Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Безусадочный цементный раствор для омоноличивания стыков железобетонных конструкций

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Актуальность работы. Особенностью современного строительства в России является внедрение новых и модернизация существующих конструктивных решений каркасно-связевых систем зданий различного назначения из сборного и сборно-монолитного железобетона. В рамках национального проекта «Доступное и комфортное жилье» на 2002;2010 годы в регионах России реализуются, хотя и медленно, мероприятия, связанные… Читать ещё >

Содержание

  • ГЛАВА 1. СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ 12 ИССЛЕДОВАНИЯ
    • 1. 1. Анализ существующих стыковых соединений сборных 12 железобетонных конструкций
    • 1. 2. Виды омоноличивающих составов для устройства стыков 17 сборных железобетонных конструкций
      • 1. 2. 1. Омоноличивающие составы на основе портландцемент
      • 1. 2. 2. Омоноличивающие составы на основе полимерных смол
      • 1. 2. 3. Омоноличивающие составы на основе расширяющихся 24 цементов с «сульфоалюминатным» принципом расширения
    • 1. 3. Модификация как способ интенсификации расширяющих 37 деформаций цемента, твердеющего в среде с пониженной влажностью
    • 1. 4. Выводы по главе
  • ГЛАВА 2. ХАРАКТЕРИСТИКА ИСХОДНЫХ МАТЕРИАЛОВ. 42 МЕТОДЫ ИССЛЕДОВАНИЯ И ИСПЫТАНИЙ
    • 2. 1. Характеристика исходных материалов
    • 2. 2. Реологические и технологические методы испытания и 46 исследования цементных композиций
    • 2. 3. Физико-механические методы испытания цементных 49 композиций
    • 2. 4. Физико-химические методы анализа
    • 2. 5. Электрофизические методы исследования
    • 2. 6. Методы исследования фазового состава цементного камня
    • 2. 7. Физико-механические методы исследования в стыковых 53 соединениях
    • 2. 8. Статистическая обработка результатов
  • ГЛАВА 3. МОДИФИКАЦИИ РЯДОВОГО ПОРТЛАНДЦЕМЕНТА ДОБАВКАМИ, ИНТЕНСИФИЦИРУЮЩИМИ ЕГО РАСШИРЕНИЕ
    • 3. 1. Подбор состава расширяющегося компонента и исследование 59 его влияния на свойства портландцемента
    • 3. 2. Физико-химическое обоснование выбора модификаторов, 67 интенсифицирующих образования гидросульфоалюмината кальция высокосульфатной формы
    • 3. 3. Выводы по главе
  • ГЛАВА 4. ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ И 104 ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ МОНТАЖНОГО РАСТВОРА
    • 4. 1. Разработка состава монтажного раствора по цементно-песчаному 104 соотношению
    • 4. 2. Технологические свойства монтажного раствора
    • 4. 3. Физико-механические свойства монтажного раствора
      • 4. 3. 1. Деформации усадки-расширения монтажного раствора
      • 4. 3. 2. Прочность монтажного раствора
      • 4. 3. 3. Водопоглощение и показатели пористости монтажного 117 раствора
    • 4. 4. Выводы по главе
  • ГЛАВА 5. ХАРАКТЕР ВЗАИМОДЕЙСТВИЯ МОНТАЖНОГО 120 РАСТВОРА С БЕТОНОМ КОНСТРУКЦИИ И АРМАТУРНЫМИ СВЯЗЯМИ В СТЫКОВОМ СОЕДИНЕНИИ
    • 5. 1. Когезионно-адгезионные свойства монтажного раствора и старого" бетона
    • 5. 2. Моделирование работы стыкового соединения, омоноличенного 122 монтажным раствором
    • 5. 3. Моделирование деформаций усадки-расширения монтажного 125 раствора в стыке
    • 5. 4. Защитные свойства монтажного раствора по отношению 127 к стальной арматуре
    • 5. 5. Выводы по главе
  • ГЛАВА 6. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ 130 И ОПЫТНО-ПРОМЫШЛЕННОЕ ВНЕДРЕНИЕ МОНТАЖНОГО РАСТВОРА
    • 6. 1. Расчет технико-экономической эффективности сухой монтажной 130 смеси
      • 6. 1. 1. Сравнение себестоимости 1 т сухой монтажной смеси со 130 стоимостью 1 т сухой «напрягающей» смеси
      • 6. 1. 2. Расчет себестоимости 1 т сухой монтажной смеси
    • 6. 2. Разработка технических условий и технологического регламента 133 на производство сухой монтажной смеси
    • 6. 3. Защита результатов исследования патентом на изобретение
    • 6. 4. Условия и результаты промышленной проверки
      • 6. 4. 1. Натурное испытание монтажного раствора в стыках колонн
      • 6. 4. 2. Натурное испытание монтажного раствора на фрагменте 138 сборно-монолитного каркаса здания
      • 6. 4. 3. Промышленное использование разработанного монтажного раствора
    • 6. 5. Выводы по главе

Безусадочный цементный раствор для омоноличивания стыков железобетонных конструкций (реферат, курсовая, диплом, контрольная)

Актуальность работы. Особенностью современного строительства в России является внедрение новых и модернизация существующих конструктивных решений каркасно-связевых систем зданий различного назначения из сборного и сборно-монолитного железобетона. В рамках национального проекта «Доступное и комфортное жилье» на 2002;2010 годы в регионах России реализуются, хотя и медленно, мероприятия, связанные с модернизацией заводов ЖБИ, КПД и ДСК, с целью перехода от традиционных конструктивных систем к более эффективным, обеспечивающим гибкость планировки зданий и высокое качество строительства. [1, 2, 3, 4]. В результате достигнут даже некоторый подъем объемов выпуска сборного железобетона в период с 1999 г. по 2004 г. на 6,23 У млн. м [2, 5]. В то время как в России растет доля монолита, на Западе наблюдается устойчивая тенденция развития сборного железобетона (в т.ч. КПД). Свидетельством этому служит ряд специальных конгрессов по сборному железобетону, прошедших во Франции, Англии, Финляндии и даже США — стране, традиционно ориентированной на монолитное строительство [1,6].

Одновременно с этим в нашей стране значительно возрос интерес и к монолитному железобетону, который существенно улучшает объемно-планировочные и архитектурно-выразительные решения зданий, предлагая потребителю разнообразное и комфортное жилье. Особенное распространение монолитный железобетон получил в таких городах как Санкт-Петербург, Москва, в республиках Чувашия и Татарстан, в Свердловской, Челябинской и других областях.

Рациональное сочетание сборного и монолитного железобетона взаимно компенсирует недостатки обоих типов, и позволяет создавать новые каркасные системы сборно-монолитного типа (например, сборно-каркасномонолитная система домостроения «Аркос», разработанная БелНИИС, безригельная каркасная система типа «КУБ», французские сборно-монолитные каркасные дома системы «САРЕТ» и др.).

Разнообразие каркасных систем ведет к разнообразию стыков их элементов, от качества которых зависит прочность, жесткость и надежность всей конструкции. Одним из немногих эффективных стыков ЖБК, в частности, колонн является бессварной «колодцевый», в котором выпуски арматуры одной конструкции замоноличиваются в специальных углублениях I (колодцах) в бетоне другой. Основным эксплуатационно-техническим требованием к конструкции бессварного стыка (штепсельный, муфтовый, гильзовый и др.) является его монолитность и равнопрочность. А это определяется, в первую очередь прочностью омоноличивающего материала и его сцепления (адгезии) с бетоном и арматурными выпусками сопрягаемых конструкций.

Для стыковых соединений в массовом сборном и сборно-монолитном строительстве применяются мелкозернистые смеси на основе ^ расширяющихся цементов (напрягающего, гипсоглиноземистого, расширяющегося портландцемента, цемента с компенсированной усадкой), которые устраняют и ослабляют главный недостаток бетонов на основе рядового портландцемента — усадочные деформации. Однако, эффект расширения, при всех достоинствах названных цементов, реализуется в них лишь при поступлении в твердеющий состав влаги извне. А это зачастую трудно обеспечить в реальных условиях. В частности, это проблематично для указанного выше бессварного стыка с частично или полностью закрытым объемом. Подтверждением этому являются исследования Михайлова, Кравченко, Тейлора, Ларионовой, Рояка и др., которыми установлено, что твердение расширяющихся цементов в воде сопровождается интенсивным расширением, в нормально-влажностных условиях — незначительным расширением, а в воздушо-сухих условиях сопровождается даже усадкой.

Поэтому, весьма актуальным является поиск способов интенсификации собственных деформаций расширения омоноличивающих композиций, изготовленных на рядовых портландцементах. При этом остаются постоянными задачи улучшения их технологических свойств, повышения прочности и долговечности. Решение этих задач, по нашему мнению, возможно путем модификации портландцемента комплексными полифункциональными добавками, способными направленно регулировать физико-химические процессы гидратации компонентов вяжущего и структурообразования цементного камня.

Цель исследования. Разработка безусадочного монтажного раствора с повышенными технологическими и физико-механическими показателями путем модификации портландцемента добавками, обеспечивающими его твердение с расширением в стыках с ограниченным доступом влаги.

В соответствии с поставленной целью определены следующие задачи исследования:

— обосновать с позиции физико-химии твердения цементов выбор функциональных компонентов комплексного модификатора;

— исследовать структурообразование с расширением цементного камня при гидратации модифицированного портландцемента с целью оптимизации состава комплексного модификатора и его содержания;

— исследовать реологические характеристики модифицированных цементных композиций и изучить технологические и физико-механические свойства монтажного раствора на их основе;

— провести механические испытания стыков для определения характера разрушения, несущей способности и деформативности;

— разработать технологию изготовления сухой монтажной смеси, выпустить опытную партию и применить её в стыках колонн жилых зданий.

Научная новизна.

• Обоснована и экспериментально подтверждена возможность интенсификации образования гидросульфоалюмината кальция высокосульфатной формы при твердении портландцемента в среде с пониженным влагосодержанием путем введения комплексного модификатора, способного обеспечивать безусадочность монтажного раствора;

• Выявлен механизм интенсифицирующего влияния добавок сульфата натрия и С-3 на образовании эттрингита (ГСАК-3), заключающийся в понижении концентрации гидроксида кальция и увеличения щелочности при твердении портландцемента с расширяющим компонентом;

• Установлено, что механизм положительного влияния суперпластификатора С-3 на расширение цементного камня связан с уменьшением открытой и капиллярной пористости и увеличением доли свободной (неадсорбированной) воды (9−10%), вступающей в реакцию образования эттрингита.

Практическая значимость работы. Разработаны оптимальные составы комплексного модификатора портландцемента и на их основе безусадочного монтажного раствора с повышенными технологическими и эксплуатационно-техническими характеристиками для омоноличивания стыков сборных железобетонных конструкций зданий и сооружений (патент № 2 259 964 от 05.04.04).

Разработаны технические условия и технологический регламент на производство сухой монтажной смеси, состоящей из портландцемента, комплексного модификатора и песка. Получены положительные результаты опытно-промышленных испытаний монтажного раствора.

Внедрение результатов работы. На основе результатов проведенных исследований на базе кафедры ТСМИК Казанского государственного архитектурно-строительного университета изготовлено 2,5 тонны сухой монтажной смеси, которая была использована для омоноличивания 158 стыков железобетонных колонн при строительстве пятиэтажного жилого дома сборно-монолитного типа в г. Казани.

Достоверность результатов экспериментальных исследований и выводов обеспечена:

— соответствием полученных результатов с общими положениями физико-химии и структурообразования цементных композицийиспользованием поверенного оборудования при испытании материалов, современных методов исследования структуры и свойств цементного камня (РФА, ДТА, комлексонометрия, потенциометрия, тепловыделение) и статистической обработкой результатов;

— испытанием фрагмента железобетонного сборно-монолитного каркаса здания, горизонтальные стыки колонн которого были омоноличены разработанным монтажным раствором. Показано, что узлы каркаса обладают достаточной несущей способностью, жесткостью и трещиностойкостью и соответствуют требованиям действующих норм на проектирование. Это позволило рекомендовать разработанный состав монтажного раствора при строительстве сборных железобетонных каркасов зданий.

Апробация работы. Основные результаты проведенных исследований докладывались и обсуждались на: всероссийской конференции «Теория и практика повышения эффективности строительных материалов» (Пенза, 2006 г.), десятых академических чтениях РААСН «Достижения, проблемы и направления развития теории и практики строительного материаловедения» (Пенза-Казань, 2006 г.), V республиканской научно-практической конференции молодых ученых и специалистов «Наука. Инновация. Бизнес» (г.Казань, 2005), международной научно-технической конференции «Актуальные проблемы современного строительства» (Пенза, 2005 г.), ежегодных республиканских научных конференциях Казанского государственного архитектурно-строительного университета (2003;2006 г. г.).

Публикации. По материалам выполненных исследований опубликовано 9 печатных работ, включающих 6 статей, 2 тезиса и патент № 2 259 964 «Сухая цементно-песчаная смесь». За разработку монтажного раствора Академией наук РТ совместно с Инвестиционно-венчурным фондом автору вручен диплом на республиканском конкурсе «50 лучших инновационных идей Республики Татарстан».

Структура и объем работы. Диссертационная работа состоит из введения, 6 глав, основных выводов, списка используемой литературы из 156 наименований, изложена на 159 страницах машинописного текста, содержит 46 рисунка, 29 таблиц, 5 приложений.

ОСНОВНЫЕ ВЫВОДЫ.

1. С целью разработки безусадочного цементного монтажного раствора для стыков железобетонных конструкций обоснована и экспериментально подтверждена возможность интенсификации гидросульфоалюмината кальция трехсульфатной формы (ГСАК-3) при твердении портландцемента в среде с пониженным влагосодержанием путем его комплексного модифицирования добавками высокоглиноземистого шлака (ВГШ), гипса, сульфата натрия и суперпластификатора С-3.

2. Установлено, что для интенсификации образования эттрингита, как основного фактора расширения цементного камня (ЦК) (с помощью высокоглиноземистого шлака и гипса), компенсирующего его усадку, необходимо снизить концентрацию Са (ОН)2 на 20.25% при твердении цемента и увеличить общую щелочность в нем на 20.30% путем введения сульфата натрия и суперпластификатора С-3.

3. Экспериментально установлено, что процессы расширения модифицированного портландцемента в условиях низкого водосодержания обеспечивается снижением общей пористости ЦК на 20.23%, сохранением части свободной воды в цементном тесте (9. 11%), набором необходимой прочности каркаса кристаллогидратов ЦК (8.13 МПа) через 11. 14 часов твердения, достигаемой введением Na2S04 и С-3.

4. Разработан состав комплексного полифункционального модификатора (КРМ), обладающего расширяющим, ускоряющим и пластифицирующим действием и состоящим из ВГШ (70%), гипса (18%), сульфата натрия (6%), суперпластификатора С-3 (6%). При совмещении бездобавочного портландцемента с 14,5% КРМ и песком получен раствор (Ц:П=1:1, В/Ц=0,4) для замоноличивания стыков железобетонных конструкций, твердеющий без усадки в среде с пониженным влагосодержанием (патент РФ № 2 259 964).

5. Установлено, что при твердении нового монтажного раствора в «колодце» бетонной конструкции, то есть при десорбции («отсосе») влаги из него деформации расширения на 60 сутки при 20 °C составляют 0,06 мм/м, что определяет его как безусадочный состав. При влажности окружающей среды 70−80% расширение составляет 0,7 мм/м.

6. Монтажный раствор имеет повышенные технологические и эксплуатационно-технические показатели: подвижность Пк3 (по ГОСТ 5802), сохраняемость подвижности — 30 мин, высокие темпы набора прочности: через 1 сутки прочность при сжатии асж=20.22 МПа, прочность при раскалывании арас=2,9.3,1 МПа, при изгибе аизг=3,8.4 МПа, через 28 суток Сеж = 40.45 МПа, арас=4.5 МПа, аизг=7.8 МПа. Защитные свойства раствора, как показали 3-летние испытания стальной арматуры в условиях попеременного увлажнения-высушивания, высокие.

7. Испытания образцов, моделирующих в реальных размерах «колодцевый» стык железобетонных колонн, показали, что монтажный раствор обладает высоким сцеплением с бетоном «колодца», большей несущей способностью и жесткостью, чем растворы на портландцементе и напрягающем цементе, обеспечивая равнопрочность и монолитность стыка.

8. Разработана технологическая схема и технологический регламент для производства сухой монтажной смеси для безусадочного раствора и технические условия на неё. Успешно проведены натурные испытания колонн, стыки которых замоноличивали новым монтажным раствором, и фрагмента сборно-монолитного каркаса здания. Выпущено 2,5 т сухой монтажной смеси, на основе которой произведено замоноличивание 158 стыков колонн строящегося жилого дома в г. Казани.

Показать весь текст

Список литературы

  1. К.В., Волков Ю. С. Сборный железобетон: история и перспективы. Строительные материалы. 2006. — № 1. — С. 7−9.
  2. Л.С., Куприянов Л. И., Миронов В. В. Современное состояние и перспективы развития строительного комплекса России // Строительные материалы.- 2004, — № 9.- С. 2−7.
  3. Л.С., Песцов В. И. Сборный и монолитный железобетон в российском строительстве. В кн.: Бетон на рубеже третьего тысячелетия: Материалы 1-й Всерос. конф. по проблемам бетона и железобетона, 9−14 сент. 2001, с.44−54.
  4. Федеральная целевая программа «Жилище» на 2002−2010 годы (утв. постановлением Правительства РФ от 17 сентября 2001 г. N 675) // http://bin-n.narod.ru/other/federalnay.htm.
  5. В.А. Итоги работы строительного комплекса и жилищно-коммунального хозяйства в 2004 году // Строительные материалы.- 2005.- № 4.- С. 4−5.
  6. Направления развития производства и применения железобетона в России // Строительные материалы, 1999.- № 1.- С. 20−21.
  7. Р.И. Стыки элементов железобетонных каркасов многоэтажных каркасов зданий с применением эпоксидных полимеррастворов. Дисс. на соис. уч. ст. к-та техн. наук. М., 1984. — 237 с.
  8. Г. М., Марголин А. Г. Многоэтажные промышленные здания из сборного железобетона. Л.: Стройиздат, 1974. — 232 с.
  9. В.Н., Сигалов Э. Е. Железобетонные конструкции. Общий курс. 5-е изд., перераб. и доп. — М.: Стройиздат, 1991. — 767 с.
  10. А.П. Примеры расчета железобетонных конструкций: Учебное пособие для техникумов. 2-е изд., переб. И доп. — М.:Стройиздат, 1989.-506 с.
  11. Ю.А., Максименко В. А. Сборный железобетонный унифицированный каркас. М.: Стройиздат, 1985. — 296 с.
  12. Г. Б., Русинов И.А, Малышев А. Н., Коваль Ю. В. Прочность и контактная деформативность железобетонных конструкций. -Киев, Будивэльник, 1991. 152 с.
  13. Прочность и жесткость стыковых соединений панельных конструкций. Опыт СССР и ЧССР. Под ред. Лишака В. И. М.: Стройиздат, 1980.- 192 с.
  14. A.M. Бессварные стыки колонн многоэтажных зданий.// Бетон и железобетон.- 1984.- № 1.- С. 17−18.
  15. В.А. Исследование бессварочных шпоночных стыков тонкостенных сборных железобетонных конструкций. Автореферат дисс. на соис. уч. ст. к-та техн. наук. Киев., 1970. — 16 с.
  16. В.А., Соколов И. Б. Бессварные стыки арматуры для железобетонных конструкций промышленных и гражданских сооружений города // Научно-технические ведомости СПбГТУ, 1997. № 1−2 (7−8). — С. 96−101.
  17. Руководство по замоноличиванию цементно-песчаным раствором стыков шпоночного типа в сборных железобетонных ёмкостных сооружениях / ЦНИИПпромзданий. М.: Стройиздат, 1980. — 12 с.
  18. Рекомендации по устройству стыков в крупнопанельных зданиях / ЦНИИЭПжилище.-М.: Стройиздат, 1972.
  19. И.И. Замоноличивание и герметизация стыков сборных железобетонных конструкций. М.: Стройиздат, 1980. — 232 с.
  20. А.В., Рубанов А. В. Комплексная противоморозная добавка на основе поташа // Бетон и железобетон. 1988. — № 2. — С. 21−23.
  21. Н.Г. Бетоны с суперпластификатором С-3 для сборных элементов и узлов каркасов зданий.// Бетон и железобетон.- 1989, — № 4.-С.24−27.
  22. С.К. Заделка швов под давлением в гражданском и промышленном строительстве (фирма «Уотсон Боуман»). М., ВНИИЭМ, 1971.-36 с.
  23. Я.А., Багочюнас В. М. О прочности старого и нового бетона с суперпластификатором С-3 // Бетон и железобетон. 1988. — № 10. -с. 33.
  24. В.М., Гаркави М. С., Долгова О. А., Сафронов М. Ф. Бетоны с комплексными добавками для ремонтно-восстановительных работ // Бетон и железобетон. 1988.- № 11.- С. 9−10.
  25. Н.В., Урьев Н. Б. Коллоидный цементный клей и его применение для склеивания и омоноличивания бетонных и железобетонных конструкций и сооружений. Экспресс-информация. Кишинев: УДСМ МССР, 1961.-28 с.
  26. Г. П., Павлова Т. К. Водонепроницаемые безусадочные составы для замоноличивания вертикальных шпоночных стыков сборных железобетонных резервуаров. М.: Стройиздат, 1972.- 24 с.
  27. Мчедлов-Петросян О.П., Филатов Л. Г. Расширяющиеся составы на основе портландцемента. М.: Стройиздат, 1965. — 139 с.
  28. Мчедлов-Петросян О. П. Химия неорганических строительных материалов.-М.: Стройиздат, 1971.
  29. B.C. и др. Добавки в бетон. Справочное пособие. М.: Стройиздат, 1988.-572 с.
  30. А.Е., Якуб Т. Ю. Безусадочный портландцемент. М.: Стройиздат, 1966.- 103 с.
  31. А.Е. Структура, прочность и трещиностойкость цементного камня. М.: Стройиздат, 1974. 191 с.
  32. З.Н. Усадка и ползучесть бетона. Тбилиси: Изд-во АН Груз. ССР, 1963.- 173 с.
  33. С.В. Некоторые особенности усадки бетона // Бетон и железобетон. 1959. — № 10. — С.8−10.
  34. С.В. Экспериментально-теоретические исследования усадочных напряжений в бетоне. М.: Стройиздат, 1965. -285 с.
  35. Е.Ю. Усадка и усадочная трещиностойкость высокопрочных бетонов с органоминеральными модификаторами. Автореф. дисс. на соис. уч. ст. к.т.н. Пенза, 2004. — 19 с.
  36. B.C. Расчет и конструирование стыков и узлов элементов железобетонных конструкций. М.: Издательство Ассоциации Строительных Вузов, 2002.- 128 с.
  37. .В., Фрайнт М. Я. Работа конструкций и стыков крупнопанельных домов в процессе их возведения и в период эксплуатации // Бетон и железобетон.-1971.- № П.- С. 12−14.
  38. В.Т. Дефекты стыков стеновых панелей и влияние их на несущую способность крупнопанельных зданий // Известия вузов. Строительство. 1993. — № 1. — С. 71−72.
  39. Э.П. Прочность и деформативность стыков сборных железобетонных конструкций, замоноличенных полимеррастворами. -Тбилиси: Мецниереба, 1976. 118 с.
  40. Стыки сборных железобетонных конструкций. Под ред. Васильева А. П. М.: Стройиздат, 1970. — 192 с.
  41. Ю.С. Полимерцементный бетон. М., Стройиздат, 1984. -212с.
  42. В.Г., Игонин JI.A., Сцепление и склеивание бетона в сооружениях. М.: Стройиздат, 1965. — 128 с.
  43. В.Г. Склеивание бетона. М.: Стройиздат, 1975. — 236 с.
  44. А.А. Эффективные клеевые композиции для омоноличивания стеновых блоков. Дисс. на соис. уч. ст. к-та техн. наук. М.: МГСУ, 2003. -162 с.
  45. Н.Г., Горшкова В. М. Сопряжение сборных железобетонных элементов с применением полимерных растворов. В Кн: Стыки сборных железобетонных конструкций. Под общ. ред. Васильева А. П. М.: Стройиздат, 1970. — 192 с.
  46. Н.Г., Напрасников И. В. Экспериментально-теоретические исследования и расчетная модель сцепления трубчато-клеевых стыков высокопрочной арматуры // Совершенствование стыков железобетонных конструкций. М, НИИЖБ, 1987.- С. 57−70.
  47. Г. М. Клеи и зимнее склеивание бетона.// Известия вузов. Строительство. 2003. — № 2. — С. 68−72.
  48. Р.И. Прочность клеевых соединений бетона на срез.// Бетон и железобетон.- 1973.- № 11. С. 23−24.
  49. Ю.Л., Захаров JI.B. Стыки элементов сборных железобетонных мостовых конструкций. М., Транспорт, 1971.
  50. В.М. Сопряжение железобетонных колонн на эпоксидном полимеррастворе // Промышленное строительство. 1974. — № 1.
  51. П.Н., Царев В. М., Баранов В. М. Прогрессивная технология монтажа анкерных болтов под технологическое оборудование на эпоксидном клее // Известия вузов. Строительство. 1994. — № 7−8. — С. 122−124.
  52. Г. М. Исследование технологических и конструкционных свойств эпоксидных клеев горячего отверждения для соединения бетонных ижелезобетонных конструкций. Автореф. дисс. на соис. уч. ст. к.т.н. Казань, 1971.-18 с.
  53. Г. М. Эпоксидные пленочные клеи для бетона с улучшенными технологическими свойствами // Известия вузов. Строительство. 2003. — № 3. — С. 53−57.
  54. В.А. Защитно-конструкционные полимеррастворы в строительстве. Киев: Будивельник, 1983.
  55. .П. Исследование прочности и деформативности клеештыревых стыков конструкций железобетонных мостов. Автореф. дисс. на соис. уч. ст. к.т.н. М., 1982.
  56. Химическая технология вяжущих материалов: Учебное пособие. Под ред. Тимашева В. В. М.: Высшая Школа, 1980. — 472 с.
  57. X. Химия цемента. Пер. с англ. М.: Мир, 1996. — 500 с.
  58. Т.В. Специальные цементы. В Кн.: Бетон на рубеже третьего тысячелетия: Материалы 1-й Всерос. конф. по проблемам бетона и железобетона, 9−14 сент. 2001, с. 1220−1224.
  59. Л.В., Царенко А. В. Геоцементные композиции с применением вторичного сырья // Строительная газета. 2002. -№ 33.
  60. Л.В., Царенко А. В. Геоцементные композиции на основе вторичного сырья. В Кн.: Бетон на рубеже третьего тысячелетия: Материалы 1-й Всерос. конф. по проблемам бетона и железобетона, 9−14 сент. 2001, с.44−54.
  61. И.В. Расширяющиеся цементы. М.: Стройиздат, 1962.164 с.
  62. А.В. Минеральные вяжущие вещества. 4-е изд., перераб. и доп. — М.: Стройиздат, 1986. — 464 с.
  63. Т.В., Талабер Й. Глиноземистый цемент. М.: Стройиздат, 1988.- 272 с.
  64. И.А. Бетоны с комбинированным заполнителем на основе портландцемента с расширяющимися добавками. Автореф. дисс. на соис. уч. ст. к.т.н. Ростов-на-Дону, 1997. — 24 с.
  65. К.С., Габададзе Т. Г., Нергадзе Н. Г. Алунитовые безусадочные, расширяющиеся и напрягающие цементы. Шестой международный конгресс по химии цемента. Том III Цементы и их свойства. Под общ. ред. Болдырева А. С. М.: Стройиздат, 1976.- 355 с.
  66. П., Грининг Н. Эффективность расширяющегося* цемента. Пятый международный конгресс по химии цемента. Под общ. ред. Мчедлова-Петросяна О.П. М.: Стройиздат, 1973.- 480 с.
  67. British Patent No 474 917. «Expansiv Cements» (Assigned to Etablissements Poliet et Chausson). Nov. 10 (1937), 4 p.
  68. B.B. Патент № 68 445 «Способ изготовления цемента (расширяющегося)», авг. 1942, Бюл. изобр. № 5,1947.
  69. А.И., Будагянц Л. И. Еще раз о природе расширения бетонов на основе напрягающего цемента // Бетон и железобетон.- 2001.- № 4.- С. 3−5.
  70. А.И., Мартиросов Г. М. Бетоны с компенсированной усадкой. // Бетон и железобетон.- 1995.- № 4.- С. 3−5.
  71. А.И., Титов М. Ю. Бетон с компенсированной усадкой для возведения трещиностойких конструкций большой протяженности // Бетон и железобетон.- 2001.- № 4.- С. 17−20.
  72. JI.A., Бейлина М. И. Расширяющие добавки для бетонов нового поколения// Бетон и железобетон. 2001. — № 4. — С. 24−27.
  73. В.Р., Сорокин Ю. В., Вайнер А. Я., Башлыков Н. Ф. Гидроксилсодержащие органические расширяющие добавки для снижения деформаций усадки бетона // Строительные материалы. 2005. — № 8. — с. 911.
  74. Г. С., Каприелов С. С. Новый органоминеральный модификатор серии «МБ» Эмбелит для производства высококачественных бетонов // Строительные материалы. — № 8.-2005.-С.12−15.
  75. С.С., Шейнфельд А. В., Кардумян Г. С., Дондуков В. Г. Модифицированные высокопрочные мелкозернистые бетоны с улучшенными деформационными характеристиками // Бетон и железобетон.-2006.- № 2, — С. 2−7.
  76. Кристаллографическая и кристаллохимическая база данных для минералов и их структурных аналогов WWW-Минкрист // http://database.iem.ac.ru/mincryst/rus/sfull.php
  77. П. П. Кравченко И.В. Расширяющиеся цементы Основной доклад. Пятый международный конгресс по химии цемента. Под ред. Мчедлова-Петросяна. М.: Стройиздат, 1973.- 480 с.
  78. А.В. Теоретическая водопотребность вяжущих, величина частиц новообразований и их влияние на деформации твердеющих систем // Бетон и железобетон.- 1969.- № 9.- С. 35−36.
  79. А.В. Характер и роль изменений в объемах фаз при твердении вяжущих и бетонов // Бетон и железобетон.- 1969.- № 3.- С. 16−20.
  80. З.М., Никитина Л. В., Гарашин В. Р. Фазовый состав, микроструктура и прочность цементного камня и бетона. М.: Стройиздат, 1977.- 264 с.
  81. З.М. Образование гидросульфоалюмината кальция и его влияние на основные свойства быстротвердеющего цемента. М.: НИИЖБ, 1959.-64 с.
  82. З.М. Устойчивость эттрингита в цементных системах. Шестой международный конгресс по химии цемента. Том II Гидратация и твердение цемента. Под общ. ред. Болдырева А. С. М.: Стройиздат, 1976.358 с.
  83. Candlot С. Bulletin. Societe d’Encouragement pour l’lndustrie Nationale, v.5 (1890), p.682
  84. Michaelis W. Tonindustrie-Zeitung (Goslar), v.16, 1892, p.105.
  85. Lerch W., Ashton F.W., Bogue R.H. Sulfoaluminates of calcium, 1. Res. Natl. Bur. Standards, 2, (1929), pp. 715−731.
  86. Г. Н. Лапшина А.И. Сравнительные исследования обычных и расширяющихся цементов. В Кн: Совершенствование методов исследования цементного камня и бетона. Под общ. ред. Сиверцева Г. Н. М.: Стройиздат, 1968.-214 с.
  87. Г. Н. Лапшина А.И. Расширяемость цементов. В Кн: Совершенствование методов исследования цементного камня и бетона. Под общ. ред. Сиверцева Г. Н. М.: Стройиздат, 1968. — 214 с.
  88. Г. Н., Ларионова З. М. НТО ЦНИПС, № 5381, 1955.
  89. В.В., Литвер С. Л. Расширяющийся и напрягающий цементы и самонапряженные железобетонные конструкции. М.: Стройиздат, 1974.-312 с.
  90. G. «Silikates Industrielles» № 7−8,1960.
  91. G. «La Geniec Civile», № 7−8, 1944.
  92. V., Stiglitz P. «Comptes rendus» № 26, v.222, 1946.
  93. И.В. Глинозёмистый цемент. M., Стройиздат, 1961. -176 с.
  94. И.В., Кузнецова Т. В., Власова М. Т., Юдович Б. Э. Химия и технология специальных цементов. М.: Стройиздат, 1979. — 208 с.
  95. ГОСТ 11 052–74. Цемент гипсоглинозёмистый расширяющийся.
  96. С.М., Рояк Г. С. Специальные цементы. М.: Стройиздат, 1993.-416 с.
  97. С.Н. Коррозия и защита арматуры в бетоне. М: Стройиздат, 1962.
  98. С.Н., Иванов Ф. М., Модры С., Шиссль П. Долговечность железобетона в агрессивных средах. М.: Стройиздат, 1990. — 320 с.
  99. Исследование и применение напрягающего бетона и самонапряженных железобетонных конструкций. Сборник научных трудов. Под ред. Михайлова В. В. и Литвера С. Л. М.: Стройиздат, 1984. — 128 с.
  100. Самонапряженные и непрерывно армированные конструкции. Под ред. Михайлова В. В., Звездова А. И. М.: НИИЖБ, 1989. — 109 с.
  101. Т.В., Розман Д. А., Мингазутдинова Т. В., Лебедев А. О., Волкова Л. С., Комарова Г. И. Влияние дисперсности напрягающего цемента на его свойства. В сб. трудов: Химия и технология специальных цементов. -НИИЦемент, 1985,152 с.
  102. Т.В. Самонапряжение расширяющихся цементов. Шестой международный конгресс по химии цемента. Том III Цементы и их свойства. Под общ. ред. Болдырева А. С. М.: Стройиздат, 1976.- 355 с.
  103. Л.И., Литвер С. Л., Дех О.С. Самонапряженные угловые стыки плитных элементов // Бетон и железобетон.- 1984.- № 12.- С. 25−27.
  104. Дех О. С. Прочность и трещиностойкость самонапряженных стыков сборных и сборно-монолитных конструкций. Дисс. на соис. уч. ст. к-та техн. наук. М.: НИИЖБ, 1984. — 262 с.
  105. А.с. 310 982 СССР МКИ С 04 Ь USA Стыковое соединение железобетонных элементов / В. В. Михайлов, Бердичевский Г. И. (СССР)// Открытия, изобретения, промышленные образцы, торговые знаки. 1971. -№ 24.
  106. Дех О.С., Будагянц Л. И., Чушкин А. П. Самонапряженное стыкование растянутых элементов ёмкостных сооружений // Бетон и железобетон.- 1988.-№ 4.-С. 10−11.
  107. A.M., Литвер С. Л., Ризоватов В. В., Будагянц Л. И. Замоноличивание стыков сборных железобетонных резервуаров с применением напрягающего цемента // Бетон и железобетон.- 1967.- № 12.
  108. Г. М. Будагянц Л.И., Титова Л. А. Бетоны на основе расширяющихся цементов // Адрес: http://proektstroy.ru/informwrites.php?tag=462&deep=2.
  109. В.Г. Модифицированные бетоны. Теория и практика. 2-е изд., перераб. и доп. — М.: Стройиздат, 1998. — 768 с.
  110. Г. В., Лузин Ю. Н. и др. Замоноличивание висячей оболочки покрытия закрытой стоянки автобусного парка // Бетон и железобетон.- 1974.- № 4.- С. 31−32.
  111. С.Л., Будагянц Л. И. Напрягающий цемент для самонапряжения железобетона без тепловой обработки // Бетон и железобетон. 1968.- № 4.- С. 4−7.
  112. О.Е. Влияние комплексных добавок на свойства напрягающего бетона // Бетон и железобетон. 1988. — № 10. — С. 20−22.
  113. О.Е. Эффективность применения добавок поверхностно-активных веществ для регулирования свойств бетона на напрягающем цементе // Архитектура и строительство Узбекистана. 1982, — № 8.- С. 31−32.
  114. Водонепроницаемый расширяющийся цемент и его применение в строительстве. Под общ. ред. Михайлова В. В. М.: Стройиздат, 1951. -164 с.
  115. В.Э. Расширяющийся цемент ГАШ. В сб. трудов: «Опыт строительства на Урале». — Свердловск, 1947.
  116. В.Э., Веприк И. Б., Прохоров В. Х. Способы получения безусадочного вяжущего на основе портландцемента и расширяющегося компонента. Английский патент № 1, 083, 727.
  117. В.Э., Прохоров В. Х., Пивень Л. С. Безусадочный конструктивный керамзитобетон // Бетон и железобетон.- 1970.- № 9.- С. 1214.
  118. В.Х., Белова И. Ф., Лейрих В. Э. Бетон на основе расширяющегося портландцемента для замоноличивания стыков сборных сооружений // Бетон и железобетон 1970.- № 7.- С. 31−32.
  119. Т.Б. Добавка для омоноличивания стыков сборного железобетона// Бетон и железобетон.- 1988.- № 4.- С. 15−17.
  120. А.с. 444 746 СССР МКИ С 04 Ъ 7/54 Расширяющая добавка к цементу./ Т. Б. Арбузова, А. Н. Новопашин, Т. А. Лютикова, Э. В. Пименова (СССР)// Открытия, изобретения, промышленные образцы, торговые знаки. -1974. -№ 36.-С.54.
  121. А.с. 835 983 СССР МКИ С 04 Ь 7/14 Способ производства расширяющей добавки к цементу./ Т. Б. Арбузова, А. А. Новопашин, A.M. Дмитриев и др. (СССР)// Открытия, изобретения, промышленные образцы, торговые знаки. 1981. — № 21. — С. 113.
  122. З.М. Аналитическая химия. М.: Высшая школа, 1990 -320 с.
  123. В.Н., Макридин Н. И., Соколова Ю. А. Современные химические методы исследования строительных материалов: Учебное пособие. М.: АСВ, 2003 — 224 с.
  124. ГОСТ 25 094–82. Добавки активные минеральные. Методы испытаний.
  125. Методы исследования цементного камня и бетона. Под ред. Ларионовой З. М. М.: Стройиздат, 1970. — 160 с.
  126. Г., Стал Г. Интерпретация порошковых рентгенограмм. М.: Мир.- 1972.-384 с
  127. B.C. Термография строительных материалов. М.: Стройиздат, 1968.-240 с.
  128. B.C., Тимашев В. В., Савельев В. Г. Методы физико-химического анализа вяжущих веществ. М.: Высшая школа, 1981. — 335 с.
  129. В.Б., Иванов Ф. М. Химия в строительстве. 2-е изд., перераб. и доп. — М.: Стройиздат, 1977. — 220 с.
  130. В.Б., Розенберг Т. И. Добавки в бетон. М.: Стройиздат, 1973.-207 с.
  131. Ф.Л. Физико-химические основы применения добавок к минеральным вяжущим. Ташкент: «ФАН» АН УзССР, 1975.
  132. И.И. Химия гидратации портландцемента. М.: Стройиздат, 1977.- 159 с.
  133. О.В. Структурообразование и твердение цементных бетонов с комплексными ускоряющими и противоморозными добавками на основе вторичного сырья. Дисс. на соис. уч. ст. д-ра техн. наук. Пенза.: ПТУ АС, 2003. — 570 с.
  134. П.А. Физико-химическая механика. Москва: Знание, 1958.-64 с.
  135. Г. В., Алданов Е. А., Фролова Л. Н. Клеевые минеральные композиции // Бетон и железобетон. 1996. — № 3. — С. 11−13.
  136. B.C., Калашников В. И., Миненко Е. Ю., Тростянский В. М., Стасевич А. В. Усадка и усадочная трещиностойкость высокопрочных бетонов. Пенза: ЦНТИ, 2004. — 112 с.
  137. В.Г. Разработка и экспериментальные исследования бессварных соединений сборных внецентренно сжатых железобетонных конструкций / Автореферат дисс. на соис. уч. ст. к-та техн. наук. М., 1971. -16 с.
  138. Технология напрягающего и самонапряженных железобетонных конструкций. Под ред. В. В. Михалова и C.JI. Литвера- М., Стройиздат, 1975.-183 с.
  139. Г. В. Модифицирование расширяющихся вяжущих веществ с целью управления собственными деформациями и прочностью бетонов. Автореферат дисс. на соис. уч. ст. к-та техн. наук. Ростов-на-Дону, 2004. -24 с.
  140. Т.В., Розман Д. А., Мингазутдинова Т. В., Лебедев А. О., Волкова Л. С., Иващенко С. И., Астанский Л. Л. Невзрывчатое разрушающее вещество. В сб. трудов: Химия и технология специальных цементов. -НИИЦемент, 1985, 152 с.
  141. Г. Б., Белевич В. Б., Зонтов А. Ю. Заделка стыков сборных железобетонных конструкций.-М.: Стройиздат, 1966.
  142. Г. Б., Белевич В. Б. Механизированная заделка стыков сборных железобетонных конструкций. М.: Стройиздат, 1971.
  143. Ю.М. Высокопрочный мелкозернистый бетон для армоцементных конструкций. -М.: Стройиздат, 1969. 128 с.
  144. Ю.М. Технология бетона. М.: Изд-во АСВ, 2002.- 500 с.
  145. Ю. М. Магдеев У.Х., Алимов Л. А., Воронин В. В., Гольденберг Л. Б. Мелкозернистые бетоны: Учебное пособие. М.: МГСУ, 1998.- 148 с.
  146. Бут Ю.М., Сычев М. М., Тимашев В. В. Химическая технология вяжущих материалов: Учебник для вузов. М.: Высшая школа, 1980.- 472 с.
  147. В.В. Избранные труды. Синтез и гидратация вяжущих материалов. М.: Наука, 1986. — 424 с.
  148. М.С. Термодинамический анализ структурных превращений в вяжущих системах. Магнитогорск: МГТУ, 2005. — 243 с.
  149. В.К., Ильевский Ю. А., Карпова Ю. В. Продукты гидратации кальциево-силикатных фаз цемента и смешанных вяжущих веществ. Барнаул: АлтГТУ, 2005. — 183 с.
  150. А.И. Твердение силикатных минералов цемента. -Харьков, ХФИ «Транспорт Украины», 1999. 288 с.
  151. А.А., Сербии В. П., Старчевская Е. А. Вяжущие материалы. Киев: Вища школа, 1985. — 440 с.
  152. М.М. Бетон и железобетон: Деформативность и прочность. М: Стройиздат, 1997. — 576 с. 1. Сухая монтажная смесь
  153. Технические условия ТУ 5745−032−2 069 622−2005I1. Код ОКП 5 745 001. Ж 131. СОГЛАСОВАНО"
  154. Генеральные директор OOGT"Baj
Заполнить форму текущей работой