Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Системы и методы искусственного интеллекта в экономике

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

С помощью переменной b подсчитывается число случаев, когда объекты Xj, и S. не обладают одним и тем же признаком,. Для упрощения расчетов необходимо рассчитать матрицу значений (1-xk) для всех исследуемых объектов: ВЫВОД: В результате проведенного анализа, согласно всех используемых функций сходства и расстояния по Хеммингу, исследуемый образ «стол» имеет наибольшее сходство с эталоном «шкаф… Читать ещё >

Системы и методы искусственного интеллекта в экономике (реферат, курсовая, диплом, контрольная)

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: «Системы и методы искусственного интеллекта в экономике»

Задание 1

1. Выбираем массив финансовых показателей по которым будем оценивать финансовую устойчивость предприятия. Устанавливаем эталонные значения данных показателей в каждой группе риска в соответствие с предложенными диапазонами значений финансовых показателей:

x1

x2

x3

x4

Показатели

Эталоны

критическая зона

зона опасности

зона относительной стабильности

зона благо-получия

Коэф. абсолютной ликвидности

0,18

0,24

0,38

0,47

Коэф. оборачиваемости собст-венных средств

0,71

0,85

0,96

1,7

Коэф. обеспеченности денежных средств и расчетов

0,03

0,08

0,14

0,21

Рентабельность использования всего капитала

0,02

0,09

0,12

0,19

Рентабельность продаж

0,05

0,14

0,26

0,31

2. Задаем характеристики исследуемого предприятия. Веса показателям устанавливаются экспертами.

s

n

Показатели

Исследуемое предприятие

Вектор весов показателей (выбирается экспертами)

Коэф. абсолютной ликвидности

0,57

Коэф. оборачиваемости собст-венных средств

0.49

Коэф. обеспеченности денежных средств и расчетов

0,53

Рентабельность использования всего капитала

2,4

Рентабельность продаж

1,8

3. Рассчитываем разницу между составляющими векторов исследуемого предприятия и каждого эталонного образа:

(s-xi)

0,39

0,33

0,19

0,10

— 0,22

— 0,36

— 0,47

— 1,21

0,50

0,45

0,39

0,32

2,38

2,31

2,28

2,21

1,75

1,66

1,54

1,49

4. Рассчитываем квадрат разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:

(s-xi)^2

0,1521

0,1089

0,0361

0,0100

0,0484

0,1296

0,2209

1,4641

0,2500

0,2025

0,1521

0,1024

5,6644

5,3361

5,1984

4,8841

3,0625

2,7556

2,3716

2,2201

5. Таким образом, расстояния по Эвклиду () между исследуемым предприятием и эталонными образами будут равны:

х1

х2

х3

х4

Расстояния по Эвклиду

9,1774

8,5327

7,9791

8,6807

Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х3 (зона относительной стабильности).

6. Рассчитываем разницу между составляющими векторов исследуемого предприятия и каждого эталонного образа, возведенную в степень л=4:

(s-xi)^л, л=4

0,2 313 441

0,1 185 921

0,130 321

0,10 000

0,234 256

0,1 679 616

0,4 879 681

2,14 358 881

0,6 250 000

0,4 100 625

0,2 313 441

0,1 048 576

32,8 542 736

28,47 396 321

27,2 336 256

23,85 443 281

9,37 890 625

7,59 333 136

5,62 448 656

4,92 884 401

7. Таким образом, расстояния по Минковскому () между исследуемым предприятием и эталонными образами будут равны:

х1

х2

х3

х4

Расстояние по Минковскому

41,55 231 058

36,13 695 619

32,72 108 355

30,93 745 139

Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).

8. Рассчитываем модуль разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:

|s-xi|

0,39

0,33

0,19

0,10

0,22

0,36

0,47

1,21

0,50

0,45

0,39

0,32

2,38

2,31

2,28

2,21

1,75

1,66

1,54

1,49

9. Таким образом, расстояния по модулю разницы () между исследуемым предприятием и эталонными образами будут равны:

х1

х2

х3

х4

Расстояние по модулю разности

5,24

5,11

4,87

5,33

Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х3 (зона относительной стабильности).

10. Рассчитываем произведение весов коэффициентов и квадрата разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:

nj*(s-xi)^2

1,0647

0,7623

0,2527

0,0700

0,2904

0,7776

1,3254

8,7846

0,7500

0,6075

0,4563

0,3072

22,6576

21,3444

20,7936

19,5364

15,3125

13,7780

11,8580

11,1005

11. Таким образом, расстояния по Эвклиду с весами () между исследуемым предприятием и эталонными образами будут равны:

х1

х2

х3

х4

Расстояние по Эвклиду (c весами)

40,0752

37,2698

34,6860

39,7987

Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х3 (зона относительной стабильности).

12. Рассчитываем произведение весов коэффициентов и разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа, возведенной в степень л=4:

nj*(s-xi)^л, л=4

0,16 194 087

0,8 301 447

0,912 247

0,0007

0,1 405 536

0,10 077 696

0,29 278 086

12,86 153 286

0,1875

0,12 301 875

0,6 940 323

0,3 145 728

128,3 417 094

113,8 958 528

108,934 502

95,41 773 124

46,89 453 125

37,9 666 568

28,1 224 328

24,64 422 005

13. Таким образом, расстояния по Минковскому с весами () между исследуемым предприятием и эталонными образами будут равны:

х1

х2

х3

х4

Расстояние по Минковскому (c весами)

175,5 997 369

152,1 693 198

136,5 871 896

132,9 556 414

Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).

14. Рассчитываем произведение весов коэффициентов и модулей разницы между составляющими векторов исследуемого предприятия и каждого эталонного образа:

nj*|s-xi|

2,73

2,31

1,33

0,7

1,32

0,4752

0,223 344

0,27 024 624

1,5

1,35

1,17

0,96

9,52

9,24

9,12

8,84

8,75

8,3

7,7

7,45

15. Таким образом, расстояния по модулю разницы с весами () между исследуемым предприятием и эталонными образами будут равны:

х1

х2

х3

х4

Расстояние по модулю разности (c весами)

23,82

21,6752

19,543 344

18,22 024 624

Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).

16. Рассчитываем сумму между составляющими векторов исследуемого предприятия и каждого эталонного образа:

(s+xi)

0,75

0,24

0,77

0,80

1,20

0,85

0,74

1,34

0,56

0,08

0,64

0,66

2,42

0,09

2,50

2,50

1,85

0,14

2,01

1,97

17. Рассчитываем модуль отношения (s-xi)/(s+xi) для каждой составляющей векторов исследуемого предприятия и каждого эталонного образа:

|(s-xi)/(s+xi)|

0,52

1,375

0,246 753

0,125

0,183 333

0,423 529

0,635 135

0,902 985

0,892 857

5,625

0,609 375

0,484 848

0,983 471

25,66 667

0,912

0,884

0,945 946

11,85 714

0,766 169

0,756 345

18. Таким образом, расстояния по Камберру () между исследуемым предприятием и эталонными образами будут равны:

х1

х2

х3

х4

Расстояние по Камберру

3,525 607

44,94 734

3,169 433

3,153 179

Минимальное расстояние между исследуемым предприятием и эталоном свидетельствует о принадлежности исследуемого предприятия к области риска х4 (зона благополучия).

ВЫВОД: В результате проведенного анализа можно сделать вывод о том, что уровень финансовой устойчивости исследуемого предприятия характеризуется относительной стабильностью и благополучием.

Задание 2

1. Задаем эталонные объекты, исследуемый образ и признаки, по которым будем оценивать сходство:

Вектор признаков

в него можно класть вещи

сделано преимущественно из одного материала

имеет дверцу

в него можно увидеть свое отражение

на нем сидят

окно

X1

да

да

нет

да

нет

шкаф

X2

да

да

да

нет

нет

стул

X3

да

да

нет

нет

да

диван

X4

да

нет

нет

нет

да

стол *

S

да

да

да

нет

нет

* Цветом выделен исследуемый образ.

2. Переводим качественные характеристики объектов в количественные. В результате формируется двоичный массив:

Вектор признаков

в него можно класть вещи

сделано преимущественно из одного материала

имеет дверцу

в него можно увидеть свое отражение

на нем сидят

окно

X1

шкаф

X2

стул

X3

диван

X4

стол *

S

3. Рассчитываем число совпадений наличия признаков объектов Xj, и S. Она может быть вычислена с помощью соотношения (n — количество признаков). Для этого используем функцию СУММПРОИЗВ, указывая в ней массивы векторов значений признаков исследуемого образа и каждого из эталонного образов.

Таким образом:

A (количество совпадений присутствия признаков у исследуемого объекта и эталона Xj)

окно

X1

шкаф

X2

стул

X3

диван

X4

4. С помощью переменной b подсчитывается число случаев, когда объекты Xj, и S . не обладают одним и тем же признаком,. Для упрощения расчетов необходимо рассчитать матрицу значений (1-xk) для всех исследуемых объектов:

(1-xk)

окно

X1

шкаф

X2

стул

X3

диван

X4

стол *

X5

Рассчитываем значение переменной b аналогично методу расчета переменной a, используя значения матрицы, полученной в п.4:

B (количество совпадений отсутствия признаков у исследуемого объекта и эталона Xj)

окно

X1

шкаф

X2

стул

X3

диван

X4

5. Аналогичным образом рассчитывает переменные g и h по формулам

:

G

H

окно

X1

шкаф

X2

стул

X3

диван

X4

6. Проверяем правильность произведенных расчетов по формуле:

a + b + g + h = n

где n — количество анализируемых признаков (в нашем случае n = 5)

a

b

g

h

n

Следовательно, расчеты произведены верно.

7. Рассчитываем значения функций сходства с каждым эталонным образом по формулам Рассела и Рао, Жокара и Нидмена, Дайса, Сокаля и Снифа, Сокаля и Мишнера, Кульжинского, Юла:

(функция сходства Рассела и Рао),

(функция сходства Жокара и Нидмена),

(функция сходства Дайса),

(функция сходства Сокаля и Снифа),

(функция сходства Сокаля и Мишнера),

(функция сходства Кульжинского),

(функция сходства Юла).

Рассела и Рао

Жокара и Нидмена

Дайса

Сокаля и Снифа

Сокаля и Мишнера

Кульжинского

Юла

Эталоны

0,4

0,5

0,333 333

0,333 333

0,6

0,333 333 333

окно

0,6

0,5

#ДЕЛ/0!

шкаф

0,4

0,5

0,333 333

0,333 333

0,6

0,333 333 333

стул

0,2

0,25

0,2

0,142 857

0,4

0,33 333

— 0,333 333 333

диван

При распознавании образов с помощью функций сходства, исследуемый образ можно отнести к эталону, если значение функции сходства между ними максимально. Следовательно, наиболее близким эталоном к исследуемому образу является «шкаф», «стул», «окно».

8. Рассчитаем расстояние по Хеммингу между исследуемым образом и эталонами Расстояние по Хеммингу между двумя двоичными векторами равно числу несовпадающих двоичных компонент векторов. Используя переменные g и h его можно рассчитать по следующей формуле:

SH = g + h

SH = g + h

Окно

X1

Шкаф

X2

Стул

Х3

Диван

X4

При распознавании образов с помощью вычисления расстояния между объектами в качестве критерия принятия решения о принадлежности к конкретному эталону используется минимальное расстояние от исследуемого образа до эталона. Согласно данному критерию, наиболее близким к исследуемому образу является эталон «шкаф», «стул», «окно».

ВЫВОД: В результате проведенного анализа, согласно всех используемых функций сходства и расстояния по Хеммингу, исследуемый образ «стол» имеет наибольшее сходство с эталоном «шкаф», «стул», «окно».

9. Используя знания о логическом смысле переменных a, b, g, h предлагаю следующий вариант функции сходства:

Используя её для оценивания сходства между исследуемым образом и эталонами, получим:

Эталоны

Предложенная функция

Окно

0,4

Шкаф

Стул

0,4

Диван

0,2

Как видим, результат предложенный функции совпадает с результатами функций Рассела и Рао, Жокара и Нидмена, Дайса, Сокаля и Снифа, Сокаля и Мишнера, Кульжинского, Юла, что свидетельствует о её достаточной достоверности.

Показать весь текст
Заполнить форму текущей работой