Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Сопоставление мочевыводящей и пищеварительной систем — морфофункциональные и клинические параллели

РефератПомощь в написанииУзнать стоимостьмоей работы

Система мочевыделения не уникальна в своей тесной связи с ЖКТ. Аналогичные параллели можно провести между ЖКТ и респираторной системой, между респираторной и мочевыделительными системами и т. д. Системы организма, несмотря на многие отличия, построены по единому функциональному плану с использованием общих («типовых») структур и функций. Представленные данные вновь показывают, что организм… Читать ещё >

Сопоставление мочевыводящей и пищеварительной систем — морфофункциональные и клинические параллели (реферат, курсовая, диплом, контрольная)

Сопоставление мочевыводящей и пищеварительной систем — морфофункциональные и клинические параллели

С.В. Бельмер, Т. В. Гасилина Несмотря на очевидные различия структуры и функций пищеварительной и выделительной систем, можно найти немало общего в плане их функциональной организации. Для этого есть существенные основания. Выделительная система в процессе эмбриогенеза формируется из дивертикула первичной кишки и мезенхимальной бластемы. В связи с этим она отчасти сохраняет общий план строения, функционирования и регуляции, тесную взаимосвязь в норме и патологии, равно как и общие принципы развития патологического процесса. Сопоставив пищеварительную и мочевыделительную системы, можно отметить общую схему строения, наличие эпителия с щеточной каймой и со сходными транспортными системами (транспортеры для углеводов, аминокислот, олигопептидов, ксенобиотиков, натрия и калия), сходной регуляцией функции и пролиферации (в т.ч. через соматостатин, гуанилин/урогуанилин, эпидермальный фактор роста и эндотелины), общие физиологические (всасывание/реабсорбция, секреция, моторная активность) и патологические (нарушения всасывания/реабсорбции, секреции, моторные нарушения, микробиологические и иммунологические) процессы. Изучение межсистемных параллелей позволяет представить организм, как единое целое, как систему, построенную и функционирующую по единым для всех подсистем законам.

На 5-й нед. внутриутробного развития у нижнего края вольфова протока от клоаки появляется дивертикул, который дает начало будущей окончательной почке, метанефросу. В дальнейшем происходит его канализация и дихотомическое ветвление и нижняя часть выроста дает начало мочеточнику. Из первых ветвлений формируются лоханки, из последующих — чашечки и собирательные трубочки. Вокруг этих разветвлений сгущается т.н. нефрогенная мезенхима, в ней формируются сигмовидные канальцы (будущий канальцевый аппарат), один конец которого соединяется с будущими собирательными трубочками, а другой — становится вогнутым внутрь, в него врастают сосуды и формируется почечный клубочек. В последующем происходит окончательное формирование почечных структур и их дифференцировка, полностью завершающаяся уже после рождения [3]. Таким образом, наследование мочевыводящей системой черт, характерных для кишечной трубки, является вполне естественным.

Сходный путь развития проходит поджелудочная железа, которая закладывается на 3-й неделе эмбрионального развития в виде двух выростов эпителиальной выстилки формирующейся двенадцатиперстной кишки. Из дивертикулов в ходе их дихотомического деления и канализации образуются протоки и ацинусы экзокринной части органа. В скоплениях клеток выростов, в которых просвет не образуется, формируются эндокринные островки. Ацинарные клетки и клетки протоков имеют общее происхождение, однако в дальнейшем первые выполняют исключительно секреторную функцию, а вторые — как секреторную, так и всасывающую [5]. Аналогичным образом закладывается печень в виде выпячивания эпителия кишечной трубки, из передней части которого формируются протоки и паренхима органа, а из заднего — желчный пузырь.

Желудочно-кишечный тракт (ЖКТ) представляет собой систему полых трубчатых органов, стенки которых построены по единому плану и состоят из слизистого, подслизистого, мышечного и серозного слоев. Основные функции ЖКТ: секреторная и переваривающая, всасывающая, моторная. Для повышения эффективности процессов переваривания и всасывания кишечник (особенно тонкая кишка) имеет значительную площадь активной поверхности, что достигается наличием складок и ворсинок слизистой оболочки и микроворсинок на апикальной поверхности энтероцитов. Энтероциты — высокие цилиндрические клетки с широкой щеточной каймой, которая состоит из микроворсинок — составляют примерно 90% популяции клеток покровного эпителия тонкой кишки. Оставшиеся почти 10% приходятся на бокаловидные клетки, продуцирующие слизь, и около 0,5% приходится на энтероэндокринные клетки. Энтероциты характеризуются сильно извитой боковой плазматической мембраной и многочисленными митохондриями. В клетках, лежащих у основания ворсинок, хорошо развиты цистерны гранулярного эндоплазматического ретикулума и мешочки комплекса Гольджи.

Эпителиальные клетки проксимальных канальцев почек имеют цилиндрическую форму, характеризуются наличием щеточной каймы, аналогичной энтероцитам, увеличивающей площадь канальцевой поверхности и исчерченностью базальной части, связанной с наличием инвагинаций клеточной стенки и большим количеством в этой зоне митохондрий. В дистальных канальцах клетки, выстилающие внутреннюю поверхность, имеют кубовидную форму, у большинства из них имеется щеточная кайма и у всех — исчерченность базальной части. Часть цилиндрических клеток собирательных трубочек имеет ворсинки и по структуре напоминает обкладочные клетки желудка. Наконец, мочеточник, как и кишка, имеет слизистый и подслизистый слои, мышечный слой и адвентицию [1].

Основной системой всасывания глюкозы и галактозы в кишечнике так же, как и реабсорбции глюкозы и галактозы в почечных канальцах, является т.н. глюкозо-натриевый транспортер или натрий-зависимый транспортер глюкозы [37], относящийся к SGLT-семейству транспортных белков и локализующийся на апикальной мембране эпителиоцита. Вторым транспортером глюкозы является белок GLUT-семейства (точнее, GLUT-2), облегчающий диффузию глюкозы и расположенный на базолатеральной мембране энтероцита, клеток почечного канальца, а также на поверхности b-клеток поджелудочной железы [31,25]. Экспрессия указанных транспортеров определяется концентрацией глюкозы и гормональными механизмами [32].

Аминокислоты всасываются в кишечнике и реабсорбируются в почках при участии сходных Na± и Cl- -зависимых котранспортеров и калий-зависимого обменного механизма [9].

Эпителиальные клетки тонкой кишки и почечных канальцев имеют сходные транспортные системы, предназначенные для всасывания (реабсорбции) дии трипептидов. Кстати, аналогичные транспортеры выявлены также у бактерий, грибов и некоторых растений, что указывает на их древнее происхождение [11]. Эпителиоциты почечных канальцев обладают способностью накапливать олигопептиды в высоких концентрациях и характеризуются высокой дипептидазной активностью, хотя в отличие от энтероцитов последняя сконцентрирована не в щеточной кайме, а внутриклеточно. Основными транспортными системами для олигопептидов в почках являются белки Pept-1 и Pept-2. Первый является низкоаффинным, но высокоактивным белком, тогда как второй — высокоаффинным, но с низкой пропускной способностью [6]. У крыс хорошо изучен транспортер Pept-1, обеспечивающий абсорбцию пептидных и подобных им ксенобиотиков (в т.ч. b-лактамных антибиотиков) в тонкой кишке и почечных канальцах [26].

Идентичные каналы транспорта натрия, чувствительные к альдостерону и играющие ключевую натрий-сохраняющую роль, существуют как в собирательных трубочках почек, так и дистальных отделах толстой кишки. В обоих органах альдостерон повышает экспрессию указанных транспортеров на апикальной поверхности соответствующих клеток. Мутация, приводящая к нарушению структуры двух из трех субъединиц этой транспортной системы (в почках и кишке), приводит к развитию синдрома Liddle, редкому случаю врожденной гипертензии [28].

Рецепторы к 1,25-дигидроксивитамину D присутствуют в кишечнике, костях и почках. Показано, что 1,25-дигидроксивитамин D стимулирует всасывание кальция как в кишечнике, так и в почках [19]. Возможно, при врожденной идиопатической гиперкальциурии, часто сочетающейся с кальциевым уролитиазом, у человека имеет место повышенная экспрессия названных рецепторов, как это было показано у экспериментальной линии крыс с гиперкальциурией [8].

Сходные транспортные системы для всасывания оксалатов существуют в почках и кишечнике. В образовании оксалатных камней, помимо нарушенной реабсорбции оксалатов из почечных канальцев, определенную роль может играть повышенное всасывание оксалатов в кишечнике, хотя это и не доказано [36].

Похожи друг на друга механизмы абсорбции фосфора в кишке и почках. При этом всасывание фосфора как в кишке, так и в почках повышается при низкофосфатной диете и снижается — при высокофосфатной [21].

Идентичные транспортные белки, обеспечивающие всасывание и реабсорбцию цинка, т.н. ZnT-1 и ZnT-2, присутствуют на мембранах энтероцитов и тубулярных клеток [22].

У человека экскреция ксенобиотиков, хорошо изученная для гепатоцитов, обеспечивается транспортными гликопротеинами типа mdr1, выявленными на люминальной поверхности транспортного эпителия печени, энтероцитов, почечных канальцев и некоторых других органов [20,27,30,34]. Mdr1 имеет определяющее значение для элиминации ксенобиотиков как кишечником, так и почками.

Хорошо известно, что ураты в основном секретируются почками, однако аналогичной способностью обладают энтероциты. В почечных канальцах выявлены пути как секреции, так и реабсорбции уратов. В норме основная масса уратов экскретируется почками, однако при почечной недостаточности включаются нефункционирующие до времени транспортеры тонкой кишки [29].

Между ЖКТ и почками много общего в принципах регуляции их функции и пролиферативных процессов. Также как и в кишечнике, в почках соматостатин играет важную и во многом сходную регуляторную роль. Также как и в кишечнике, в почках он продуцируется локально, обеспечивая паракринную регуляцию многих функций, в частности, подавляя пролиферативные процессы. Кроме того, соматостатин подавляет секрецию воды и натрия, обладает вазоконстрикторным эффектом [15,33,35].

Гуанилин и урогуанилин, два сходных пептида, обладающих натрий-регулирующим действием, секретируются, соответственно, в тонкой кишке и почечных канальцах. Оба пептида действуют на рецепторы эпителиоцитов, активация которых приводит к повышению внутриклеточного уровня циклического гуанозин-монофосфата. В энтероцитах это приводит к повышению секреции в просвет кишки хлора, а вслед за ним — натрия и воды. В почечных канальцах эффектом урогуанилина является повышение секреции натрия, калия и воды. Уровень гуанилина в кишечнике повышается при увеличении потребления натрия, а уровень урогуанилина, видимо, определяется уровнем натрия в крови. Можно предположить, что гуанилин и урогуанилин образуют эндокринную ось кишечник — почки, в сочетании с другими соответствующими гормонами поддерживающую содержание натрия и воды в организме [13,14].

Эпидермальный фактор роста (ЭФР), полипептид, первоначально изолированный S. Cohen из мышиных подчелюстных желез, состоит из 53 аминокислот и идентичен урогастрону — полипептиду, выделенному из мочи. ЭФР секретируется слюнными, панкреатическими и Бруннеровыми железами. Показано, что прием пищи приводит к значительному повышению ЭФР в плазме. Сам ЭФР значительно подавляет секрецию кислоты и пепсина в желудке, однако основной эффект ЭФР — стимуляция пролиферативных (репаративных) процессов в желудочно-кишечном тракте.

Повышение концентрации ЭФР в крови не сказывается на его концентрации в моче. ЭФР, стимулирующий пролиферативные процессы в почках, вырабатывается почечным эпителием, и именно он обнаруживается в моче [10]. Рецепторы к нему локализованы на базолатеральных мембранах эпителиальных клеток [16]. Как и в кишечнике, в почках ЭФР обладает митогенным эффектом в отношении эпителия [12], повышая пролиферацию, стимулируя гликолиз, пентозный цикл и подавляя глюконеогенез при снижении потребления кислорода [23].

Структурно-функциональный параллелизм неизбежно находит свое отражение в параллелизме патологических процессов, что наиболее отчетливо проявляется при рассмотрении врожденных заболеваний почек и кишечника. При первичной мальабсорбции глюкозы (врожденная глюкозо-галактозная мальабсорбция) имеет место снижение реабсорбции глюкозы в почечных канальцах. При врожденной мальабсорбции метионина нарушено всасывание этой аминокислоты в кишечнике, также как и ее реабсорбция в почках. При болезни Хартнапа, характеризующейся снижением реабсорбции триптофана и нейтральных аминокислот, можно выявить аналогичный дефект энтероцитов. При цистинурии со снижением реабсорбции цистина и основных аминокислот всасывание тех же аминокислот нарушено и в кишечнике. При врожденной лизинурии нарушены как реабсорбция в почках, так и кишечное всасывание лизина. При иминоглицинурии нарушены всасывание в кишечнике и реабсорбция в почках глицина, пролина и гидроксипролина. Вероятно сочетанное поражение почек и кишечника при витамин D-резистентном рахите.

При целиакии, непереносимости белка злаков глютена, сопровождающейся выраженной атрофией слизистой оболочки тонкой кишки и генерализованной мальабсорбцией, дисфункция тубулярного аппарата почек проявляется фосфатурией, гиперкальциурией и у некоторых больных — цистинурией и аминоацидурией. Развитие рахитоподобного синдрома у этих больных связано не только с нарушенным кишечным всасыванием кальция и витамина D, но и с канальцевой дисфункцией. При отдельных видах лактазной недостаточности выявляется глюкозурия. При первичной экссудативной энтеропатии, характеризующейся потерей белка через кишечник в связи с дефектом лимфатических сосудов тонкой кишки, может наблюдаться протеинурия [4]. Известно также сочетание гипероксалурии (с повышенным риском уролитиаза) с панкреатической стеатореей [18]. Предполагается, что в этих условиях (по неустановленной пока причине) повышается кишечное всасывание оксалатов в толстой кишке [17,24].

Следует указать еще два механизма вовлечения почек в патологический процесс при поражении кишечника, которые отражают естественные общесистемные взаимоотношения. Во-первых, при любой мальабсорбции нарушается нутритивный статус пациента и, в большей или меньшей степени, страдают энергетический, белковый и другие виды обменов в целом, что сказывается на обменных процессах в тканях почек с вторичным нарушением их функции и, возможно, развитием дистрофических процессов. Типичным случаем является целиакия, при которой развиваются дистрофические изменения во всех внутренних органах, в т. ч. в почках, что не может не отразиться на их функции.

Во-вторых, накопление токсинов в просвете желудочно-кишечного тракта, особенно при инфекционных процессах, проникновение токсинов в системный кровоток и их циркуляция может специфическим или неспецифическим образом оказывать действие на тропные органы, в т. ч. на почки. Классическим примером последнего механизма является гемолитико-уремический синдром. В данном случае токсин микроорганизма E. coli O157: H7, вызывающий гастроэнтерит, в отдельных случаях, циркулируя в крови, оказывает нефротоксический эффект с развитием острой почечной недостаточности, наряду с микроангиопатической гемолитической анемией, тромбоцитопенией, а иногда и поражением центральной нервной системы [7].

Система мочевыделения не уникальна в своей тесной связи с ЖКТ. Аналогичные параллели можно провести между ЖКТ и респираторной системой, между респираторной и мочевыделительными системами и т. д. Системы организма, несмотря на многие отличия, построены по единому функциональному плану с использованием общих («типовых») структур и функций. Представленные данные вновь показывают, что организм функционирует, как единое целое, и все процессы, как физиологические, так и патологические, следует оценивать с точки зрения межсистемных взаимоотношений. Патология со стороны одной системы в большей или меньшей степени приводит к вовлечению всех систем организма. Со всей очевидностью это проявляется в тяжелых запущенных случаях хронических заболеваний, однако имеет место даже при, казалось бы, легких состояниях. Поэтому, обследуя пациента с гастроинтестинальной патологией, следует уделить особое внимание состоянию почек и — наоборот. С другой стороны, познание единых принципов приближает нас к пониманию процессов на более высоком обобщающем уровне, выводит наши представления на новый, более высокий уровень.

кишечник почки мочевыводящий пищеварительный.

  • 1. Гистология, цитология и эмбриология. Под.ред.О. В. Волковой и Ю. К. Елецкого. М., 1996. 544 с.
  • 2. Изачик Ю. А. Синдром мальабсорбции у детей. М., 1991. 304 с.
  • 3. Полачек Э. Нефрология детского возраста. Авиценум, Прага, 1980. 330 с.
  • 4. Фадеева М. А., Лебедев В. П., Вербицкий В. И., Вельтищева И. И., Юшков С. А. Патология мочевой системы при синдроме нарушенного кишечного всасывания.// Синдром нарушенного кишечного всасывания у детей. Сб.науч.тр. М., 1985. С.51−55.
  • 5. Хэм А., Кормак Д. Гистология. Т.4. Пер. с англ. М., 1983.
  • 6. Adibi SA. Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance.// Am J Physiol.- 1997. Vol.272. N5 Pt 1.-P.E723-E736.
  • 7. Bell BP, Griffin PM, Lozano P. Predictors of hemolytic uremic syndrome in children during a large outbreak of escherichia coli 0157: H7 infections. Pediatrics.- 1997. Vol.100. N1. P. E12.
  • 8. Bushinsky DA. Genetic hypercalciuric stone forming rats.// Semin Nephrol.- 1996.-Vol.16. N5. P.448−457.
  • 9. Castagna M; Hediger MA; Harvey WR; Sacchi VF, Trotti D; Shayakul C. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis.// J Exp Biol.- 1997. Vol.200. Pt 2. P.269−286.
  • 10. Chou JS; Porush JG; Reiser IW. Aging and urinary excretion of epidermal growth factor.// Ann Clin Lab Sci.- 1997. Vol.27. N2. P.116−122.
  • 11. Daniel H; Herget M. Cellular and molecular mechanisms of renal peptide transport.// Am J Physiol.- 1997. Vol.273. N1 Pt 2.-P.F1-F8.
  • 12. Ennulat D; Brown SA; Brown CA. Mitogenic effects of epidermal growth factor and platelet-derived growth factor on canine and equine mesangial cells in vitro.// Am J Vet Res.- 1997. Vol.58. N11. P.1308−1313.
  • 13. Forte LR; Currie MG. Guanylin: a peptide regulator of epithelial transport.// FASEB J.- 1995. Vol.9. N8. P.643−650.
  • 14. Forte LR; Hamra FK; Fan X. Salt and water homeostasis: uroguanylin is a circulating peptide hormone with natriuretic activity.// Am J Kidney Dis.- 1996. Vol.28. N2. P.296−304.
  • 15. Hatzoglou A; Castanas E; Emmanouel DS; Stournaras C, Papakonstanti E; Bakogeorgou E. Identification and characterization of opioid and somatostatin binding sites in the opossum kidney (OK) cell line and their effect on growth.// J Cell Biochem.- 1996. Vol.63. N4. P.410−21.
  • 16. Hobert ME; Carlin CR; Medof ME; Kil SJ. The cytoplasmic juxtamembrane domain of the epidermal growth factor receptor contains a novel autonomous basolateral sorting determinant.// J Biol Chem.- 1997. Vol.272. N52. P.32 901−32 909.
  • 17. Hylander E; Thale M; Jensen HJ; Jarnum. Enteric hyperoxaluria: dependence on small intestinal resection, colectomy, and steatorrhoea in chronic inflammatory bowel disease.// Scand J Gastroenterol.- 1978. Vol.13. N5. P.577−588.
  • 18. Jones DP; Noe HN; Whitington G; Stapleton. Urolithiasis and enteric hyperoxaluria in a child with steatorrhea.// Clin Pediatr (Phila).- 1987. Vol.26. N6. 304−306.
  • 19. Kumar R. Calcium transport in epithelial cells of the intestine and kidney.// J Cell Biochem.- 1995. Vol.57. N3. P.392−398.
  • 20. Kusuhara H; Sugiyama Y; Suzuki H. The role of P-glycoprotein in the liver.// Nippon Rinsho.- 1997. Vol.55. N5. P.1069−1076.
  • 21. Loghman-Adham M. Adaptation to changes in dietary phosphorus intake in health and in renal failure.// J Lab Clin Med.- 1997. Vol.129. N2. P.176−188.
  • 22. McMahon RJ; Cousins RJ. Mammalian zinc transporters.// J Nutr.- 1998. Vol.128. N4. P.667−670.
  • 23. Nowak G; Schnellmann RG. Integrative effects of EGF on metabolism and proliferation in renal proximal tubular cells.// Am J Physiol.- 1995. Vol.269. N5 Pt 1. P. C1317-C1325.
  • 24. Ogilvie D; Harries JT; Muller DPR; Oyesiku J, Manning J; Packer S; McCollum. Urinary outputs of oxalate, calcium, and magnesium in children with intestinal disorders. Potential cause of renal calculi.// Arch Dis Child.- 1976. Vol.51. N10. P.790−795.
  • 25. Olson AL; Pessin JE. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family.// Annu Rev Nutr.- 1996. Vol.16. P.235−256.
  • 26. Saito H. Molecular and cell biological analyses for intestinal absorption and renal excretion of drugs.// Yakugaku Zasshi.- 1997. Vol.117. N8.-P.522−541.
  • 27. Schinkel AH. The physiological function of drug-transporting P-glycoproteins.// Semin Cancer Biol.- 1997. Vol.8. N3. P.161−170.
  • 28. Schoeneich G; Muller SC; Frohlich G; Albers P, Winter P. Management of complete ureteral replacement. Experiences and review of the literature.// Scand J Urol Nephrol.- 1997. Vol.31. N4. P.383−388.
  • 29. Sekine T; Endou H. The mechanisms of urate transport in the kidney and the intestine.// Nippon Rinsho.- 1996. Vol.54. N12. P.3237−3242.
  • 30. Silverman JA; Thorgeirsson SS. Regulation and function of the multidrug resistance genes in liver.// Prog Liver Dis.- 1995. Vol.13. P.101−123.
  • 31. Takata K. Glucose transporters in the transepithelial transport of glucose.// J Electron Microsc (Tokyo).- 1996. Vol.45. N4. P.275−284.
  • 32. Thorens B. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes.// Am J Physiol.- 1996. Vol.270. N4 Pt 1. P. G541-G553.
  • 33. Toth-Heyn P; Juhasz-Nagy A; Kekesi V; Dobi I, Tulassay T; Toth M. Direct renovascular effect of somatostatin in the dog.// Regul Pept.- 1996.-Vol.67. N2. P.103−6.
  • 34. Tsuji A; Tamai I; Sakata A. Tissue distribution of the multidrug-resistance gene product P-glycoprotein and its physiological function.// Nippon Rinsho.- 1997. Vol.55. N5. P.1059−1063.
  • 35. Turman MA; Albers AR; Apple CA; O’Dorisio TM, O’Dorisio MS. Somatostatin expression in human renal cortex and mesangial cells.// Regul Pept.- 1997. Vol.68. N1. P.15−21.
  • 36. Verkoelen CF; Romijn JC. Oxalate transport and calcium oxalate renal stone disease [editorial]. // Urol Res.- 1996. Vol.24. N4. P.183−191.
  • 37. Wright EM; Zampighi GA; Loo DD; Hirsch JR. Regulation of Na+/glucose cotransporters.// J Exp Biol.- 1997. Vol.200. Pt 2.-P.287−293.
Показать весь текст
Заполнить форму текущей работой