Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Тепловой расчет двигателя внутреннего сгорания

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

В качестве оптимизируемого параметра для этих систем могут быть приняты различные показатели двигателя: топливная экономичность, токсичность отработавших газов, характер загрузки двигателя. Если, например, в качестве оптимизируемого параметра выбрана топливная экономичность, то адаптивная система на любом режиме и в любой момент времени должна обеспечить работу двигателя с максимально возможным… Читать ещё >

Тепловой расчет двигателя внутреннего сгорания (реферат, курсовая, диплом, контрольная)

Содержание Введение

1. Выбор исходных данных

2. Тепловой расчет

2.1 Топливо

2.2 Параметры рабочего тела

2.3 Параметры окружающей среды и остаточные газы

2.4 Процесс впуска

2.5 Процесс сжатия

2.6 Процесс сгорания

2.7 Процессы расширения и выпуска

2.8 Индикаторные параметры рабочего цикла

2.9 Эффективные показатели двигателя

2.10 Основные параметры цилиндра и двигателя

2.11 Построение индикаторной диаграммы

2.12 Тепловой баланс

3. Расчет внешней скоростной характеристики

4. Кинематика и динамика двигателя

4.1 Кинематический расчёт КШМ

4.1.1 Выбор отношения радиуса кривошипа к длине шатуна и длины шатуна

4.1.2 Перемещение поршня

4.1.3 Скорость поршня

4.1.4 Ускорение поршня

4.2 Динамический расчет двигателя

4.2.1 Силы давления газов

4.2.2 Приведение масс частей КШМ

4.2.3 Удельные и полные силы инерции

4.2.4 Суммарные силы давления газов

4.2.5 Крутящие моменты

4.2.6 Силы, действующие на шатунную шейку коленчатого вала

4.2.7 Силы, действующие на колено вала

4.3 Уравновешивание двигателя

4.3.1 Уравновешивание четырехцилиндрового рядного двигателя.

4.3.2 Равномерность крутящего момента и равномерность хода двигателя

5. Расчёт основных деталей двигателя

5.1 Расчёт цилиндропоршневой группы

5.1.1 Расчёт поршня

5.1.2 Расчет поршневого кольца

5.1.3 Расчет поршневого пальца

5.1.4 Расчет гильзы цилиндра

6. Расчет систем двигателя

6.1 Расчет элементов системы смазки

6.2 Расчет элементов системы охлаждения Список литературы Приложения

Введение

Карбюраторные двигатели прошли длительный путь развития и достигли высокого совершенства. Однако перед конструкторами и эксплуатационниками стоит задача — обеспечить дальнейший существенный рост экономичности этих двигателей.

Для этого необходимо сокращение энергозатрат и уменьшение трудозатрат на их изготовление, техническое обслуживание и ремонт, снижение расхода металла, эксплуатационных материалов; облегчение условий труда персонала и управления двигателями; улучшение их экологических характеристик. Достижение более совершенных показателей возможно на основе применения прогрессивных конструктивных схем, рабочих процессов, конструкций систем узлов и деталей.

Максимальный относительный к.п.д., характеризующий степень совершенства действительного цикла, достигает у двигателей грузовых автомобилей на режимах, близких к полным нагрузкам, значений порядка 0,84—0,87. Это указывает на то, что дальнейшее улучшение рабочих процессов не может быть существенным, если не увеличивать степень сжатия двигателя.

Повышение степени сжатия является эффективным средством улучшения топливной экономичности карбюраторных двигателей на всех режимах работы. Однако этот путь требует или повышения октанового числа бензина, или снижения требований двигателя к антидетонационным качествам бензина. В связи с известными проблемами обеспечения поршневых д.в.с. жидкими топливами нефтяного происхождения дальнейшее повышение октанового числа бензина маловероятно. Поэтому активно разрабатываются различные способы снижения требований двигателя к антидетонационным качествам бензина. Одним из таких способов является использование винтовых впускных каналов в новых карбюраторных двигателях, ранее нашедших применение в дизелях. Интенсивное вращательное движение заряда в цилиндрах, создаваемое каналами в процессе впуска, приводит к заметному увеличению скорости сгорания и способствует благодаря этому уменьшению опасности возникновения детонации, так как сокращается время, в течение которого в последних порциях заряда развиваются очаги самовоспламенения. Переход к винтовым впускным каналам позволяет без изменения октанового числа бензина увеличить степень сжатия двигателя, в результате чего эксплуатационная экономичность двигателя улучшается на 3—4%.

Большие перспективы в направлении повышения топливной экономичности карбюраторных двигателей имеет применение электроники в системах питания и зажигания. Применение электроники позволяет повысить мощность искрового разряда, а при необходимости и изменять ее в зависимости от режима работы двигателя. Внедрение микропроцессорных систем зажигания улучшает топливную экономичность карбюраторных двигателей на 3—5%.

Еще больший эффект микропроцессорная техника дает в системах питания — карбюраторных или с впрыскиванием бензина, — поскольку она позволяет регулировать состав смеси не только в зависимости от скоростного и нагрузочного режимов, но также и в зависимости от теплового состояния двигателя. В отличие от традиционных карбюраторов системы питания с электронным управлением позволяют обеспечить оптимальный состав смеси во всем диапазоне режимов двигателя.

Применение микропроцессорной техники в системе питания обеспечивает экономию топлива в эксплуатационных условиях до 6—8%. Однако микропроцессорные системы работают по «жестким» программам и не могут автоматически изменять их, например, по мере изменения технического состояния двигателя (износ деталей, регулировка зазоров и т. д.), а также при изменении антидетонационных свойств бензина. В дальнейшем по мере развития электроники можно ожидать перехода к системам с автоматической адаптацией, которые сами изменяют программу дозирования смеси (или угол опережения зажигания) в зависимости от всего комплекса влияющих факторов.

В качестве оптимизируемого параметра для этих систем могут быть приняты различные показатели двигателя: топливная экономичность, токсичность отработавших газов, характер загрузки двигателя. Если, например, в качестве оптимизируемого параметра выбрана топливная экономичность, то адаптивная система на любом режиме и в любой момент времени должна обеспечить работу двигателя с максимально возможным значением эффективного к.п.д.

На основе исходых данных в настоящем курсовом проекте проводится тепловой расчет двигателя, в результате которого определяются основные энергетические, экономические и конструктивные параметры двигателя. По результатам теплового расчета производится построение индикаторной диаграммы, выполняется динамический, кинематический и прочностной расчеты.

1. Выбор исходных данных

Определение номинальной мощности и числа оборотов проектируемого двигателя. Определение мощности двигателя для проектируемого автомобиля производится из условия его движения на прямой передаче с максимальной скоростью Vmax на ровном горизонтальном участке асфальтобетонного шоссе.

1. Мощность двигателя, соответствующая максимальной скорости автомобиля:

Nv = g · (Ga · fv · Vmax+ кF · V3max) / з, (1)

где з — КПД трансмиссии грузового а/м, з = 0,8 — 0,92;

Ga — полный вес автомобиля, кг,

Ga = Gо + Gг; (2)

где Gо — собственный вес автомобиля, кг;

Gг — грузоподъемность автомобиля, кг;

Ga = 2500 + 1500 = 4000 кг

fv = 0,021 — коэффициент сопротивления качению;

кF = 0,2 — фактор обтекаемости автомобиля, кг· с22;

Vmax = 95 км/ч — максимальная скорость автомобиля.

Nv = 9,81 · (4000 · 0,021 · 26,4+ 0,2 · 26,43) / 0,8 = 72,3 кВт.

2. Максимальная мощность двигателя:

Ne max = Nv/[ (nv/nN) + (nv/nN)2 — (nv/nN)3], (3)

где (nv/nN) = 1,2 — отношение оборотов коленчатого вала двигателя при Vmax автомобиля к числу оборотов при Ne max.

Ne max = 72,3 / (1,2 + 1,22 — 1,23) = 79,3 кВт.

3. Число оборотов коленчатого вала двигателя, соответствующее Vmax:

nv = Vmax · iк · iо /(0,377 · rк), (4)

где iк = 1 — передаточное отношение коробки передач на прямой передаче;

iо = 5,125 — передаточное отношение главной передачи;

rк — кинематический радиус колеса (радиус качения), rк = л · rc: (5)

где л — коэффициент радиальной деформации шины, л = 0,93 — 0,95;

rс — статический радиус колеса, м.

rк = 0,95 · 0,342 = 0,325 м;

nv = 95 · 1 · 5,125 /(0,377 · 0,325) = 3975 об/мин.

2. Тепловой расчет

Тепловой расчет позволяет с достаточной степенью точности аналитическим путем определить основные параметры вновь проектируемого двигателя, а также проверить степень совершенства действительного цикла реально работающего двигателя.

2.1 Топливо В соответствии с заданной степенью сжатия = 9,3 в качетве топлива можно использовать бензин марки АИ-93.

Средний элементарный состав и молекулярная масса топлива:

С = 0,855; Н = 0,145 и

где С Нмассовые доли углерода водорода в 1 кг топлива кг.

Низшая теплота сгорания топлива:

(6)

Hu = 3391 • C + 125,60 • H 10,89 (OS) 2,51 (9 • H + W) =

= 33,91 0,855 + 125,6 0,145 2,51 9 0,145 = 43 900 кДж/кг.

2.2 Параметры рабочего тела Теоретически необходимое количество воздуха для сгорания 1 кг топлива:

(7)

(8)

Коэффициент избытка воздуха. Коэффициент избытка воздуха — отношение действительного количества воздуха, участвующего в сгорании 1 кг топлива, к теоретически необходимому количеству воздуха.

Стремление получить двигатель повышенной литровой мощности позволяет выбрать значение =096 при nN =3310 об/мин, обеспечивающее максимальную скорость сгорания и достаточную экономичность.

Количество горючей смеси :

кмоль горсм/кг топл (9)

;

Принимаем постоянную величину зависящую от отношения количества водорода к окиси углерода содержащихся в продуктах сгорания К=05.

Определяем количество отдельных компонентов продуктов сгорания

(10)

(11)

;

(12)

(13)

(14)

;

Определяем суммарное количество продуктов сгорания:

кмоль прсг/кг топл (15)

Проверка: (16)

2.3 Параметры окружающей среды и остаточные газы Давление и температура окружающей среды при работе двигателя без наддува рk = po = 0,1 Мпа и Тk = To=288 К.

Принимаем температуру остаточных газов учитывая при этом значения коэфициента избытка воздуха Тr = 1000 К.

Определяем давление остаточных газов

pr = (1,05? 1,25) ро Мпа; (17)

pr = 118 01 = 0118 Мпа.

2.4 Процесс впуска С целью получения хорошего наполнения двигателя на номинальном скоростном режиме принимается температура подогрева свежего заряда ДТN=20C. Тогда:

Определяем плотность заряда на впуске:

(18)

где Rв=287 Дж/кгград удельная газовая постоянная для воздуха Потери давления на при условии качественной обработки внутренней поверхности впускной системы можно принять

где коэффициент затухания скорости движения заряда;

ВП коэффициент сопротивления впускной системы.

(19)

(20)

Определяем давление в конце впуска:

Мпа (21)

ра=01 0011=0089 Мпа.

Вычисляем коэффициент остаточных газов:

(22)

Определяем температуру в конце впуска:

К. (23)

Та=(288 + 20 + 0051 1000) / (1 + 0051) = 342 К.

Определяем коэффициент наполнения

(24)

.

2.5 Процесс сжатия Средний показатель адиабаты сжатия при = 9,3 и рассчитанных значениях определяем по графику рис. 7. стр. 27, .

Cредний показатель политропы сжатия принимаем несколько меньше. При выборе учитываем, что с уменьшением частоты вращения теплоотдача от газов в стенки цилиндра увеличивается, а уменьшается по сравнению с более значительно

(25) принимаем .

Определяем давление в конце сжатия:

Мпа (26)

рс = 0089 9,313576 = 184 Мпа.

Определяем температуру в конце сжатия:

К (27)

Тс = 342 9,3 (135761) = 759,2 К.

Принимаем .

Средняя мольная теплоемкость в конце сжатия:

а) свежей смеси (воздуха) кДж/кмольград, (28)

где tcтемпература смеси в конце сжатия К (29)

tc=760 273=487 К.

б) остаточных газов

(30)

где 23,611 и 24,041 — значения трудоёмкости продуктов сгорания соответственно при и, взятая по таблице 8, при б=0,96 .

в) рабочей смеси

кДж/кмольград (31)

2.6 Процесс сгорания Определяем коэффициент молекулярного изменения горючей смеси

(32)

.

Определяем коэффициент молекулярного изменения рабочей смеси

(33)

.

Определяем количество теплоты, потерянное вследствие химической неполноты сгорания топлива при б<1 из-за недостатка кислорода:

кДж/кг (34)

ДНu=119 950 (1096) 0512 = 2456 кДж/кг .

Теплота сгорания рабочей смеси:

кДж/кмольраб.см; (35)

Средняя мольная теплоемкость продуктов сгорания:

кДж/кмольград (36)

где tzтемпература в конце видимого процесса сгорания С.

Коэффициент использования теплоты для различных частот вращения коленчатого вала, принимаем по графику при. Температура в конце видимого процесса сгорания .

Определяем максимальное давление сгорания теоретическое:

МПа (38)

рz = 18 410 612 946/760 = 7,57 МПа.

Определяем степень повышения давления:

(39)

= 7,57 / 1,84= 4,11

2.7 Процессы расширения и выпуска Средний показатель адиабаты расширения определяем по номограмме рис. 11, стр. 34 при заданном =9,3 для значений .

.

Средний показатель политропы расширения:

В соответствии с полученной, принимаем значение

Определяем давление в конце процесса расширения:

МПа (40)

pb=7,57 / 9,31,25 = 047 МПа Определяем температуру в конце процесса расширения:

(41)

Tb=2946 / 9,312511 =1687 К.

Проверка ранее принятой температуры остаточных газов:

К (42)

Тг=1687/.

Погрешность равна Д = 100(10 641 000) / 1000 = 6,4%.

2.8 Индикаторные параметры рабочего цикла Определяем теоретическое среднее индикаторное давление

МПа (43)

Определяем cреднее индикаторное давление:

МПа, (44)

где — коэффициент полноты диаграммы.

рi = 096 1217 = 1168 МПа.

Определяем индикаторный к. п. д. и индикаторный удельный расход топлива:

(45)

i = 1168 1496 096 / (439 121 08) = 0395

gi = 3600 / (Hu i), г/кВтч (46)

gi = 3600 / (439 0395) = 208 г/кВтч.

2.9 Эффективные показатели двигателя Предварительно приняв ход поршня мм, определяем среднее давление механических потерь для карбюраторного четырехцилиндрового двигателя:

МПа (6)

где — средняя скорость, м/c;

(47)

Определяем среднее эффективное давление и механический к. п. д.:

ре = рi рМ Мпа (48)

ре = 11 680 141=1,027МПа

М = ре / рi, (49)

М= 1,027 / 1168=0,879.

Определяем эффективный к. п. д. и эффективный удельный расход топлива:

е = i М, (50)

е = 0395 0,879= 0,347

gе = 3600 / (Hu е), г/кВтч, (51)

gе = 3600 / (439 0347) = 236 г/кВтч.

Часовой расход топлива определяется:

Gт = ge Ne / 1000, (52)

Gт = 236 79,3 / 1000 = 18,71 кг/ч.

2.10 Основные параметры цилиндра и двигателя Определяем литраж двигателя:

л, (53)

где = 4 тактность двигателя

Nеэффективная мощность двигателя, кВт.

Vл = 30 4 79,3 / 1,027 3310 = 2,8 л.

Определяем рабочий объем одного цилиндра:

л (54)

Vh = 2,8 / 4= 0,7 л.

Определяем диаметр цилиндра. Так как ход поршня предварительно был принят то

мм (55)

Окончательно принимаем

Основные параметры и показатели двигателя определяем по окончательно принятым значениям

л (56)

Vл = 3,14 1002 86 4 / 4 106 = 2,7 л.

Определяем площадь поршня

см2 (57)

FП = 3,14 102 / 4 = 78,5 см2.

Определяем эффективную мощность

Nе = ре Vл nN / (30) кВт (58)

Nе = 1027 2,7 3310 / (30 4) = 76,5 кВт.

Определяем эффективный крутящий момент Ме = 3 104 Nе / (nN) Нм (59)

Ме =3 10476,5 / (3,14 3310) = 220,81 Нм.

Определяем часовой расход топлива

GТ= Nе gе 10-3 кг/ч (60)

GТ = 76,5 236 10-3 = 18,05 кг/ч .

Литровая мощность двигателя:

кВт/ л (61)

Nл = 76,5 / 2,7 = 28,3 кВт/ л.

Скорость поршня:

(62)

2.11 Построение индикаторной диаграммы Индикаторную диаграмму строим для номинального режима работы двигателя, т. е. при, аналитическим методом.

Масштабы диаграммы: — масштаб хода поршня — масштаб давлений. Определяем приведенные величины, соответствующие рабочему объему цилиндра и объему камеры сгорания:

АВ = S / МS, мм (63)

АВ = 86 /1,0 = 86 мм.

ОА = АВ / (1) мм (64)

ОА=86 / (9,31) = 10,4 мм.

Определяем максимальную высоту диаграммы (точка z): МПа.

.

Определяем ординаты характерных точек:

ра / МР = 0089 / 005 = 1,8 мм

рс / МР = 1,84 / 005 = 36,8 мм ;

рb / МР = 047 / 005 =9,4 мм

рr / МР = 0118 / 005= 2,4 мм

рo / МР = 01 / 005= 2 мм

Построение политроп сжатия и расширения аналитическим методом:

а) политропа сжатия

(65)

где ОВ = ОА + АВ мм ОВ = 10,4 + 86 = 96,4 мм.

Отсюда: МР = ра/ МР (ОВ/ОХ) мм рХ / МР =1,8(96,4 /ОХ)13576 мм.

б) политропа расширения

(66)

Отсюда рХ / МР= (рb / МР)(ОВ/ОХ), мм рХ / МР = 9,4(96,4 / ОХ)125 мм.

Результаты расчетов точек политроп сводим табл.2.1.

Таблица 2.1. Результаты расчетов точек политроп.

ОХ, мм

ОВ/ОХ

Политропа сжатия

Политропа расширения

10,4

9,3

20,64

36,8

1,84 (точка с)

16,24

151,4

7,57 (точка z)

12,1

16,83

30,3

1,52

13,45

126,4

6,32

13,8

14,04

25,3

1,27

11,39

107,1

5,36

19,3

8,890

16,0

0,8

7,477

70,3

3,52

24,1

6,567

11,8

0,59

5,657

53,2

2,66

32,1

4,444

8,0

0,4

3,948

37,1

1,86

48,2

2,562

4,6

0,23

2,378

22,4

1,12

64,3

1,5

1,734

2,5

0,125

1,66

15,6

0,78

96,4

1,8

0,089 (точка а)

9,4 (точка b)

0,47

Теоретическое среднее индикаторное давление:

(67)

где — площадь диаграммы (aczba),, что очень близко к величине, полученной в тепловом расчете.

Скругление индикаторной диаграммы осуществляется на основании следующих соображений и расчетов. Так как рассчитываемый двигатель достаточно быстроходный, то фазы газораспределения необходимо устанавливать с учетом получения хорошей очистки цилиндра от отработавших газов и обеспечения дозарядки в пределах, принятых в расчете. В связи с этим:

· начало открытия впускного клапана (точка) устанавливается за до прихода поршня в в. м. т.;

· закрытие (точка) — через 46? после прохода поршнем н. м. т.;

· начало открытия выпускного клапана (точка) принимается за 46? до прихода поршня в н. м. т.;

· закрытие (точка) — через 14? после прохода поршнем в. м. т.;

· учитывая быстроходность двигателя, угол опережения зажигания =30;

· продолжительность периода задержки воспламенения .

В соответствии с принятыми фазами газораспределения и углом опережения зажигания определяем положение точек по формуле для перемещения поршня :

мм, (68)

где отношение радиуса кривошипа к длине шатуна.

(69)

где r = 43мм — радиус кривошипа; =160мм — длина шатуна.

Расчеты ординат точек сведены в табл. 2.2.

Таблица 2.2. — Результаты расчета ординат точек

Точки

Положение точек

Расстояние точек от в. м. т., мм

14? до в. м. т.

0,038

1,6

14? после в. м. т.

0,038

1,6

46? после н. м. т.

1,764

75,8

30o до в.м.т.

0,168

7,2

23o до в.м.т.

0,1

4,3

46? до н. м. т.

1,764

75,8

Положение точки определяется из выражения

МПа (70)

рс = 125 184 = 2,3 МПа рс / Мр=2,3 / 005 = 46 мм.

Определяем действительное давление сгорания

МПа (71)

МПа

= 6,43 / 005 = 128,6 мм.

Нарастание давления от точки до составляет: где положение точки по горизонтали. Соединяя плавными кривыми точки с, с и далее с и кривой расширения, с и линией выпуска, получаем скруглённую действительную индикаторную диаграмму:

2.12 Тепловой баланс Определяем количество теплоты, введенной в двигатель с топливом:

Qo=HuGt / 3,6, Дж/с; (72)

Qo = 43 900 18,05 / 3,6 = 220 100 Дж/сек.

Определяем теплоту, эквивалентную эффективной работе за 1с:

Qe=1000Ne, Дж/с. (73)

Определяем теплоту, передаваемую охлаждающей среде:

QB=ciD1+2mnm(Hu— ДHu)/(Hu), Дж/с, (74)

где с = 0,5 — коэффициент пропорциональности для четырехтактных двигателей;

m — показатель степени для четырехтактных двигателей при 3310,

m=0,62.

D = 10 см — диаметр цилиндра,

i = 4, — число цилиндров.

Определяем теплоту, унесенную с отработавшими газами:

Qr= (Gt / 3,6), Дж/с, (75)

где и определены следующим образом:

а) по табл. 8 при б= 0,96, tг=727 0С определяется методом интерполяции

= 25,46 кДж / (кмольград) — теплоемкость остаточных газов,

б) аналогично по табл. 6 при t0=15 0C определяются:

=20,806 кДж/(кмольград)

Qr=(18,05 / 3,6) [0,532 33,36 (1000−273) — 0,5 29,12 (288−273)] = 64 600 Дж/с.

Определяем теплоту, потерянную из-за химической неполноты сгорания топлива при б=0,96:

Qн.с= ДHuGt / 3,6, Дж/с; (76)

Qн.с=2456 18,05 / 3,6 = 12 300 Дж/с.

Определяем неучтенные потери теплоты:

Qост = Qо — (Qе + QB + Qr + Qн.с), Дж/с; (77)

Qост =220 100 — (76 500 + 52 000 + 64 600 + 12 300) = 14 700 Дж/с.

Составляющие теплового баланса в Дж/с и процентах представлены в табл. 2.3.

Таблица 2.3. Составляющие теплового баланса.

Составляющие

Q, Дж/с.

q, %.

Qe

34,7

Qв

23,6

Qг

29,3

Qн.с.

5,6

Qост

6,8

Qо

3. Расчет внешней скоростной характеристики

Для анализа работы автомобильных и тракторных двигателей используются различные характеристики: скоростные, нагрузочные, регуляторные, регулировочные и специальные. Обычно все характеристики получают экспериментальным путем.

Скоростная характеристика показывает изменение мощности, крутящего момента, расходов топлива и других параметров от частоты вращения коленчатого вала.

Скоростная характеристика, полученная при полном дросселе (карбюраторный двигатель), соответствующей номинальной мощности, называется внешней.

На основании теплового расчета, проведенного для режима номинальной мощности, получены следующие параметры, необходимые для расчета и построения внешней скоростной характеристики Эффективная мощность Ne = 76,5 кВт;

Частота вращения коленвала при максимальной мощности nN=3310 об/мин;

Тактность двигателя = 4;

Литраж Vл = 2,7 л;

Ход поршня S = 86 мм;

Теоретически необходимое количество воздуха для сгорания 1 килограмма топлива l0 = 14,96 кг возд./ кг топл.;

Плотность заряда на впуске к = 0 = 1,21 кг/м3;

Коэффициент избытка воздуха = 0,96;

Удельный эффективный расход топлива gеN = 236 г/(кВтч) Расчетные точки скоростной характеристики.

Принимаем: nmin = 700 об/мин; nx1-1350 об/мин; далее через каждые 650 об/мин и nN = 3310 об/мин.

Значение эффективной мощности:

Значение эффективного крутящего момента:

(79)

Значение среднего эффективного давления:

(80)

Средняя скорость поршня:

(81)

Среднее давление механических потерь:

(82)

Среднее индикаторное давление:

(83)

Индикаторный крутящий момент:

(84)

Удельный эффективный расход топлива:

Часовой расход топлива:

(86)

Коэффициент избытка воздуха: принимаем при nmin=700 об/мин, =0,86, во всех остальных расчетных точках ==0,96.

Коэффициент наполнения:

(87)

Произведя расчёты параметров для различных расчётных режимов работы (n, об/мин), результаты сводим в таблицу 4.

Таблица 4

nx

показатели

Nex

Mex

pex

Vпср

pмx

pix

Mix

gex

Gтx

бx

зvx

об/мин

кВт

Н•м

МПа

м/с

МПа

МПа

Н•м

г/кВтч

кг/ч

;

;

18,8

256,6

1,193

2,01

0,057

1,25

268,7

4,55

0,86

0,85

38,7

273,88

1,274

3,87

0,078

1,352

290,6

8,44

0,96

0,91

57,3

273,72

1,273

5,73

0,099

1,372

294,9

11,97

0,96

0,88

71,0

255,97

1,191

7,6

0,12

1,311

281,8

15,26

0,96

0,84

76,5

220,81

1,027

9,49

0,141

1,168

251,1

18,05

0,96

0,8

69,7

167,52

0,779

11,4

0,163

0,942

202,5

18,96

0,96

0,7

По расчетным данным, приведенным в табл. 4, строим внешнюю скоростную характеристику проектируемого двигателя.

Коэффициент приспособляемости:

(88)

где Memax определен по скоростной характеристике.

4. Кинематика и динамика двигателя

4.1 Кинематический расчёт КШМ

4.1.1 Выбор отношения радиуса кривошипа к длине шатуна и длины шатуна В целях уменьшения высоты двигателя без значительного увеличения инерционных и нормальных сил величина отношения радиуса кривошипа к длине шатуна предварительно была принята в тепловом расчете .

Определяем длину шатуна

мм, (89)

где R = 43 радиус кривошипа мм.

Lш = 43 / 0269 = 160,0 мм.

4.1.2 Перемещение поршня

Построив кинематическую схему кривошипно-шатунного механизма, устанавливаем, что ранее принятые значения и обеспечивает движение шатуна без задевания за нижнюю кромку цилиндра. Следовательно, перерасчета величин и делать не требуется.

Масштабы:

Ms = 1 мм в мм;

Мц = 3ъ в мм через каждые 30ъ ;

При j = 0 Vп = Vмах, а на кривой Sх — это точки перегиба.

мм, (90)

где угол поворота коленчатого вала град.

Расчет производим аналитически через каждые угла поворота коленчатого вала. Значения для при различных взяты из ([1] табл. 19) и занесены в расчетную табл. 5., вместе с вычисленным перемещением.

Определяем угловую скорость вращения коленчатого вала

рад/с (91)

=3310/30=346 рад/с.

4.1.3 Скорость поршня

Мv = 0,5 м/с в мм.

При перемещении поршня скорость его движения является величиной переменной и при постоянном числе оборотов зависит только от изменения угла поворота кривошипа и отношения .

Скорость поршня найдем по формуле:

м/с (92)

Значения для взяты из ([1], табл. 20) и занесены в табл.5. вместе с вычисленной скоростью.

4.1.4 Ускорение поршня

м/с2. (93)

Значения для взяты из ([1], табл. 21) и занесены в табл.5. вместе с вычисленным ускорением.

Таблица 5. Вычисленые параметры кинематического расчета.

0,0000

0,000

0,0000

0,0

1,2690

0,1676

7,2

0,6165

9,2

1,0005

0,6009

25,8

0,9825

14,6

0,3655

1,1009

47,3

1,0000

14,9

— 0,2690

— 1385

1,6009

68,8

0,7495

11,2

— 0,6345

— 3266

1,8996

81,7

0,3835

5,7

— 0,7315

— 3766

2,0000

0,0000

0,0

— 0,7310

— 3763

1,8996

81,7

— 0,3835

— 5,7

— 0,7315

— 3766

1,6009

68,8

— 0,7495

11,2

— 0,6345

— 3266

1,1009

47,3

— 1,0000

— 14,9

— 0,2690

— 1385

0,6009

25,8

— 0,9825

— 14,6

0,3655

0,1676

7,2

— 0,6165

— 9,2

1,0005

0,0000

0,000

0,0000

0,0

1,2690

4.2. Динамический расчет двигателя

4.2.1 Силы давления газов

Индикаторную диаграмму полученную в тепловом расчете, развертываем по углу поворота кривошипа по методу Брикса.

Определяем поправку Брикса:

Д=R/(2MS)мм, (94)

где MS масштаб хода поршня на индикаторной диаграмме мм в мм.

Д=460 269/21=5,78 мм.

Определяем масштабы развернутой диаграммы: соответственно давлений и удельных сил, полных сил, угла поворота кривошипа:

Mр =005 МПа в мм

Mр=МРFп Н в мм

Mр=005 0,78 5106=392,5 Н в мм

М=3 в мм

М=4 рад в мм

М=4/240=0,0523 рад в мм.

По развернутой диаграмме определяем значения избыточного давления над поршнем рг=pг — p0 и заносим в графу 2, табл.6. динамического расчёта, в таблице даны значения углов поворота коленчатого вала ц через каждые 300, а так же при ц=3750.

По Дрг определяем значения Рг и заносим в графу 3, табл.6.

(95)

4.2.2 Приведение масс частей КШМ

По табл. 22 с учетом диаметра цилиндра, отношения S/D, рядного расположения цилиндров производим расчеты:

Определяем массу поршневой группы:

mп= mпFп кг (96)

Для поршня из алюминиевого сплава принято mп=150 кг/м2

mп =1500,785=1,18 кг.

Определяем массу шатуна:

mш= mшFп кг (97)

Для стального кованного шатуна принимаем mш=200 кг/м2

mш =2000,785= 1,57 кг.

Определяем массу неуравновешенных частей одного колена без противовесов:

mк = mкFп кг (98)

Для литого чугунного вала принято mк=200 кг/м2.

mк =2000,785=1,57 кг.

Определяем массу шатуна, сосредоточенную на оси поршневого пальца:

mш.п=0,275mш кг (99)

mш.п =0,2751,57 = 0,432 кг.

Определяем массу шатуна, сосредоточенную на оси кривошипа:

mш.к= 0,725mш кг (100)

mш.к =0,7251,57 = 1,138 кг.

Определяем массы, совершающие возвратно-поступательное движение:

mj= mп+ mш.п кг (101)

mj= 1,18+0,432=1,612 кг.

Определяем массы, совершающие вращательное движение:

mr= mк+ mш.к кг (102)

mr =1,57+1,138= 2,708 кг.

4.2.3 Удельные и полные силы инерции

Из табл см из киниматики 8 переносим значение j в графу 4, табл 6 и определяем значения силы инерции возвратно-поступательно движущихся масс (графа 5).

Pj = -j mj / Fп; Н. (103)

Определяем центробежную силу инерции вращающихся масс:

КR = -mr R 2 Н (104)

КR = -2,708 0043 3462 = -13 940 Н.

Определяем центробежную силу инерции вращающихся масс шатуна:

КR.ш = -mш.к R 2 Н (105)

КR.ш = -1,138 0043 3462 = -5858 Н.

Определяем центробежную силу инерции вращающихся масс кривошипа:

КR.к = -mк R 2 Н (106)

КR.к = -1,57 0043 3462 = -8082 Н.

Таблица 6. Результаты расчёта сил давления газов, а так же полных сил инерции

ц0

Дрг, МПа

Рг, Н

j, м/с2

Рj, Н

+0,018

141,3

+6532

— 10 530

— 0,011

— 86,4

+5150

— 8302

— 0,011

— 86,4

+1881

— 3032

— 0,011

— 86,4

— 1385

+2233

— 0,011

— 86,4

— 3266

+5265

— 0,011

— 86,4

— 3766

+6071

— 0,011

— 86,4

— 3763

+6066

— 0,011

— 86,4

— 3766

+6071

— 3266

+5265

+0,050

+392,5

— 1385

+2233

+0,230

+1805,5

+1881

— 3032

+0,800

+6280

+5150

— 8302

+2,200

+17 270

+6532

— 10 530

+6,330

+49 690,5

+6172

— 9949

+3,750

+29 437,5

+5150

— 8302

+1,500

+11 775

+1881

— 3032

+0,700

+5495

— 1385

+2233

+0,500

+3925

— 3266

+5265

+0,325

+2551,3

— 3766

+6071

+0,175

+1373,8

— 3763

+6066

+0,050

+392,5

— 3766

+6071

+0,018

+141,3

— 3266

+5265

+0,018

+141,3

— 1385

+2233

+0,018

+141,3

+1881

— 3032

+0,018

+141,3

+5150

— 8302

+0,018

+141,3

+6532

— 10 530

4.2.4 Суммарные силы давления газов

Определяем силу, сосредоточенную на оси поршневого пальца графа 2, табл. 7.

P = Pг + Pj H. (107)

Значения tg определяем (1 табл. 23) и заносим в графу 3, табл. 7.

Определяем нормальную силу, результаты заносим в графу 4, табл. 7

N = P tg Н. (108)

Определяем удельную силу, действующую вдоль шатуна, графа 6,

S = P (1/cos) Н. (109)

Значения (1/cos) (табл. 24) заносим в графу 5 табл 7.

Определяем силу, действующую по радиусу кривошипа и заносим в графу 8, табл. 7.

К = Р cos () / cos Н. (110)

Значения cos ()/cos (табл.25) заносим в графу 7, табл 7.

Определяем тангенциальную силу и заносим в графу 10, табл 7.

T = P sin () / cos Н. (111)

Значения sin ()/cos (табл.26) заносим в графу 9, табл 7.

Строим кривые Рj, Р, N, S, K, T.

Mp = 392,5 Н в мм.

Среднее значение тангенциальной силы за цикл:

— по данным теплового расчёта:

(112)

— по площади, заключённой между кривой Т и осью абсцисс:

(113)

— ошибка:

Результаты вычислений заносим в табл.7

Таблица 7. Результаты расчёта суммарных сил, действующих в кривошипношатунном механизме

ц0

Р,

Н

tgв

N,

H

1/cosв

S,

H

K,

H

T,

H

Mкр.ц.,

Нм

— 10 388,7

1,000

— 10 389

— 10 389

— 8388,4

0,1355

— 1137

1,009

— 8464

0,7983

— 6696

0,6175

— 5180

— 222,7

— 3118,4

0,2381

— 742

1,0278

— 3205

0,2938

— 916

0,9846

— 3070

— 132

2146,6

0,2869

1,0377

— 0,2769

— 594

92,3

5178,6

0,2381

1,0278

— 0,7062

— 3657

0,7474

166,4

5984,6

0,1355

1,009

— 0,9337

— 5588

0,3825

98,4

5979,6

5979,6

— 1

— 5979,6

5984,6

— 0,1355

— 811

1,009

— 0,9337

— 5588

— 0,3825

— 2289

— 98,4

— 0,2381

— 1254

1,0278

— 0,7062

— 3718

— 0,7474

— 3935

— 169,2

2625,5

— 0,2769

— 727

1,0377

— 0,2769

— 727

— 1

— 2626

— 112,9

— 1226,5

— 0,2381

1,0278

— 1261

0,2938

— 360

— 0,9846

51,9

— 2022

— 0,1355

1,009

— 2040

0,7983

— 1614

-, 6 175

53,7

39 741,5

0,0697

1,0025

0,9426

0,3243

554,2

21 135,5

0,1355

1,009

0,7983

0,6175

561,2

0,2381

1,0278

0,2938

0,9846

370,1

0,2769

1,0377

— 0,2769

— 2140

332,3

0,2381

1,0278

— 0,7062

— 6490

0,7474

295,4

8622,3

0,1355

1,009

— 0,9337

— 8051

0,3825

141,8

7439,8

— 1

— 7440

6463,5

— 0,1355

— 876

1,009

— 0,9337

— 6035

— 0,3835

— 2472

— 106,3

5406,3

— 0,2381

— 1287

1,0278

— 0,7062

— 3818

— 0,7474

— 4041

— 173,8

2374,3

0,2769

— 657

1,0377

— 0,2769

— 657

— 1

— 2374

— 102,1

— 2890,7

— 0,2381

1,0278

— 2971

0,2938

— 849

— 0,9846

122,4

— 8160,7

— 0,1355

1,009

— 8234

0,7983

— 6515

— 0,6175

216,7

— 10 388,7

— 10 389

— 10 389

4.2.5 Крутящие моменты

Крутящий момент одного цилиндра

Мкр.ц.= Т R Hм (114)

Мкр.ц.= Т 0043 Hм .

Значения Мкр.ц заносим в графу 11, табл 7.

Определяем период изменения крутящего момента чутырехтактного двигателя с равными интервалами между величинами:

и = 720 / i град (115)

и = 720 / 4 = 180?.

Суммирование значений крутящих моментов всех четырех цилиндров двигателя осуществляется табличным методом (табл.4.3.) через каждые 10? угла поворота коленчатого вала.

Таблица 4.3. Результаты расчета крутящего момента

По полученным в табл 8. данным Мкр строим график в масштабе

Мм= и Мц=3? в мм.

Определяем средний крутящий момент двигателя:

— по данным теплового расчета:

Мкр.ср.= Мi = Ме / зм Нм (116)

Мкр.ср.= 220,81 / 0,879 = 251,2 Нм.

— по площади, заключенной под кривой Мкр:

Мкр.ср= (F1F2) · Мм / АО Нм (117)

Мкр.ср = (904−40) · 16,878 / 60 = 243 Нм.

— определяем ошибку:

Д = (251,2243) · 100 / 251,2 = 3,3%.

Определяем максимальные и минимальные крутящие моменты:

Мкр.max = 636,1 Нм

Мкр.min = 104,9 Нм.

4.2.6 Силы, действующие на шатунную шейку коленчатого вала

Для проведения расчета результирующей силы, действующей на шатунную шейку рядного двигателя составляем табл. 8. Значения силы Т переносим из табл. 7, в табл. 9.

Суммарная сила, действующая по радиусу кривошипа:

Рк = К + К = (К — 5858), Н. (118)

Результирующая сила Rшш подсчитывается графическим сложением векторов сил Т и Рк при построении полярной диаграммы.

Масштаб сил на полярной диаграмме: Мр/ = Мр/2 = 392,5/2 = 196,25 Н в мм чертежа.

Значения Rшш для различных ц заносим в таблицу 9 и по ним же строим диаграмму Rш.ш в прямоугольных координатах.

По развернутой диаграмме Rш.ш определяем :

Rш. ш.ср= Мр/ · F / ОB Н, (119)

где ОВ=240мм — длина развёрнутой диаграммы;

F = 10 552 мм2 — площадь под кривой Rш.ш.

Rш. ш.ср = 196,25 . 10 552 / 240 = 10 552 Н

Rш. ш.max = 16 247 Н; Rш. ш.min = 200 Н.

По полярной диаграмме строим диаграмму износа шейки. Сумму сил Rш. ш.i, действующих по каждому лучу диаграммы износа (от 1 до 12), определяем с помощью таблицы 10. По диаграмме износа определяем положение оси масляного отверстия (м=75?).

4.2.7 Силы, действующие на колено вала

Определяем суммарную силу, действующую на колено вала по радиусу кривошипа:

Kpk = Рk + KRk = Рk8082 Н (120)

Результаты заносим в табл.9.

Результирующую силу, действующую на колено вала Rk, определяем по диаграмме Rш. ш.. Векторы из полюса Ок до соответствующих точек на полярной диаграмме в масштабе Мр/ =196,25 Н в мм выражают силы Rk, значения которых для различных заносим в таблицу 9.

Таблица 9 Результаты расчета сил действующих на колено вала.

Силы, Н

Т

РК

Rш.ш

КРК

RK

— 16 247

— 24 329

— 5180

— 12 554

— 20 636

— 3070

— 6774

— 14 856

— 6452

— 14 534

— 9515

— 17 597

— 11 446

— 19 528

— 11 838

— 19 920

— 2289

— 11 446

— 19 528

— 3935

— 9576

— 17 658

— 2626

— 6585

— 14 667

— 6218

— 14 300

— 7472

— 15 554

— 7200

— 3289

— 11 371

— 7998

— 16 080

— 12 348

— 20 430

— 13 909

— 21 991

— 13 298

— 21 380

— 2472

— 11 893

— 19 975

— 4041

— 9676

— 17 758

— 2374

— 6515

— 14 597

— 6707

— 14 789

— 12 373

— 20 455

— 16 247

— 24 329

Таблица 10. Значения Rш.шi, для лучей

Rш.шi

Значения Rш.шi, кН, для лучей

Rш.ш0

16,2

16,2

16,2

16,2

16,2

Rш.ш30

13,6

13,6

13,6

;

13,6

Rш.ш60

7,4

7,4

7,4

;

7,4

Rш.ш90

6,8

6,8

;

6,8

6,8

Rш.ш120

10,3

10,3

;

10,3

10,3

Rш.ш150

11,7

11,7

;

11,7

11,7

Rш.ш180

11,8

11,8

11,8

11,8

11,8

Rш.ш210

11,7

11,7

11,7

;

11,7

Rш.ш240

10,4

10,4

10,4

;

10,4

Rш.ш270

7,1

7,1

7,1

;

7,1

Rш.ш300

6,3

6,3

;

6,3

6,3

Rш.ш330

7,6

7,6

;

7,6

7,6

Rш.ш360

;

;

;

0,9

0,9

0,9

0,9

;

;

Rш.ш390

;

17,1

17,1

17,1

17,1

;

;

Rш.ш420

;

9,2

9,2

9,2

9,2

Rш.ш450

11,1

11,1

11,1

11,1

Rш.ш480

14,1

14,1

;

14,1

14,1

Rш.ш510

14,3

14,3

14,3

14,3

Rш.ш540

13,3

13,3

13,3

13,3

13,3

Rш.ш570

12,1

12,1

12,1

;

12,1

Rш.ш600

10,5

10,5

10,5

;

10,5

Rш.ш630

6,9

6,9

6,9

;

6,9

Rш.ш660

7,3

7,3

;

7,3

7,3

Rш.ш690

13,4

13,4

13,4

13,4

13,4

УRш. ш.i

223,9

212,8

134,4

0,9

27,2

37,4

153,4

233,1

4.3 Уравновешивание двигателя

Силы и моменты в КШМ непрерывно изменяются и, если они не уравновешены, то вызывают вибрацию двигателя, передающейся раме автомобиля.

4.3.1 Уравновешивание четырехцилиндрового рядного двигателя

Порядок работы двигателя 1−3-4−2. Кривошип расположен под углом 180?.

Силы инерции первого порядка и их моменты при указанном расположении кривошипов взаимноуравновешивается: УРjI=0; УМjI=0.

Центробежные силы для всех цилиндров равны и направлены попарно в разные стороны. Равнодействующая этих сил и момент равны нулю: УКR=0; УМR=0.

Суммарный момент от сил инерци второго порядка также равен нулю: УМjII=0.

Силы инерции второго порядка для всех цилиндров равны и направленны в одну сторону.

Для разгрузки коленвала от действия местных центробежных сил применяем противовесы.

В целях разгрузки коренных шеек от местных инерционных сил целесообразно установить противовесы на продолжении щек, прилегающих к ним.

Определяем равнодействующую силу инерции второго порядка:

УРjII = 4РjII= 4mjR, (121)

где mj = 1,612 кг — массы, совершающие возвратно-поступательное движение;

;

= 346 рад/с — угловая скорость вращения коленчатого вала;

ц = 90?.

УРjII = 41,6120,043

Определяем силу инерции одного противовеса:

Рпр = 0,5 УРjII l / l1, (122)

где l = 116 мм (см. рисунок 5.1)

l1 = 85 мм (см. рисунок 5.1)

Рпр = 0,5 -8926 116 / 85 = 6093 Н.

Масса каждого противовеса:

mпр= Рпр/(), (123)

где с = 0,04 м — расстояние центра тяжести общего противовеса от оси коленчатого вала

mпр= 6093 / (0,04 3462) = 1,27 кг.

Рис. 5.1. Схема сил инерции действующих в четырехцилиндровом рядном двигателе.

4.3.2 Равномерность крутящего момента и равномерность хода двигателя Из динамического расчета имеем максимальный крутящий момент Мкр.max=636,1 Нм; минимальный индикаторный крутящий момент Мкр.min= 104,9 Нм и средний индикаторный крутящий момент Мкр.ср=243 Нм.

Определяем равномерность крутящего момента:

= (Мкр.max— Мкр.min) / Мкр.ср Нм (124)

= (636,1(104,9)) / 243 = 3,05.

Определяем избыточную работу крутящего момента:

Lизб.=?MM?MцґДж, (125)

где Mцґ-масштаб угла поворота вала на диаграмме Мкр., рад/мм

Mцґ = 4 · р / (i· ОА) рад/мм (126)

Mц = 4 · 3,14 / (4· 60)= 0,0523 рад/мм.

F= 357 мм2 площадь над прямой среднего крутящего момента;

MM = 16,878 Н· м/мм/

Lизб.= 357 16,878 523 = 315,1 Дж.

Принимаем коэффициент неравномерности хода двигателя д=0,01.

Определяем момент инерции движущихся масс двигателя, приведенных к оси коленчатого вала:

Iо = Lизб / (д· щ2), кг· м2 (127)

Iо = 315,1 / (1 3462) = 0263 кг· м2.

5. Расчёт основных деталей двигателя

Расчет деталей с целью определения напряжений и деформаций, возникающий при работе двигателя, производится по формулам сопротивления материалов и деталей машин. До настоящего времени большинство из используемых расчетных выражений дают лишь приближенные значения напряжений.

Несоответствие расчетных и фактических данных объясняется различными причинами, основными из которых являются: отсутствие действительной картины распределения напряжений в материале рассчитываемой детали; использование приближенных расчетных схем действия сил и места их приложения; наличие трудно учитываемых знакопеременных нагрузок и невозможность определения их действительных значений; трудность определения условий работы многих деталей двигателя и их термических напряжений; влияние неподдающихся точному расчету упругих колебаний; невозможность точного определения влияния состояния поверхности, качества обработки (механической или термической), размеров детали и т. д. на величину возникающих напряжений.

В связи с этим применяемые методы расчета позволяют получить напряжения и деформации, являющиеся лишь условными величинами и характеризующие только сравнительную напряженность рассчитываемой детали.

5.1 Расчёт цилиндропоршневой группы

5.1.1 Расчёт поршня На основании данных теплового расчёта скоростной характеристики получили что:

— Диаметр поршня D=100мм;

— Ход поршня S=86мм;

— Максимальное давление сгорания pz=7,57МПа, при nN=3310 об/мин и действительном давлении сгорания pzd=6,43МПа;

— Площадь поршня Fп=78,5 см2;

— Наибольшая нормальная сила Nmax=2864 H, при ц=3900;

— Масса поршневой группы mn=1,18 кг;

— Обороты максимальной скорости, nxx=3975 об/мин, при л=0,269.

В соответствии с существующими аналогичными двигателями и с учётом соотношений принимаем по таблице 51 [1]:

— Толщина днища поршня д=9мм;

— Высота поршня Н=105мм;

— Высота юбки поршня hю=75мм;

— Радиальная толщина кольца t=4мм;

— Задиальный зазор кольца в канавке поршня: Дt=0,9 мм;

— Толщина стенки головки поршня S=7мм;

— Толщина первой кольцевой перемычки hп=5мм;

— Число масляных каналов в поршне nм/=4 шт;

— Диаметр масляного канала dм=0,9 мм.

Материал поршня — высококремнистый аллюминивый сплав.

бп = 25.10-6 1/град. — коэффициент линейного расширения материала поршня.

Материал гильзы цилиндра — серый чугун.

бв = 11.10-6 1/град.

Напряжение изгиба в днище поршня:

уиз = Pzmax . (ri/д)2, (128)

где, ri = (D/2)-(S + t + Дt) = (100/2)-(7 + 4 + 0,9) = 38,1 мм.

уиз = 7,57. (38,1/9)2 = 135,7 МПа.

Днище поршня должно быть усилено рёбрами жёсткости.

При наличии у днища рёбер жёсткости расчётное напряжение не превышает допустимого значения [уиз]=50?150МПа.

Напряжение сжатия в сечении х-х:

усжzmax/Fx-x МПа, (129)

где Рzmax = рz . Fп = 7,57 . 78,5 . 10-4 = 0,059 МН — максимальная сила давления газов на днище поршня.

Fx-x— площадь сечения х-х.

Fx-x = (р/4) . (dr2-di2) — nм/ . F/ мм2, (130)

где F/— площадь продольного диаметрального сечения масляного канала, мм.

F/ = ((dx-di) / 2) .dм (131)

где — диаметр поршня по дну канавок;

.

.

Напряжение разрыва в сечении Х-Х. Сила инерции возвратно-поступательного движущихся масс определяется для режима максимальной частоты вращения при холостом ходе двигателя.

— Максимальная угловая скорость холостого хода:

(132)

рад/с.

— Масса головки поршня с кольцами, расположенными выше сечения х-х, определяется по геометрическим размерам ил по формуле:

(133)

кг.

— Сила инерции возвратно-поступательного движущихся масс определяется для режима максимальной частоты вращения при холостом ходе двигателя.

Максимальная разрывающая сила:

(134)

МН.

— Напряжение разрыва:

(135)

МПа

= 2,78 МПа < [] = 4?10МПа — для алюминиевых сплавов.

Напряжение в верхней кольцевой перемычке:

Толщина верхней кольцевой перемычки форсированных двигателей с высокой степенью сжатия рассчитывается на срез и и изгиб от действия максимальных газовых усилий.

— Напряжение среза кольцевой перемычки:

ф = 0,0314 . рzмах . D / hп (136)

Мпа.

— Напряжение изгиба:

(137)

Мпа.

— Сложное напряжение:

(138)

Мпа.

= 16,6 МПа < [] = 30? 40 МПа.

Удельные давления юбки поршня и всей высоты на стенку цилиндра определяются соответственно:

(139)

где Nmax — наибольшая нормальная сила, действующая на стенку цилиндра при работе двигателя на режиме максимальной мощности;

МПа.

(140)

МПа.

В целях предотвращения заклинивания поршней при работе двигателя диаметров головки и юбки поршня определяют, из наличия необходимых зазоров между стенками цилиндра и поршня в холодном состоянии:

; (141)

(142)

где мм — диаметральный зазор между стенкой цилиндра и головкой поршня;

мм — диаметральный зазор между стенкой цилиндра и юбкой поршня;

мм;

мм.

Правильность установленных размеров проверяют по формулам:

(143)

.

(144)

где и — коэффициенты линейного расширения материалов цилиндров и поршня;

Тц,=388 К; Тг=523 К; Тю=403 К — соответственно температура стенок цилиндра, головки и юбки, принятые с учетом водяного охлаждения;

То — начальная температура цилиндра и поршня;

и — диаметральные зазоры в горячем состоянии;

5.1.2 Расчет поршневого кольца Поршневые кольца работают в условиях высоких температур и значительных переменных нагрузок.

В качестве материала для колец используют серый чугун.

Материал кольца — серый чугун, Е = 1•105 МПа — модуль упругости материала кольца.

Среднее давление кольца на стенку цилиндра:

(145)

где Ао = 3,3•t = 3,3•4 = 13,2 мм — разность мужду величинами зазоров замка кольца в свободном рабочем состоянии.

Мпа.

При снижении частоты вращения двигателя и увеличении диаметра цилиндра величина рср. должна иметь значение ближе к нижнему пределу. Для определения хорошей приработки кольца и надежного уплотнения давления р кольца на стенку цилиндра в различных точках окружности должно изменяться по эпюре. Давление кольца на стенку цилиндра в различных точках окружности:

(146)

где — для различных углов взято из таблицы.

Результаты подсчета р заносим в таблицу 11

Таблица 11- Давление кольца на стенку цилиндра.

град

1,05

1,05

1,14

0,9

0,45

0,67

2,85

р, МПа

0,152

0,152

0,165

0,13

0,065

0,097

0,413

По данным табл 11, строим эпюру давлений кольца на стенку цилиндра.

Значительное повышение давления у замка способствует равномерному износу кольца по окружности.

Напряжения изгиба кольца в рабочем состоянии:

(147)

МПа Напряжение изгиба при надевании кольца на поршень:

(148)

МПа где m = 1,57 — коэффициент, зависящий от способа надевания кольца;

Монтажный зазор в замке поршневого кольца в холодном состоянии:

(149)

где минимальный допустимый зазор в замке кольца во время работы двигателя;

Тк=488 К; Тц=388 К; Т0=288 К — соответственно температура кольца, стенок цилиндра, принятые с учетом водяного охлаждения;

То — начальная температура цилиндра и кольца;

==1/град.

5.1.3 Расчет поршневого пальца

Показать весь текст
Заполнить форму текущей работой