Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Преимущества человека как генетического объекта

РефератПомощь в написанииУзнать стоимостьмоей работы

Просеивание в зависимости от искомого дефекта проводят среди различного контингента с учетом возраста, национальной и расовой принадлежности. Просеивание на наследственные аминоацидопатии и гипотиреоз необходимо проводить в первые дни жизни, чтобы терапия оказалась эффективной; просеивание на носительство гемоглобинопатии и болезни Тея — Сакса — у вступающих в брак. Просеивание… Читать ещё >

Преимущества человека как генетического объекта (реферат, курсовая, диплом, контрольная)

  • 1. Хорошая изученность фенотипа человека: анатомическая, физиологическая, иммунологическая, биохимическая, клиническая. Специалисты различного профиля продолжают независимо от интересов генетиков изучать человека, что, несомненно, помогает генетику легко распознавать многие формы наследственных отклонений.
  • 2. Возможность использовать все методы, применяемые в медицине (биохимические, морфологические, иммунологические, электрофизиологические, клинические и др.), т. е. любые методы, которые дают возможность регистрировать признак и выражать его количественно.

Для решения сугубо генетических задач применительно к человеку в настоящее время используют следующие методы.

I. Генеалогический (генеалогия, греч. genealogia; от genea — рождение, происхождение, поколение + logos — слово, изложение — установление родственных связей между индивидуумами в пределах одного поколения или в ряду поколений, или родословная) — метод родословных, т. е. прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике его часто называют клинико-генеалогическим, так как речь идет об изучении патологических признаков в семье с помощью клинических приемов обследования. Он относится к наиболее универсальным методам в генетике человека. Этот метод используется для установления наследственного характера признака, определения типа наследования и пенетрантности гена, при анализе сцепления генов и картирования хромосом, при изучении интенсивности мутационного процесса, при расшифровке механизмов взаимодействия генов, при медико-генетическом консультировании. Суть этого метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Он включает два этапа: составление родословных и генеалогический анализ.

Составление родословной начинается с пробанда (лицо, первое попавшее в поле зрения исследователя). Чаще всего это больной или носитель изучаемого признака. Дети одной родительской пары называются сибсами (братья-сестры). Семьей в узком смысле называют родительскую пару и их детей. Обычно родословная собирается по одному или нескольким признакам. Она может быть полной (составление по восходящему, нисходящему и боковым направлениям) и ограниченной. Для наглядности готовят графическое изображение родословной. Грубой ошибкой является искусственное укорочение звеньев родословной в связи с трудностями обследованных родственников II и III степени. Генеалогический анализ позволяет установить генетические закономерности: наследственный характер признака и тип наследования.

Недостатки и ошибки при использовании генеалогического метода могут быть обусловлены неправильной диагностикой болезни (признака) и возможностью неправильного определения отцовства за счет внебрачных связей (от 1—3 до 10%).

II. Близнецовый метод — исследование генетических закономерностей на близнецах. Он был предложен F. Galton в 1875 г. При использовании этого метода производится сопоставление монозиготных близнецов с дизиготными, партнеров монозиготных пар между собой, данных анализа близнецовой выборки с общей популяцией.

Монозиготными близнецами (однояйцевые, идентичные) называются индивиды, выросшие из одной зиготы, разделившейся на ранних стадиях дробления на две части; они обладают поэтому идентичными генотипами.

Дизиготные близнецы (двуяйцевые, неидентичные) возникают за счет оплодотворения двух яйцеклеток, развивающихся в течение одной беременности. Они имеют в среднем 50% идентичных генов, но отличаются от обычных сибсов значительно большей общностью факторов среды.

Общая частота беременности двойнями равна приблизительно 1%, из которых ¼—1/3 приходится на рождение монозиготных близнецов. Близнецовый метод применяется:

  • • для оценки соотносительной роли наследственности и среды в развитии признака;
  • • установления наследственного характера признака и определения пенетрантности гена;
  • • оценки действия некоторых внешних факторов: лекарственных препаратов, методов воспитания, обучения.

Этот метод включает три этапа:

  • 1) сопоставление близнецовой выборки;
  • 2) установление зиготности;
  • 3) сопоставление пар и групп близнецов по рассматриваемым признакам.

Диагностика основывается на анализе наиболее изученных моногенных полиморфных признаков (эритрои лейкоцитарные антигены, группы белков сыворотки крови и т. д.). Дизиготные близнецы в отличие от монозиготных отличаются по этим признакам. Если какой-либо качественный признак встречается у обоих близнецов данной пары — это конкордантная пара, а если только у одного из них это дискордантная пара близнецов.

III. Популяционно-статистический метод основан на использовании наследственных признаков в больших группах населения из одной или нескольких популяций, в одном или нескольких поколениях. Изучаются выборки из конкретных популяций с применением статистической обработки полученного материала. Этот метод используется для изучения:

  • • частоты генов в популяции, включая частоту наследственных болезней;
  • • мутационного процесса;
  • • роли наследственности и среды:
    • — в возникновении болезней, особенно с наследственным предрасположением,
    • — формировании фенотипического полиморфизма по нормальным признакам;
  • • значения генетических факторов в антропогенезе, в частности в расообразовании.

Возможные ошибки этого метода могут быть связаны с недоучетом миграции населения и с тем, что выбранные группы отличаются по большему число признаков, чем сравниваются.

IV. Цитогенетический метод основан на микроскопическом изучении хромосом. Его начали широко использовать в генетике человека только с 20-х гг. XX в. для диагностики хромосомных болезней, составления карт хромосом, изучения мутационного процесса, решения некоторых эволюционных проблем в генетике человека, изучения нормального хромосомного полиморфизма в человеческой популяции.

Именно с этим методом связано открытие всех форм хромосомных болезней. С его помощью изучается частота хромосомных и геномных мутаций в зародышевых клетках и частота хромосомных аберраций в соматических клетках. Культуры соматических клеток человека являются хорошими объектами для проверки мутагенности факторов среды (физических, химических, биологических). Цитогенетическими методами изучаются механизмы мутагенеза.

Основные сведения о морфологии хромосом человека получены при их изучении в метафазе митоза и профазе-метафазе мейоза. Для прямого хромосомного анализа можно использовать клетки костного мозга и гонад (семенников), полученные путем биопсии, что ограничивает цитогенетические исследования без культивирования. Поэтому основные цитогенетические работы выполнены на культурах клеток человека, особенно на лимфоцитах периферической крови.

Культивирование лейкоцитов периферической крови в течение 2—3 суток в присутствии фитогемагглютинина (ФГА) позволяет получить большое число метафаз. Кроме лейкоцитов, можно культивировать клетки эпидермиса, амниотической жидкости. «Сортировка» хромосом (во время метафазы) прямо под микроскопом или чаще всего на микрофотографиях позволяет построить кариотип, т. е. упорядоченно расположить хромосомы по их отличительным признакам. В основе идентификации хромосом лежит два признака: общая длина хромосомы и расположение центромера; но он не позволяет индивидуально идентифицировать все хромосомы. Поэтому используются более точные методы: радиоавтографический, окраску хромосом флуорохромами, красителем Гимзы, гибридизации нуклеиновых кислот на цитологических препаратах.

V. Методы генетики соматических клеток. Поскольку соматические клетки содержат весь объем генетической информации, на них можно изучать генетические закономерности целостного организма. Соматические клетки человека характеризуются пятью основными свойствами, позволяющими их использовать в генетических исследованиях:

  • • быстрое размножение на питательных средах, что позволяет получать необходимое их количество для анализа;
  • • подвергаются клонированию — можно получать генетически идентичное потомство;
  • • разные клетки могут сливаться, образуя гибридные клоны;
  • • легко подвергаются селекции на специальных питательных средах;
  • • хорошо и долго сохраняются при глубоком замораживании.

Культуру соматических клеток человека получают для генетических исследований из материала биопсий или аутопсий (кожа, опухоли, периферическая кровь, костный мозг, ткань эмбрионов, клетки из околоплодной жидкости). В настоящее время чаще используются фибробласты и лимфоидные клетки. В генетике человека используют четыре метода из генетики соматических клеток: простое культивирование, клонирование, гибридизация и селекция.

В настоящее время обосновано четыре подхода в борьбе с наследственными болезнями:

  • 1) массовое «просеивание» новорожденных на наследственные дефекты обмена веществ;
  • 2) пренатальная диагностика;
  • 3) медико-генетическое консультирование;
  • 4) контроль за мутагенной опасностью факторов окружающей среды.
  • 1. Массовое «просеивание» новорожденных на наследственные болезни обмена веществ наряду с другими методами лежит в основе профилактики наследственных болезней в популяциях.

Просеивание (аналог — скрининг) означает предположительное выявление недиагностированной ранее болезни с помощью тестов, обследований или других процедур, дающих быстрый ответ.

Проще говоря, просеивание — это обследование контингентов с целью подразделения их на группы с высокой и низкой вероятностью заболевания. «Просеивают» заболевания, для которых установлена связь между мутантным геном и поврежденной биохимической функцией. Изменения в биохимических параметрах по срокам проявления предшествуют возникновению клинических симптомов.

Современные программы массового просеивания предусматривают выявление фенилкетонурии, гипотиреоза, врожденной гипоплазии надпочечников, галактоземию, муковисцидоз, гомоцистинурию, лейциноз, гистидинемию, аминоацидопатии, недостаточность альфаг антитрипсина. В практике массового просеивания на наследственные болезни обмена веществ используется кровь (пуповинная, капиллярная, венозная) и сыворотка крови.

Просеивание в зависимости от искомого дефекта проводят среди различного контингента с учетом возраста, национальной и расовой принадлежности. Просеивание на наследственные аминоацидопатии и гипотиреоз необходимо проводить в первые дни жизни, чтобы терапия оказалась эффективной; просеивание на носительство гемоглобинопатии и болезни Тея — Сакса — у вступающих в брак. Просеивание на гемоглобинопатию целесообразно в популяциях или расовых группах, подвергшихся действию малярийного фактора отбора, а просеивание на носительство болезни Тея — Сакса (в Израиле) — у евреевашкенази, у которых мутантный ген встречается в 10 раз чаще, чем в других популяциях.

Например, в программах массового просеивания на фенилуксусную кислоту и другие аминоацидопатии используют три метода: микробиологический, хроматографический и флюорометрический.

  • 2. Пренатальная диагностика осуществляется с помощью разных методов исследования в I и II триместрах беременности. В ней нуждается 10—15% семей, обращающихся в медико-генетическую консультацию. Показания к проведению пренатальной диагностики:
    • • пожилой возраст родителей;
    • • гетерозиготное носительство хромосомной аномалии;
    • • предыдущее рождение ребенка с болезнью Дауна, врожденными пороками развития или умственной отсталостью;
    • • Х-сцепленная патология;
    • • наследственные дефекты метаболизма;
    • • тератогенные воздействия.

Пренатальная диагностика представляет собой комплексное исследование, основанное на использовании лабораторных и инструментальных методов:

  • 1) ультразвуковое исследование (врожденные пороки развития);
  • 2) фетоскопия используется для взятия образцов крови, кожи или других органов плода (показания: токсоплазмоз, вирусная краснуха, гемофилия, талассемия, осложнения связанные с самопроизвольным прерыванием беременности);
  • 3) фетоамниография использовалась до появления УЗИ для диагностики врожденных пороков развития костной системы, спинномозговых и пупочных грыж и особенно атрезий желудочно-кишечного тракта. Использование контрастных веществ вызывает осложнения как у беременной, так и у плода;
  • 4) диагностический амниоцентез (в сроки 14—20 недель беременности) — это акушерско-хирургическая процедура, позволяющая получить амниотическую жидкость для последующих лабораторных исследований (в 1—2% случаев после амниоцентеза наблюдается гибель плода). Амниотические клетки используют для культивирования и цитогенетических исследований, для диагностики лизосомных болезней, альфа-фетопротеина, для диагностики более 60 форм наследственных ферментопатий;
  • 5) диагностическая биопсия хориона (хориоцентез). Оптимальный срок для биопсии — 17-я неделя беременности, а результаты, связанные с культивированием амниотических клеток, могут быть получены спустя 3—5 недель. Используют три основные методики получения биоптата хориона: с помощью щипцов, методом эндоцервикальной аспирации и с помощью браши (по типу лабораторного ершика для пробирок). Этот метод используют для диагностики хромосомных и биохимических (молекулярных) нарушений.
  • 3. Медико-генетическое консультирование включает:
    • • выявление наследственной формы патологии на основании осмотра больного, составления родословной, цитологических, биохимических, кариологических и других методов диагностики наследственных болезней;
    • • определение степени риска появления потомства с наследственными дефектами развития у лиц из семей, отягощенных наследственной патологией, вступающих в брак и желающих иметь детей. В обоснованных случаях рекомендуется воздержаться от заключения брака;
    • • выявления нарушений в геноме, обменных процессов у плода с помощью методов пренатальной диагностики с возможным дальнейшим прерыванием беременности, если риск рождения больного ребенка достаточно высок. Однако принятие окончательного решения о прерывании или сохранении беременности остается за супругами;
    • • искусственное осеменение от генетически здорового донора применимо в тех случаях, когда рождение здорового потомства невозможно из-за доминантного характера наследования патологии.
  • 4. Контроль за мутагенной опасностью факторов окружающей среды осуществляют генетики, экологи, врачи гигиенического профиля, учитывая естественный фон радиации и его колебания, дрейф мутаций и т. п.

Принципы лечения наследственных заболеваний

  • 1. Симптоматическое лечение — хирургическое лечение расщелины верхней губы и твердого неба, сросшихся пальцев, корригирующие линзы при близорукости и др.
  • 2. Патогенетическая терапия — воздействие на те механизмы, которые формируют наследственное заболевание:
    • • заместительная терапия — восполнение недостающего компонента (введение инсулина при сахарном диабете, свертывающих факторов при гемофилии и т. д.) или удаление части железы при гиперфункции;
    • • когда повышен синтез тех или иных веществ, то применяют медикаменты, угнетающие их образование;
    • • диетотерапия — при нарушении расщепления тех или иных веществ (галактозы, фенилаланина) их исключают из диеты;
    • • медикаментозное лечение направлено на удаление продуктов, избыточно накапливающихся в организме. Например, при поражении печени в ней накапливаются ионы меди, поэтому применяют ионообменные смолы, которые препятствуют всасыванию меди в кишечнике.
  • 3. Генная инженерия — это направление исследований в молекулярной биологии и генетике, конечной целью которого является получение с помощью лабораторных методов организмов с новыми комбинациями наследственных свойств. В основе лежит целенаправленное манипулирование с фрагментами нуклеиновых кислот, т. е. из различных фрагментов генетического материала конструируются нужные и вводятся в реципиентный организм.
Показать весь текст
Заполнить форму текущей работой