40.

23. Colmenero Ruiz M, Fernandez Mondejan E, Fernandez Sacristan MA et al. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Resp Crit Care Med 1997; 155: 964−70.

24. Corbridge TC, Wood LD, Crawford GP et al. Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 1990; 142: 311−15.

25. O’Croinin D, Chonghaile MN, Higgins B, Laffey JC. Bench-to-beside review: Permissive hypercapnia. Crit Care Med 2005; 9: 51−9.

26. Dawson C, Davies MW. Volume-targeted ventilation and arterial carbon dioxide in neonates. J Paediatr Child Health 2005; 41: 518−21.

27. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory Pressure. Am Rev Respir Dis 1988; 137: 1159−64.

28. Dreyfuss D, Saumon G. Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 1992; 18: 139−41.

29. Dreyfuss D, Saumon G. Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 1993; 148: 1194−1203.

30. Dreyfuss D, Soler P, Saumon G. Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alteration. Am J Resp Crit Care Med 1995; 151: 1568−75.

31. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lesons from experimental studies. Am J Resp Crit Care Med 1998; 157: 294−323.

32. Dreyfuss D, Martin-Lefevre L, Saumon G. Hyperinflation-indused lung injury during alveolar flooding in rats: effect of perfluorocarbon instillation. Am J Resp Crit Care Med 1999; 159: 1752−57.

33. Dreyfuss D, Saumon G. From ventilator-induced lung injury to multiple organ disfunction. Intensive Care Med 1998; 24: 102−4.

34. Falke KJ, Pontoppidan H, Kumar A, et al. Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 1972; 51: 2315−23.

35. Finer N, Barrington K. Nitric oxide in respiratory failure in full-term and nearly full-term newborn infants. Cochrane Database Syst Rev 2001.

36. Gajic O, Dara S, Mendez J et al. Ventilator-associated lung injury in patient without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004; 32: 1817.

37. Galiotsou E, Kostanti E, Svaruce E et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Resp Crit Care Med 2006; 174: 187−96.

38. Gattinoni L, Pesenti A, Torresin A. et al. Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imag 1986; 1: 25−30.

39. Gattinoni L, Pesenti A, Avalli L. et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographyc study. Am Rev Respir Dis 1987; 136: 730−36.

40. Gattinoni L, Pelosi P, Crotti S, et al. Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome Am J Resp Crit Care Med 1995; 151: 1807−14.

41. Grass S, Stripoli T, Sacchi M. et al. Inhomogenity of lung parenchyma during the open lung strategy. Am J Resp Crit Care Med 2009; 180: 415−23.

42. Harris RS, Hess DR, Venegas JG. An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Resp Crit Care Med 2000; 161: 432−39.

43. Hernandes LA, Peevy KJ, Moise AA, Parker JC. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 1989; 66: 2364−68.

44. Hernandes LA, Coker PJ, May S. et al. Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs. J Appl Physiol 1990; 69: 2057;61.

45. Hickling KG. The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Resp Crit Care Med 1998; 158: 194−202.

46. Hickling KG. Permissive hypercapnia. Resp Care Clin N Am 2002; 8(2).

47. Holzapfel L, Robert D, Perrin F, et al. Static pressure-volume curves and effect of positive end-expiratory pressure on gas exchange in adult respiratory distress syndrome. Crit Care Med 1983; 11: 591−97.

48. Hubmayr RD. Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Resp Crit Care Med 2002; 165:1647−53.

49. Hughes JMB, Rosenzweig DY. Factors affecting trapped gas volume in perfused dog lungs. J Appl Physiol 1970; 29: 332−39.

50. Imai Y, Kawano T, Miyasaka K, et al. Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Resp Crit Care Med 1994; 150: 1550−54.

51. Imanaka H, Shimaoka M, Matsuura N, et al. Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation and TGF-ssl mRNA upregulation in rat lungs. Anesth Analg 2001; 92: 428−36.

52. John J, Taskar V, Evander E, et al. Additive nature of distension and surfactant perturbation on alveolocapillary permeability. Eur Respir J 1997; 10: 192−99.

53. Jonson B, Richard JC, Straus C, et al. Pressure-volume curves and compliace in acute lung injury: evidence of recruitment above the lower inflection point. Am J Resp Crit Care Med 1999; 159: 1172−78.

54. Jonson B, Svantesson C. Elastic pressure-volume curves: what information do they convey? Thorax 1999; 58: 82−7.

55. Kallet RH, Jasmer RM, Luce JM, et al. The treatment of acidosis in acute lung injury with THAM. Am J Resp Crit Care Med 2000; 161: 1149−53.

56. Kawano T, Mori S, Cybulsky M, et al. Effect of granulocyte depletion in a ventilated sufactant-depleted lung. J Appl Physiol 1987; 62: 27−33.

57. Keszler M, Abubakar K. Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 2004; 38: 240−45.

58. Keszler M. Volume guarantee and ventilator-induced lung injury: Goldilocks' rules apply. Pediatr Pulmonol 2006; 41: 364−66.

59. Keszler M. State of the art in conventional mechanical ventilation. J Perinatol 2009; 29: 262−75.

60. Kitakaze M, Takashima S, Funaja T, et al. Temporary acidosis during reperfusion limits myocardial size in dogs. Am J Physiol 1997; 272: 2071;78.

61. Koptezides P, Kapetanakis T, Siempos I, et al. Short-term administration of a high oxygen concentration is not injurious in ex-vivo rabbit model of ventilator-induced lung injury. Anesth Analg 2009; 108: 556−64.

62. Kornecki A, Engelberts D, McNamara P. Vascular remodeling protects against ventilator induced lung injury in the in vivo rat. Anesthesiology 2008; 108: 1047−54.

63. Kregenov DA, Swenson ER. The lung and carbon dioxide: implications for permissive and therapeutic hypercapnia. Eur Respir J 2002; 20: 6−11.

64. Kregenov D, Rubenfeld G, Hudson L, Swenson E. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 2006; 34:

65. Lachmann B. Open up the lung, keep the lung open. Intensive Care Med 1992; 118: 319−21.

66. Laffey JG, Kavanagh B. Carbon dioxide and the critically ill — too little a good thing. Lancet 1999; 354: 1283−6.

67. Laffey JG, Engelberts D, Kavanagh B. Buffering hypercapnic acidosis worsens acute lung injury. Am J Resp Crit Care Med 2000; 161: 141−4.

68. Laffey JG, Tanaka M, Engelberts D. Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Resp Crit Care Med 2000; 162: 2287−94.

69. Lista G, Colnaghi M, Castoldi F, et al. Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome. Pediatr Pulmonol 2004; 37: 510−14.

70. Lista G, Castoldi F, Fontana P, et al. Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes. Pediatr Pulmonol 2006; 41: 357−63.

71. Lu Q, Rouby J-J. Measurement of pressure-volume curves in patients on mechanical ventilation: methods and significance. Critical Care 2000; 4: 91−100.

72. Maclin CC. Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum. Arch Intern Med 1939; 64: 913−26.

73. Martinowich MA, Minor TA, Walters BJ, Hubmayr RD. Regional expansion of oleic acid-injured lungs. Am J Resp Crit Care Med 1999; 160: 250−58.

74. Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary Elasticity. J Appl Physiol 1970; 28: 596−608.

75. Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at a low airway pressures can augment lung injury. Am J Resp Crit Care Med 1994; 149: 1327−34.

76. Nahum A, Hoit J, Schimiz L, et al. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia Coli in dogs. Crit Care Med 1997; 25: 1733−43.

77. Parker JC, Hernandes LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med 1993; 21: 131−43.

78. Parker JC, Ivey CL, Tucker A. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lunges. J Appl Physiol 1998; 84: 1113−18 79. Parker JC. Ingibitors of myosin light chain kinase and phosphodieserase reduce ventilator-induced lung injury. J Appl Physiol 2000; 89: 2241−48.

80. Peevy KJ, Hernandez LA, Moise AA, Parker JC. Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern. Crit Care Med 1990; 18: 634−37.

81. Pelosi P, Tubiolo D, Mascheroni D, et al. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Resp Crit Care Med 1998; 157: 387−93.

82. Petersen GW, Baier H. Incidence of pulmonary barotrauma in a medical ICU. Crit Care Med 1983; 11: 67−9.

83. Pugin J, Dunn I, Jolliet P, et al. Activation of human macrophages by mechanical ventilation in vitro. Am J physiol 1998; 275: 1040−50.

84. Pugin J. Is the ventilator responsible for lung and systemic inflammation. Intensive Care Med 2002; 28: 817−19.

85. Putensen C, Theuerkauf N, Zinserling J. Metaanalysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Am Int Med 2009; 151: 566−76.

86. Ranieri VM, Mascia L, Fiore T, et al. Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 1995; 83: 710−20.

87. Ranieri VM, Suter PM, Tortorella D, et al. The effect of mechanical ventilation on pulmonary and systemic release of inflammatory mediators in patients with acute respiratory distress syndrome. J A M A 1999; 282: 54−61.

88. Ricard J-D, Dreyfuss D. Cytokines during ventilator-induced lung injury: a word of caution. Anesth Analg 2001; 93: 251−2.

89. Ricard J-D, Dreyfuss D, Saumon G. Production of inflammatory cytokines during ventilator-induced lung injury: a reapprisal. Am J Resp Crit Care Med 2001; 163: 1176−80.

90. Ricard J-D, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Eur Respir J Suppl 2003; 42: 2−9.

91. Rimensberger P, Cox P, Frndova H, Bryan A. The open lung during small tidal volume ventilation: concepts of recruitment and «optimal» positive end-expiratory pressure. Crit Care Med 1999; 27: 1946;

92. Robertson B. Robertson B, van Golde L.eds. Pulmonary surfactant. 1984; Elsevier. Amsterdam.

93. Rouby J-J, Lu Q, Goldstein I. Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J resp Crit Care Med 2002; 165: 1182−86.

94. Sandhar BK, Niblett DJ, Argiras EP, et al. Effect of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 1988; 14: 538−46.

95. Shibata K, Cregg N, Engelberts D, et al. Hypercapnic acidosis may attenuate acute lung Injury by inhibition of endogenous xantine oxidase. Am J Resp Crit Care Med 1998; 158: 1578−84.

96. Sinclair S, Chi E, Lin H, Altemeier W. Positive end-expiratory pressure alters the severity and spacial heterogeneity of ventilator-induced lung injury: an argument for cyclical airway collapse. J Crit Care 2009; 24: 206−14.

97. Soni N, Williams D. Positive pressure ventilation: what is the real cost? BJA 2008; 101: 446−57.

98. Slutsky AS. Consensus conference on mechanical ventilation — January 28−30 at Nortbrook, Illinois, USA. Intensive Care Med 1994; 20: 64−79.

99. Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Resp Crit Care Med 1998; 157: 1721−25.

100. Slutsky AS. Lung injury caused by mechanical ventilation. Chest 1999; 116(1 suppl):9−15.

101. Taskar V, John J, Evander E, et al. Healthy lungs tolerate repetitive collapse and reopening during short period of mechanical ventilation. Acta Anaesth Scand 1995; 39: 370−76.

102. Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in ARDS. Am J Resp Crit Care Med 2007; 151: 566−76.

103. Tremblay L, Valenza F, Ribeiro SP, Slutsky AS. Injurious ventilatory strategies increase Cytokines and c-fos m-RNA expression in an isolated rat lung model. J clin Invest 1997; 99: 944−52.

104. Tremblay LN, Slutsky AS. Ventilator-induced lung injury: barotrauma and biotrauma. Proc Assoc Am Physicians 1998; 110:482−88.

105. Tschumperlin DJ, Osvari J, Margulies SS. Deformation-induced injury of alveolar epithelial cells: effects of frequency, duration and amplitude. Am J Resp Crit CareMed 2000; 162: 357−62.

106. Tsuchida S, Engelberts D, Peltekova V, et al. Atelectasis causes alveolar injury in nonatelectatic lung regions. Am J Resp Crit Care Med 2006; 174: 279−89.

107. Tsuno K, Miura K, Takeya M, et al. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 1991; 143: 1115−20.

108. van Kaam AH, de JaegereA, Haitsma JJ, et al. Positive ventilation with the open lung concept optimizes gas exchange and reduced ventilator-induced lung injury in newborn piglets. Pediatr Res 2003; 53: 245−53.

109. van Kaam AH, Dik WA, Haitsmsa JJ, et al. Application of the open lung concept during positive-pressure ventilation reduces pulmonary inflammation in newborn piglets. Crit Care Med 2003; 83: 273−80.

110. van Kaam AH, Rimensberger PC. Lung-protective ventilation strategies in neonatology: what do we know — what do we need to know? Crit Care Med 2007; 35: 925−31.

111. Vannucci RC, Towfighi J, Neitjan DF, Brucklachen RM. Carbon dioxide protects the perinatal brain from hypoxic-ishemic damage: an experimental study in the immature rat. Pediatrics 1995; 95: 868−74.

112. Vannucci RC, Brucklacher RM, Vannucci SI. Effect of carbon dioxide on cerebral metabolism during hypoxiaischemia in the immature rat. Pediatric Res 1997; 42: 24−9 113. Vazques de Anda GF, Hartog A, Verbrugge SJ, et al. The open lung concept: pressure-controlled ventilation is as effective as high-frequency oscillatory ventilation in improvinggas exchange and lung mechanics in surfactant-deficient animals. IntensiveCare Med 1999; 25: 990−96.

114. Vazques de Anda GF, Gommers D, de Jaegere A, Lachmann B. Mechanical ventilation with high positive end-expiratory pressure and small driving pressure amplitude is as effective as high-frequency oscillatory ventilation to preserve the function of exogenous surfactant in lung-lavaged rats. Crit Care Med 2000; 28: 2921−25.

115. Verbrugge SJ, Sorm V, van’t Veen A, et al. Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella Pneumoniae inoculation. Intensive Care Med 1998; 24: 172−77.

116. Vieira SR, Puybasset L, Lu Q, et al. A scanographyc assessment of pulmonary morphology in acute lung injury. Am J Resp Crit Care Med 1999; 159: 1612−23.

117. Vlahakis NE, Shroeder MA, Limper AH, Hubmayr RD. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 1999; 277: L167−73.

118. Walsh-Sukys M, Tyson S, Wright L, et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics 2000; 105: 14.

119. Walsh M, Stork E. Persistent pulmonary hypertension of the newborn. Rational therapy based on pathophysiology. Clin Perinatol 2001; 28:

120. Ward HE, Nicholas TE. Effect of artificial ventilation and anaesthesia on surfactant turnover in rats. Respir Physiol 1992; 87: 115−29.

121. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110: 556−65.

122. Weg JG, Anzueto A, Balk RA, et al. The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 341−46.

Список литературы. Теоретические и клинические основы искусственной вентиляции у младенцев.
Показать весь текст
Заполнить форму текущей работой