Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

Π₯арактСристика транскрипционной ΠΈ Π±Π΅Π»ΠΎΠΊ-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ активности ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° рСтротранспозона LINE1 крысы

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Автор ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»Π΅Π½ Π”ΠΈΠΌΠ΅ Π›ΡƒΠΊΡŒΡΠ½ΠΎΠ²Ρƒ Π·Π° ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ основным ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ Π½Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ этапС настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π₯ΠΎΡ‚Π΅Π»ΠΎΡΡŒ Π±Ρ‹ ΠΏΠΎΠ±Π»Π°Π³ΠΎΠ΄Π°Ρ€ΠΈΡ‚ΡŒ всСх сотрудников Π“Ρ€ΡƒΠΏΠΏΡ‹ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π”ΠΠš Π·Π° ΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€Π½ΠΎΠ΅ обсуТдСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² исслСдования. ΠžΡΠΎΠ±ΡƒΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Π°Π²Ρ‚ΠΎΡ€ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π½Π°ΡƒΡ‡Π½ΠΎΠΌΡƒ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŽ ОльгС Π˜Π³ΠΎΡ€Π΅Π²Π½Π΅ ΠŸΠΎΠ΄Π³ΠΎΡ€Π½ΠΎΠΉ Π·Π° ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΌΡƒ ΠΈ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ, ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π½Π° ΠΏΡ€ΠΎΡ‚яТСнии всСй… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π˜Π‘ΠŸΠžΠ›Π¬Π—Π£Π•ΠœΠ«Π₯ Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™ Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ исслСдования
  • ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ полоТСния, выносимыС Π½Π° Π·Π°Ρ‰ΠΈΡ‚Ρƒ
  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • 1. Π˜ΡΡ‚ΠΎΡ€ΠΈΡ открытия сСмСйства ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² LINE
  • 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² LINE
  • 3. ΠšΠΎΠ½ΡΠ΅Π½ΡΡƒΡΠ½Ρ‹Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ элСмСнтов LINE1 Ρ€Π°Π·Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ²
  • 4. ЗарСгистрированныС рСтротранспозиции LINE
  • 5. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΡ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСтротранспозиции элСмСнтов LINE
  • 6. ВоздСйствиС элСмСнтов LENE1 Π½Π° Π³Π΅Π½ΠΎΠΌ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…
  • 7. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ LENE
  • 8. Π’ΠΊΠ°Π½Π΅ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ экспрСссии LINE
  • 9. Π‘Π΅Π»ΠΊΠΈ, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ с Π²ΠΈΠ΄ΠΎΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌΠΈ элСмСнтов
  • ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
  • 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ядСр ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ядСрного экстракта
  • 2. Π”ΠΠš, ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹ ΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹
  • 3. ΠœΠ΅Ρ‚ΠΎΠ΄ тормоТСния Π² Π³Π΅Π»Π΅ (рСтардация)
  • 4. ЭлСктрофорСтичСскоС Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΠΈΡ… ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ Π² Π³Π΅Π»Π΅
  • 5. Π˜Π½ΠΊΡƒΠ±Π°Ρ†ΠΈΡ Π±Π΅Π»ΠΊΠΎΠ², ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ с ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠΉ Π”ΠΠš (БаузвСстСрн-Π±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³)
  • 6. Π˜ΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚Ρ‚ΠΈΠ½Π³
  • 7. ИонообмСнная хроматография Π±Π΅Π»ΠΊΠΎΠ²
  • 8. Аффинная очистка Π±Π΅Π»ΠΊΠΎΠ²
  • 9. НСпрямоС иммунофлуорСсцСнтноС ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅
  • 10. ЀлуорСсцСнтная гибридизация in situ (FISH)
  • 11. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π”ΠΠš. Гибридизация ΠΏΠΎ Π‘Π°ΡƒΠ·Π΅Ρ€Π½Ρƒ ΠΈ Π΄ΠΎΡ‚-Π±Π»ΠΎΡ‚ гибридизация
  • 12. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ РНК. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· РНК Π² Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π½ΠΎΠΌ Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠΌ Π³Π΅Π»Π΅. НозСрнблоттинг
  • 13. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ
  • 14. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†Π΅ΠΏΠΈΡ‚Π°Ρ†ΠΈΡ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
  • 15. ΠšΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования 53 РЕЗУЛЬВАВЫ
  • 1. Π’ΠΊΠ°Π½Π΅ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ экспрСссии L1 крысы
  • 2. ГСномная организация LIRn. Анализ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠΉ области LIRn
  • 3. ВыявлСниС Π±Π΅Π»ΠΊΠΎΠ², ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ элСмСнтов L1 крысы in vitro
  • 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ молСкулярной массы PRLP- ΠΈ nodel-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ². Аффинная очистка этих Π±Π΅Π»ΠΊΠΎΠ²
  • 5. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ PRLP- ΠΈ nodel-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ²
  • 6. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΡ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции LIRn
  • 7. БостояниС мСтилирования Π³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² LIRn ΠΈ Π²Π»ΠΈΡΠ½ΠΈΠ΅ мСтилирования ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° LIRn Π½Π° ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Spl, Sp3 ΠΈ
  • МСБР
  • 8. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ связывания Π±Π΅Π»ΠΊΠΎΠ² Spl, Sp3, МСБР2 с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌΠΈ LIRn in vivo
  • ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π• Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠžΠ’
  • Π’Π«Π’ΠžΠ”Π«

Π₯арактСристика транскрипционной ΠΈ Π±Π΅Π»ΠΎΠΊ-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ активности ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° рСтротранспозона LINE1 крысы (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠΌΠΎΠ² Π²Ρ‹ΡΡˆΠΈΡ… эукариот ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ содСрТат ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ΅ количСство ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ врСмя Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π°Ρ‡ΠΈΠ½Π°ΡŽΡ‚ Ρ€Π°ΡΠΊΡ€Ρ‹Π²Π°Ρ‚ΡŒΡΡ. Π’ Π³Π΅Π½ΠΎΠΌΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π”ΠΠš ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΎΠΊΠΎΠ»ΠΎ 50%, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ Π³Π΅Π½Ρ‹ — ΠΌΠ΅Π½Π΅Π΅ 5%. Π‘Ρ€Π΅Π΄ΠΈ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡΡ‚ΡŒ классов: простыС ΠΏΠΎΠ²Ρ‚ΠΎΡ€Ρ‹, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ (A)n, (CGG)nсСгмСнтныС Π΄ΡƒΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ, состоящиС ΠΈΠ· Π±Π»ΠΎΠΊΠΎΠ² Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 30−100 Ρ‚.ΠΏ.Π½.- Ρ‚Π°Π½Π΄Π΅ΠΌΠ½ΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Ρ‹Ρ€Π΅Ρ‚Ρ€ΠΎΠΏΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΠΏΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² — процСссированныС псСвдогСныи ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ элСмСнты, часто относимыС ΠΊ Π΄ΠΈΡΠΏΠ΅Ρ€Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π°ΠΌ (Lander et al, 2001). ΠŸΡ€ΠΈ этом, Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… (ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 40−45% Π³Π΅Π½ΠΎΠΌΠ°) ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ элСмСнты — траиспозоны ΠΈ Ρ€Π΅Ρ‚ротрапспозопы (Lander et al, 2001).

Π¨ΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… элСмСнтов Π² Π³Π΅Π½ΠΎΠΌΠ°Ρ… обусловлСно сущСствованиСм эффСктивного ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° размноТСния этих ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. НСкоторыС сСмСйства ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… элСмСнтов ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для пСрСмСщСния ΠΈ Π²ΡΡ‚раивания Π² Π³Π΅Π½ΠΎΠΌ ΠΈΡ… ΠΊΠΎΠΏΠΈΠΉ. Π’Π°ΠΊΠΈΠ΅ ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ элСмСнты ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹ΠΌΠΈ.

Π£ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнным сСмСйством Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… элСмСнтов, содСрТащим способныС ΠΊ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ ΠΊΠΎΠΏΠΈΠΈ, являСтся сСмСйство LINE1 (long interspersed nucleotide element 1). Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ LINE1 Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 10−20% Π³Π΅Π½ΠΎΠΌΠ° ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…, ΠΎΠ½ΠΈ способны Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ°Ρ‚ΡŒΡΡ Π² Π³Π΅Π½ΠΎΠΌΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ транскрипции посрСдством РНК ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° ΠΈ ΠΏΠΎΡΡ‚ΠΎΠΌΡƒ ΡΠ²Π»ΡΡŽΡ‚ΡΡ рСтротранспозонами (Ostertag, Kazazian, 2001). Π‘Π΅Π»ΠΊΠΈ, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ LINE1, ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ рСтротранспозиции Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ этих элСмСнтов, Π½ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π”ΠΠš, Π² Ρ‚ΠΎΠΌ числС Π”ΠΠš Π½Π΅Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… рСтротранспозонов (Wei et al, 2001; Dewannieux et al, 2003).

Π”Π°Π½Π½Ρ‹Π΅ ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ элСмСнтов LINE I ΠΈ ΠΈΡ… Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ Ρ€ΠΎΠ»ΠΈ Π² Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ, Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π΄Π²ΡƒΠ½ΠΈΡ‚Π΅Π²Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ², рСтротранспозиции ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π”ΠΠš, ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ структуры Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°, Π³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… пСрСстройках ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ транскрипции Π±Π»ΠΈΠ·Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π³Π΅Π½ΠΎΠ² большС Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Ρ‹ LINE1 лишь ΠΊΠ°ΠΊ «ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ» Π”ΠΠš Π² Π³Π΅Π½ΠΎΠΌΠ°Ρ… (Furano, 2000; Ostertag, Kazazian, 2001). Π‘Π²ΠΎΠ΅ влияниС Π½Π° Π³Π΅Π½ΠΎΠΌ элСмСнты LINE1 ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ посрСдством рСтротранспозиции, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰Π΅ΠΉ экспрСссии РНК LINE1 ΠΈ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΈΠΌΠΈ Π±Π΅Π»ΠΊΠΎΠ². НСконтролируСмая рСтротранспозиция элСмСнтов LINE1 ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ послСдствиям дСстабилизации Π³Π΅Π½ΠΎΠΌΠ° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (Bourc'his, Bestor, 2004). НСсмотря Π½Π° ΡΡ‚ΠΎ, рСтротранспозиция элСмСнтов LINE1 Π½Π΅ ΡΠ²Π»ΡΠ΅Ρ‚ся Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½Π½ΠΎΠΉ Ρƒ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΈ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠ°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (Brouha et al, 2002; Ostertag et al, 2002; Prak et al, 2003). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, сущСствуСт Ρ‡Π΅Ρ‚ΠΊΠΈΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π΅ΠΏΡ€Π΅ΡΡΠΈΠΈ этих ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² in vivo. Одним ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… способов контроля рСтротранспозиции элСмСнтов LINE1 являСтся рСгуляция ΠΈΡ… ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΠΈ. ЭкспрСссия элСмСнтов LINE1 тканСспСцифична, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π΅Π΅ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ Π΄ΠΎ ΡΠΈΡ… ΠΏΠΎΡ€ ΠΌΠ°Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹. Π‘Π΅Π»ΠΊΠΈ, спСцифичСски ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ рСгуляторныС Ρ€Π°ΠΉΠΎΠ½Ρ‹ элСмСнтов LINE1, ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ экспрСссии этих рСтротранспозонов. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΆΠΈΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ², спСцифичСски ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ рСтротранспозонов LINE1, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚ΡŒΡΡ ΠΊ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² тканСспСцифичной рСгуляции экспрСссии ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² LINE1 Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ….

ВыявлСниС ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ификация Π±Π΅Π»ΠΊΠΎΠ², спСцифичСски ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ рСтротранспозона LINE1 крысы, являлось ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠΌ настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹.

Π¦Π΅Π»ΠΈ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ исслСдования.

ЦСль Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования — ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ рСгуляции экспрСссии LINE1 крысы (LIRn) — Π°Π½Π°Π»ΠΈΠ· транскрипционной ΠΈ Π±Π΅Π»ΠΎΠΊ-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ активности ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° рСтротранспозона LIRn.

Для достиТСния этой Ρ†Π΅Π»ΠΈ Π±Ρ‹Π»ΠΈ поставлСны ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ экспрСссии LIRn Π² Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚ΠΊΠ°Π½ΡΡ…Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ для дальнСйшСго исслСдования Ρ‚ΠΊΠ°Π½ΠΈ с Ρ€Π°Π·Π½Ρ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ экспрСссии Π±Π΅Π»ΠΊΠ° pORFL.

2. ΠŸΡ€ΠΎΠ²Π΅ΡΡ‚ΠΈ поиск рСгуляторных элСмСнтов, извСстных для ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² L1 Π΄Ρ€ΡƒΠ³ΠΈΡ… Π²ΠΈΠ΄ΠΎΠ², Π² ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° LIRn ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ.

3. Π’Ρ‹ΡΠ²ΠΈΡ‚ΡŒ ядСрныС Π±Π΅Π»ΠΊΠΈ, спСцифичСски ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ LIRn in vitro, Π² ΠΈΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡ‹Ρ… тканях. ΠŸΠΎΠ΄ΠΎΠ±Ρ€Π°Ρ‚ΡŒ условия очистки выявлСнных Π±Π΅Π»ΠΊΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΉ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΈΡ….

β€’ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ массу ΠΈ ΡΠ°ΠΉΡ‚Ρ‹ связывания. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π±Π΅Π»ΠΊΠΈ, спСцифичСски ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ рСтротранспозона LIRn.

4. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ статус мСтилирования ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° LIRn Π² ΠΈΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡ‹Ρ… тканях, ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ влияниС мСтилирования ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° LIRn Π½Π° ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ с Π½ΠΈΠΌ ядСрных Π±Π΅Π»ΠΊΠΎΠ².

5. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Π°ΡΡΠΎΡ†ΠΈΠ°Ρ†ΠΈΡŽ выявлСнных Π±Π΅Π»ΠΊΠΎΠ² с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ LIRn Π² ΠΈΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡ‹Ρ… тканях in vivo.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ полоТСния, выносимыС Π½Π° Π·Π°Ρ‰ΠΈΡ‚Ρƒ.

1. РСтротранспозоны LIRn ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π·Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии Π² Ρ‚канях крысы: дискрСтныС смысловыС транскрипты LIRn ΠΈ Π±Π΅Π»ΠΎΠΊ pORFT ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… сСмСнников, Π½ΠΎ Π½Π΅ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠ΅Ρ‡Π΅Π½ΠΈ.

2. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ LIRn частично Π΄Π΅ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΎΠΊ pORFT.

3. Π‘Π΅Π»ΠΊΠΈ Sp3 ΠΈ ΠœΠ΅Π‘Π 2, Π½ΠΎ Π½Π΅ YY1, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ LIRn in vitro ΠΈ in vivo.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π’ ΡΠ΅ΠΌΠ΅Π½Π½ΠΈΠΊΠ°Ρ… крысы ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‚ΡΡ дискрСтныС смысловыС транскрипты рСтротранспозона LIRn ΠΈ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ LIRn Π±Π΅Π»ΠΎΠΊ pORFL Π’ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Π³Π΄Π΅ Π½Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Π΅Ρ‚ся Π±Π΅Π»ΠΎΠΊ pORFI, транскрибируСтся диспСрсный Π½Π°Π±ΠΎΡ€ смысловых ΠΈ Π°Π½Ρ‚исмысловых РНК LIRn.

2. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ LIRn содСрТит нСсколько вСроятных сайтов ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции, Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… располагаСтся Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 54 ΠΏ.Π½. ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π°. Π‘ΠΎΠ»Π΅Π΅ 80% Π³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… ΠΊΠΎΠΏΠΈΠΉ LIRn Π½Π΅ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠΉ области.

3. Π‘Π΅Π»ΠΊΠΈ Spl/Sp3, Π½ΠΎ Π½Π΅ YY1, спСцифично ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‚ΡΡ с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ LIRn in vitro. Π‘Π°ΠΉΡ‚ связывания транскрипционных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Spl/Sp3 ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π΅Π½ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰Π΅ΠΉΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ… 125−133 ΠΏ.Π½. ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° LIRn.

4. ΠŸΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ LIRn частично Π΄Π΅ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… сСмСнников ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠ΅Ρ‡Π΅Π½ΠΈ крысы. ΠœΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π° LIRn ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ связываниС с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π±Π΅Π»ΠΊΠΎΠ² Spl/Sp3 in vitro ΠΈ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ связываниС Π±Π΅Π»ΠΊΠ° МСБР2.

5. In vivo, Π±Π΅Π»ΠΎΠΊ МСБР2 взаимодСйствуСт с ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ LIRn Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… сСмСнников ΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Π° Π±Π΅Π»ΠΎΠΊ Sp3 — лишь Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… сСмСнников крыс.

6. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° схСма рСпрСссии транскрипции с ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² LIRn ΠΏΡ€ΠΈ участии Π±Π΅Π»ΠΊΠ° МСБР2 ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ транскрипции с Π½Π΅ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠ² LIRn ΠΏΡ€ΠΈ участии транскрипционного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Sp3.

Автор ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»Π΅Π½ Π”ΠΈΠΌΠ΅ Π›ΡƒΠΊΡŒΡΠ½ΠΎΠ²Ρƒ Π·Π° ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ основным ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ Π½Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ этапС настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π₯ΠΎΡ‚Π΅Π»ΠΎΡΡŒ Π±Ρ‹ ΠΏΠΎΠ±Π»Π°Π³ΠΎΠ΄Π°Ρ€ΠΈΡ‚ΡŒ всСх сотрудников Π“Ρ€ΡƒΠΏΠΏΡ‹ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π”ΠΠš Π·Π° ΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€Π½ΠΎΠ΅ обсуТдСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² исслСдования. ΠžΡΠΎΠ±ΡƒΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Π°Π²Ρ‚ΠΎΡ€ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π½Π°ΡƒΡ‡Π½ΠΎΠΌΡƒ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŽ ОльгС Π˜Π³ΠΎΡ€Π΅Π²Π½Π΅ ΠŸΠΎΠ΄Π³ΠΎΡ€Π½ΠΎΠΉ Π·Π° ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΌΡƒ ΠΈ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ, ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ Π½Π° ΠΏΡ€ΠΎΡ‚яТСнии всСй Ρ€Π°Π±ΠΎΡ‚Ρ‹.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π”.Π’., Π Π΅ΡˆΠ΅Ρ‚Π½ΠΈΠΊΠΎΠ²Π° Π“. Π€., ΠŸΠΎΠ΄Π³ΠΎΡ€Π½Π°Ρ О.И 1999. Аффинная очистка Alu-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² ΠΈΠ· ΡΠΎΠΌΠ°Ρ‚ичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Биохимия. 64: 25−33.
  2. Adams J.W., Kaufman RE., Kretschmer P.J., Harrison M., NienhuisA.W. 1980. A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. Nucleic Acids Res. 8:6113−6128.
  3. Adey N.B., Schichman SA., Graham D.K., Peterson S.N., Edgell M.H., Hutchison Π‘ A. 1994. Rodent LI evolution has been driven by a single dominant lineage that has repeatedly acquired new transcriptional regulatory sequences. Mol Biol Evol. 11:778−89.
  4. S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool, J. Mol. Biol. 215:403−410.
  5. H.L., Eliacin E., Fanning T.G., Connolly J.L., Bratthauer G., Asch B.B. 1996. Comparative expression of the LINE-1 p40 protein in human breast carcinomas and normal breast tissues. Oncol Res. 8:239−247.
  6. J.N., Badge RM., Moran J. V. 2004. A YY1 -binding site is required for accurate human LINE-1 transcription initiation. Nucl. Acids Res. 32:3846−3855.
  7. Bailey J A., Carrel L., Chakravarti A., Eichler E.E. 2000. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA. 97:6634−6639.
  8. Becker K.G., Jedlicka P., Templeton N.S., Liotta L., OzatoK. 1994. Characterization of hUCRBP (YY1, NF-E1, delta): a transcription factor that binds the regulatory regions of many viral and cellular genes. Gene. 150:259−266.
  9. V.P., Hedges D.J., Deininger P. 2006. LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 34:1512−21.
  10. Belgrader P., Siegel A J., Berezney R 1991. A comprehensive study on the isolation and characterization oftheHeLa S3 nuclear matrix. J. Cell. Sci. 98:281−291.
  11. BenitL., Lallemand J.B., Casella J.F., Philippe H., Heidmann T. 1999. ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J Virol. 73:3301−3308.
  12. Beraldi R., Pittoggi C., Sciamanna I., Mattei E, Spadafora C. 2006. Expression of LINE-1 retroposons is essential for murine preimplantation development Mol Reprod Dev. 73:279 287.
  13. Bibillo A., Eickbush TJI. 2004. End-to-end template jumping by the reverse transcriptase encoded by theR2 retrotransposon. J Biol Chem. 279:14 945−14 953.
  14. A.P. 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8:1499−1504.
  15. BirdA.P. 1986. CpG-rich islands and the function ofDNA methylation. Nature. 321:209−213.
  16. Bird A.P., TaggartM.H., Nicholls R.D., HiggsD. R 1987. Non-methylated CpG-rich islands at the human alpha-globin locus: implications for evolution of the alpha-globin pseudogene. EMBO J. 6:999−1004.
  17. S., Chevret P., Furano A.V. 2000. LI (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol. 17:915−928.
  18. S., Entezam A., Furano A.V. 2001. Selection against deleterious LINE-1-containing loci in the human lineage. Mol Biol Evol. 18:926−935.
  19. T. 1995. Chromatin domains and prediction of MAR sequences. Int Rev Cytol.162A:279−388.
  20. D., Bestor T.H. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 431:96−99.
  21. J., Bird A. 1991. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 64:1123−1134.
  22. A.L., Ballard S.G., Ward D.C. 1990. Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA. 87:7757−7761.
  23. D., Martin SX. 1994. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14:2584−2592.
  24. G.L., Fanning T.G. 1992. Active LINE-1 retrotransposons in human testicular cancer. Oncogene. 7:507−510.
  25. R., Chambon P. 1981. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 50:349−83.
  26. Brouha B., Meischl C., Ostertag E., de Boer M., Zhang Y., Neijens H., Roos D., Kazazian H.H. Jr. 2002. Evidence consistent with human LI retrotransposition in maternal meiosis L Am J Hum Genet. 71:327−336.
  27. S.D., Dover G. 1981. Organization and evolutionary progress of a dispersed repetitive family of sequences in widely separated rodent genomes. J Mol Biol. 150:441−466.
  28. P., Condamine H., Jacob F. 1985. Spatial distribution of transcripts of the long repeated ETn sequence during early mouse embryogenesis. Proc Natl Acad Sci USA. 82:2054−2058.
  29. BucherP. 1990. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol. 212:563−578.
  30. S. 1994. The basics of basal transcription by RNA polymerase n. Cell. 77:1−3.
  31. W.D., Calalang C.C., Eickbush T.H. 1987. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol Cell Biol. 7:2221−2230.
  32. F.H., Loeb D.D., Chao S.F., Hutchison C.A., Edgell M.H. 1985. Transposition of a long member of the LI major interspersed DNA family into the mouse beta globin gene locus. Nucleic Acids Res. 13:5071−5084.
  33. F.H., Loeb D.D., Voliva C.F., Martin S.L., Edgell M.H., Hutchison CA. 1986. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J Mol Biol. 187:291−304.
  34. B., Kilimann M.W. 1998. Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol. 277:513−517.
  35. J.E., Kadonaga J.T. 2002. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 16:2583−2592.
  36. E.L., Angeletti B., Usdin K., Furano A.V. 1997. Rapid evolution of a young LI (LINE-1) clade in recently speciated Rattus taxa. J Mol Evol. 45:412−423.
  37. Casavant N.C., Scott L., CantrellMA., Wiggins L.E., Baker R J., Wichman HA. 2000. The end of the LINE?: lack of recent LI activity in a group of South American rodents. Genetics. 154:1809−1817.
  38. Chang Y.S., Wang L., Suh YA., Mao L., Karpen SJ., Khuri F.R., Hong W.K., Lee H. Y 2004. Mechanisms underlying lack of insulin-like growth factor-binding protein-3 expression in non-small-cell lung cancer. Oncogene. 23:6569−6580.
  39. Christensen S., Pont-Kingdon G., Carroll D. 2000. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, TxlL and Tx2L: target site specificity and evolutionary implications. Genetica. 110:245−256.
  40. Contursi C., Minchiotti G., Di Nocera P.P. 1995. Identification of sequences which regulate the expression of Drosophila melanogaster Doc elements. J. Biol. Chem. 270:26 570−26 576.
  41. Cost G.J., Feng Q., BoekeJ.D. 2000. Initiation of LI transposition in vitro. Presented at Keystone Symp. Transposition and Other Genome Rearrangements, Santa Fe, NM. (Abstr. 119)
  42. G.J., Golding A., Schlissel M.S., Boeke J.D. 2001. Target DNA chromatinization modulates nicking by LI endonuclease. Nucleic Acids Res. 29:573−577.
  43. CoureyAJ., Holtzman DA., Jackson S.P., Tjian R. 1989. Synergistic activation by the glutaminerich domains of human transcription factor Spl. Cell. 59:827−836.
  44. D’Ambrosio E, Waitzkin S.D., Witney F.R., Salemme A., Furano A.V. 1986. Structure of the highly repeated, long interspersed DNA family (LINE or LIRn) of the rat Mol Cell Biol. 6:411−424.
  45. DeBerardinis RJ., Kazazian H.HJr. 1999. Analysis of the promoter from an expanding mouse retrotransposon subfamily. Genomics. 56:317−323.
  46. JM., Sinnett D., Labuda D. 1990. Reverse transcriptase activity from human embryonal carcinoma cells NTera2Dl. EMBO J. 9:3363−3368.
  47. Dewannieux M., EsnaultC., Heidmann T. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 35:41−48.
  48. M., Heidmann T. 2005. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res. 110:35−48.
  49. M., Arenz C., Schmitz K., Sandhoff K., Schepers U. 2003. Long endogenous dsRNAs can induce complete gene silencing in mammalian cells and primary cultures. Oligonucleotides. 13:381−392.
  50. Dombroski BA., Feng Q., Mathias S.L., Sassaman DM., Scott A.F., Kazazian H.H. Jr, Boeke J.D. 1994. An in vivo assay for the reverse transcriptase of human retrotransposon LI in Saccharomyces cerevisiae. Mol Cell Biol. 14:4485−4492.
  51. MJ. 1993. Gel electrophoresis: Proteins. BIOS Scientific Publishers, Oxford NY.
  52. W.S., Tjian R. 1983a. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase n. Cell. 32:669−680.
  53. W.S., Tjian R. 1983b. The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell. 35:79−87.
  54. T.H. 2002. Repair by retrotransposition. Nat Genet. 31:126−127.
  55. J.P., Palmiter R.D. 1991. Retrotransposition of a mouse LI element. Proc Natl Acad Sci U S A. 88:8792−8795.
  56. T.G. 1983. Size and structure of the highly repetitive BAM HI element in mice. Nucleic Acids Res. 11:5073−5091.
  57. Farkash EA., Kao G.D., Horman S. R, PrakE.T. 2006. Gamma radiation increases endonuclease-dependent LI retrotransposition in a cultured cell assay. Nucleic Acids Res. 34:1196−1204.
  58. D.H., Lister C.K., Kellett E., Finnegan D.J. 1986. Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. 47:1007−1015.
  59. Feng Q., MoranJ.V., Kazazian H.H. Jr., Boeke J.D. 1996. Human LI retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 87:905−916.
  60. D.H., Bailey WJ., Tagle DA., Goodman M., Sieu L., Slightom J.L. 1991. Duplication of the gamma-globin gene mediated by LI long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci U S A. 88:7396−7400.
  61. FlorlA.R, Lower R, Schmitz-Drager B.J., Schulz WA. 1999. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer. 80:1312−1321.
  62. Y. 2000. Interaction of nuclear proteins with intrinsically curved DNA in a matrix attachment region of a tobacco gene. Plant Mol Biol. 44:91−98.
  63. A.V. 2000. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog. Nucleic Acid Res. Mol. Biol. 64:255−294.
  64. A.V., Robb SM., Robb F.T. 1988. The structure of the regulatory region of the rat LI (LIRn, long interspersed repeated) DNA family of transposable elements. Nucleic Acids Res. 16: 9215−9231.
  65. Gadhavi P.L., Greenwood M.D., Strom M., King I A., Buxton RS. 2001. The regulatory region of the human desmocollin 3 promoter forms a DNA four-way junction. Biochem Biophys Res Commun. 281:520−528.
  66. Gardiner-Garden M., Frommer M. 1987. CpG islands in vertebrate genomes. J Mol Biol. 196:261−282.
  67. Garrett J. E, Knutzon D.S., Carroll D. 1989. Composite transposable elements in the Xenopus laevis genome. Mol Cell Biol. 9:3018−3027.
  68. Gasior S.L., Wake man T.P., Xu B., Deininger P.L. 2006. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol. 357:1383−1393.
  69. Gibbs RA., Weinstock GM., Metzker M.L., Muzny DM., Sodergren E. J et al. 2004. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 428:493−521.
  70. Gill G., Pascal E., Tseng Z.H., Tjian R 1994. A glutamine-rich hydrophobic patch in transcription factor Spl contacts the dTAFIIllO component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A. 91:192−196.
  71. Goodier J.L., Ostertag EM., Du K, Kazazian H.H. Jr. 2001. A novel active LI retrotransposon subfamily in the mouse. Genome Res. 11:1677−1685.
  72. Goodier J.L., Ostertag EM., Kazazian H.H. Jr. 2000. Transduction of 3-flanking sequences is common in LI retrotransposition. Hum Mol Genet 9:653−657.
  73. Gorlich ?>., Kutay U. 1999. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell DevBiol. 15:607−660.
  74. Haas N.B., Grabowski JM., SivitzA.B., BurchJ.B. 1997. Chicken repeat 1 (CR1) elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames. Gene. Sep 197:305−309.
  75. Hagen G., MullerS., BeatoM., Suske G. 1992. Cloning by recognition site screening of two novel GT box binding proteins: a family of Spl related genes. Nucleic Acids Res. 20:5519−5525.
  76. Han J.S., Szak S.T., Boeke J.D. 2004. Transcriptional disruption by the LI retrotransposon and implications for mammalian transcriptomes. Nature. 429:268−274.
  77. Hardies S.C., WangL., Zhou L., Zhao K, CasavantN.C., HuangS. 2000. LINE-1 (LI) lineages in the mouse. Mol Biol Evol. 17:616−628.
  78. B.E., Zavanelli M., Furano A.V. 1997. Recombination creates novel LI (LINE-1) elements in Rattus norvegicus, Genetics. 146:641−654.
  79. Hirose Y., ManleyJ.L. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature. 395:93−96.
  80. H., Singer M.F. 1996. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA EMBO J. 15:630−639.
  81. H., Singer M.F. 1997. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16:6034−6043.
  82. Holmes S.E., Singer MJ?., Swergold G.D. 1992. Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J Biol Chem. 267:19 765−19 768.
  83. Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S.T. 1994. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell. Biol. 14:116−127.
  84. Jones P.L., Veenstra GJ, Wade PA., VermaakD., KassS.U., Landsberger N., Strouboulis J., WolffeA.P. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 19:187−191.
  85. Jubier-Maurin V., Cuny G., Laurent AM., Paquereau L., Roizes G. 1992. A new 5' sequence associated with mouse LI elements is representative of a major class of LI termini. Mol Biol Evol. 9:41−55.
  86. JurkaJ. 1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA. 94:1872−1877.
  87. Kadonaga J.T., CoureyAJ., Ladika J., Tjian R. 1988. Distinct regions of Spl modulate DNA binding and transcriptional activation. Science. 242:1566−1570.
  88. J.T., Tjian R. 1986. Affinity purification of sequence-specific DNA binding proteins. Proc. Natl. Acad. Sci. USA. 83:5889−5893.
  89. N.K., Wolffe A.P. 2000. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 28:1921−1928.
  90. Kazazian H.H. Jr., Wong C., Youssoufian H., Scott A.F., Phillips D.G., Antonarakis S.E. 1988. Haemophilia A resulting from de novo insertion of LI sequences represents a novel mechanism for mutation in man. Nature. 332:164−166.
  91. Kim K, Thu N., Saville B., Safe S. 2003. Domains of estrogen receptor alpha (ERalpha) required for ERalpha/Spl-mediated activation of GC-rich promoters by estrogens and antiestrogens in breast cancer cells. Mol Endocrinol. 17:804−817
  92. Kimmel B.E., ole-MoiYoi O.K., Young J.R. 1987. Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs. Mol Cell Biol. 7:1465−1475.
  93. C., Winoto A. 1992. Cloning of GT box-binding proteins: a novel Spl multigene family regulating T-cell receptor gene expression. Mol Cell Biol. 12:4251−4261.
  94. RJ., Bird A.P. 2004. MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex. J Biol Chem. 279:46 490−46 496.
  95. RJ., Bird A.P. 2006. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31:89−97.
  96. Klose RJ., SarrafSA., Schmiedeberg L., McDermott SM., Stancheva I., Bird AJ>. 2005. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell. 19:667−678.
  97. V.O., Martin S.L. 1997. In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc Natl Acad Sci USA. 94:10 155−10 160.
  98. KomatsuM., Shimamoto K, KyozukaJ. 2003. Two-step regulation and continuousretrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell. 15:1934−1944.
  99. B.F., Baker R.J., Genoways H.H. 1983. Numerous chromosomal polymorphisms in a natural population of rice rats (Oryzomys, Cricetidae). Cytogenet Cell Genet. 35:131−135.
  100. J.R., Rykowski M.C. 1988. Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell. 53:391−400.
  101. KuJfEL., Lueders K.K. 1988. The intracisternal A-particle gene family: structure and functional aspects. Adv Cancer Res. 51:183−276.
  102. DA., Moran J.V. 2005. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum Mol Genet. 14:3237−3248.
  103. KurachiS., Deyashiki Y., TakeshitaJ., KurachiK. 1999. Genetic mechanisms of age regulation of human blood coagulation factor IX. Science. 285:739−743.
  104. Kurose K, Hata K, HattoriM, Sakaki Y. 1995. RNA polymerase III dependence of the human LI promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. Nucleic Acids Res. 23:3704−3709.
  105. A.K., Kadonaga J.T. 2000. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol. 20:4754−4764.
  106. JM., Datto M.B., Shen X., Hu P.P., Yu Y, Wang X.F. 1998. Spl, but not Sp3, functions to mediate promoter activation by TGF-beta through canonical Spl binding sites. Nucleic Acids Res. 26:2449−2456.
  107. L., He S., Sun JM., Davie J.R. 2004. Gene regulation by Spl and Sp3. Biochem. Cell. Biol. 82:460−471.
  108. Maio J J., Brown F.L., McKenna W.G., Musich P.R. 1981. Toward a molecular paleontology of primate genomes. H The Kpnl families of alphoid DNAs. Chromosoma. 83:127−144.
  109. Majello B., De Luca P., Lania L. 1997. Sp3 is a Afunctional transcription regulator with modular independent activation and repression domains. J Biol Chem. 272:4021−4026.
  110. IA., Mager D.L. 2005. Transcriptional regulation of early transposon elements, an active family of mouse long terminal repeat retrotransposons. J. Virol. 79:13 865−13 874.
  111. H.S., Burke W.D., Eickbush T.H. 1999. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol. 16:793−805.
  112. MalkovM., Fisher Y, Don J. 1998. Developmental schedule of the postnatal rat testis determined by flow cytometry. Biol. Reprod. 59:84−92.
  113. Martin F., Maranon C., OlivaresM., Alonso C., Lopez M.C. 1995. Characterization of a non-long terminal repeat retrotransposon cDNA (LITc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. J Mol Biol. 247:49−59.
  114. S.L. 1991. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol. 11:4804−4807.
  115. S.L., Branciforte D. 1993. Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Mol. Cell. Biol. 13:5383−5392.
  116. S.L., Branciforte D., Keller D., Bain D.L. 2003. Trimeric structure for an essential protein in LI retrotransposition. Proc Natl Acad Sci USA. 100:13 815−13 820.
  117. S.L., Bushman F.D. 2001. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol. 21:467−475.
  118. Martin S.L., Li J., Weisz J A. 2000. Deletion analysis defines distinct functional domains for protein-protein and nucleic acid interactions in the ORF1 protein of mouse LINE-1. J Mol Biol. 304:11−20.
  119. Martin S.L., Li W.L., Furano A.V., Boissinot S. 2005. The structures of mouse and human LI elements reflect their insertion mechanism. Cytogenet Genome Res. 110:223−228.
  120. S.L., Scott A.F. 1993. Promoter binding proteins of an active human LI retrotransposon. Biochem Biophys Res Commun. 191:625−632.
  121. Mathias S.L., Scott A.F., Kazazian H.H. Jr, Boeke J. D, Gabriel A. 1991. Reverse transcriptase encoded by a human transposable element Science. 254:1808−1810.
  122. McCracken S., Fong N., Yankiilov K, Ballantyne S., Pan G., Greenblatt J., Patterson S.D., Wickens M., Bentley D.L. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature. 385:357−361.
  123. McDevitt MA., Imperiale MJ., Ali H., Nevins J.R. 1984. Requirement of a downstream sequence for generation of a poly (A) addition site. Cell. 37:993−999.
  124. McLauchlan J., Gajjfhey D., Whitton J.L., Clements J.B. 1985. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3' termini. Nucleic Acids Res. 13:1347−1368.
  125. McMillan J.P., Singer M.F. 1993. Translation of the human LINE-1 element, LIHs. Proc Natl Acad Sci USA 90:11 533−11 537.
  126. Meischl C., BoerM., Ahlin A., Roos D. 2000. A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet. 8:697−703.
  127. Meunier-Rotival M., Soriano P., Cuny G., Strauss F., Bernardi G. 1982. Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA. Proc Natl Acad Sci U S A 79:355−359.
  128. Minakami R, Kurose K, Etoh K, Furuhata Y., Hattori M., Sakaki Y. 1992. Identification of an internal cis-element essential for the human LI transcription and a nuclear factors) binding to the element Nucleic Acids Res. 20:3139−3145.
  129. Minchiotti G., Contursi C., Di Nocera P.P. 1997. Multiple downstream promoter modules regulate the transcription of the Drosophila melanogaster I, Doc and F elements. J Mol Biol. 267:37−46.
  130. MoranJ.V., DeBerardinisRJ., Kazazian H.H. Jr. 1999. Exon shuffling by LI retrotransposition. Science. 283:1530−1534.
  131. Moran J. V., Holmes S.E., Naas T.P., DeBerardinis RJ., Boeke J.D., Kazazian H.H. Jr. 1996. High frequency retrotransposition in cultured mammalian cells. Cell. 87:917−927.
  132. TA., Gilbert N. Myers J.S., Vincent BJ., Stamato T.D., Taccioli G.E., Batzer MA., Moran J.V. 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159−165.
  133. Morse B., RothergP.G., South V.J., Spandorfer JM., Astrin SM. 1988. Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma. Nature. 333:87−90.
  134. Naas T.P., DeBerardinis RJ., Moran J.V., Ostertag EM., Kingsmore S.F., Seldin M.F., Hayashizaki Y., Martin S.L., Kazazian H.H. 1998. An actively retrotransposing, novel subfamily of mouse LI elements. EMBO J. 17:590−597.
  135. Nan X., Campoy FJ., Bird A. 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 88:471−481.
  136. Nan X., NgH.H., Johnson CA., Laherty C.D., Turner B.M., Eisenman R.N., Bird A. 1998
  137. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393:386−389.
  138. Nekrutenko A., Li W.H. 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17:619−621.
  139. Nigumann P., RedikK., MatlikK., SpeekM. 2002. Many human genes are transcribed from the antisense promoter of LI retrotransposon. Genomics. 79:628−634.
  140. P.P., Casari G. 1987. Related polypeptides are encoded by Drosophila F elements, I factors, and mammalian LI sequences. Proc Natl Acad Sci USA. 84:5843−5847.
  141. P.P., Graziani F., Lavorgna G. 1986. Genomic and structural organization of Drosophila melanogaster G elements. Nucleic Acids Res. 14:675−691.
  142. K., Ohlsubo H., Ohtsubo E. 2000. ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization. DNARes. 7:291−303.
  143. Nur I., Pascale E, Furano A.V. 1988. The left end of rat LI (LIRn, long interspersed repeated) DNA which is a CpG island can function as a promoter. Nucleic Acids Res. 16:9233−9251.
  144. Y.N., Proudfoot NJ., Beyer A.L. 1999. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly (A) signal but not transcript cleavage. Mol Cell. 3:379−387.
  145. Ostertag EM., DeBerardinis RJ., Goodier J.L., Zhang Y, Yang N., Gerton G.L., Kazazian H.HJr. 2002. A mouse model of human LI retrotransposition. Nat Genet 32:655−660.
  146. Ostertag EM., Kazazian H.HJr. 2001. Biology of mammalian LI retrotransposons. Annu. Rev. Genet. 35:501−538.
  147. I., Troxel A.B., Swergold G.D. 2001. Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res. 11:2050−2058.
  148. Packer A J., Manova K, Bachvarova R.F. 1993. A discrete LINE-1 transcript in mouse blastocysts. Dev. Biol. 157:281−283.
  149. Padgett R.W., Hutchison CA., EdgellM.H. 1988. The F-type 5' motif of mouse LI elements: a major class of LI termini similar to the A-type in organization but unrelated in sequence. Nucleic Acids Res. 16:739−749.
  150. E., Tjian R. 1991. Different activation domains of Spl govern formation of multimers and mediate transcriptional synergism. Genes Dev. 5:1646−1656.
  151. T., Dandekar T., Zemojtel T. 2005. LIBase: from functional annotation to prediction of active LINE-1 elements, Nucleic Acids Res. 33: D498−500.
  152. Perepelitsa-Belancio V., Deininger P. 2003. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet. 35:363−366.
  153. O.K., Makalowski IV., Boguski M.S., Boeke J.D. 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10:411−415.
  154. Pittoggi C., Sciamanna /., Mattei E., Beraldi R., Lobascio AM., Mai A., Quaglia M.G., Lorenzini K, Spadafora C. 2003. Role of endogenous reverse transcriptase in murine early embryo development. Mol Reprod Dev. 66:225−236.
  155. Poulter K, Butler M., Ormandy J. 1999. A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons. Gene. 227:169−179.
  156. Prak E.T., Dodson A.W., Farkash EA., Kazazian H.H. Jr. 2003. Tracking an embryonic LI retrotransposition event. Proc Natl Acad Sci U S A 100:1832−1837.
  157. Pugh BJF., Tjian R 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5:1935−1945.
  158. C., Vinit M.A., Lemarchandel V., Cartron J.P., Romeo P.H. 1992. Erythroid-specific activity of the glycophorin B promoter requires GATA-1 mediated displacement of a repressor. EMBO J. 11:4095−4102.
  159. W., Dean W., Walter J. 2001. Epigenetic reprogramming in mammalian development. Science. 293:1089−1093.
  160. Rinehart TA., Grahn RA. f Wichman HA. 2005. SINE extinction preceded LINE extinction in sigmodontine rodents: implications for retrotranspositional dynamics and mechanisms. Cytogenet Genome Res. 110:416−425.
  161. J., Fritch E.F. &Maniatis T. 1989. Molecular cloning: A laboratory Manual, second ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  162. Saxton J A., Martin S.L. 1998. Recombination between subtypes creates a mosaic lineage of LINE-1 that is expressed and actively retrotransposing in the mouse genome. J Mol Biol. 280:611−622.
  163. ScherrM., Morgan MA., EderM. 2003. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem. 10:245−256.
  164. SA., Adey N.B., Edgell M.H., Hutchison CA. 1993. LI A-monomer tandem arrays have expanded during the course of mouse LI evolution. Mol Biol Evol. 10:552−570.
  165. C.W., Deininger P.L. 1975. Sequence organization of the human genome. Cell. 6:345 358.
  166. E., Mohr E., Richter D. 1991. Rat vasopressin and oxytocin genes are linked by a long interspersed repeated DNA element (LINE): sequence and transcriptional analysis of LINE. DNA Cell Biol. 10:81−91.
  167. Schwahn U., LenznerS., Dong J., Feil S., Hinzmann B., van Duijnhoven G" Kirschner R., Hemberger M., Bergen A A., Rosenberg T., Pinckers A J., FundeleR., Rosenthal A.,
  168. F.P., Ropers H.H., Berger W. 1998. Positional cloning of the gene forX-linked retinitis pigmentosa 2. Nat Genet 19:327−332.
  169. Schwarz-Sommer Z, Leclercq L., Gobel E., SaedlerH. 1987. Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retro transposons. EMBO J. 6:3873−3880.
  170. Scott A.F., Schmeckpeper BJ., AbdelrazikM, Comey C.T., O’Hara B., Rossiter J.P., Cooley T., Heath P., Smith K.D., Margolet L. 1987. Origin of the human LI elements: proposed progenitor genes deduced from a consensus DNA sequence.Genomics. 1:113−125.
  171. Segal-Bendirdjian E., Heidmann T. 1991. Evidence for a reverse transcription intermediate for a marked line transposon in tumoral rat cells. Biochem. Biophys. Res. Commun. 181:863−870.
  172. M., Duret L. 2004. Evidence that functional transcription units cover at least half of the human genome. Trends Genet. 20:229−232.
  173. DM., Hutchison CA., Edgell M.H. 1992. Identification of transcriptional regulatory activity within the 5' A-type monomer sequence of the mouse LINE-1 retroposon. Mamm Genome. 2:41−50.
  174. Shafit-Zagardo B., Brown F.L., Zavodny P.J., MaioJJ. 1983. Transcription of the Kpnl families of long interspersed DNAs in human cells. Nature. 304:277−280.
  175. Sheng Y., Li J., Dufau M.L., Tsai-Morris C.H. 2005. The gonadotropin-regulated long-chain acyl CoA synthetase gene: A novel downstream Spl/Sp3 binding element critical for transcriptional promoter activity. Gene. 360:20−26.
  176. E.S., Trifonov E.N., Bolshoy A. 1993. Curvature: software for the analysis of curved DNA. Comput Appl Biosci. 9:435−440.
  177. A., Calame K. 1994. An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic Acids Res. 22:5151−5155.
  178. AM., Burden S.J. 1993. An E-box mediates activation and repression of the acetylcholine receptor delta-subunit gene during myogenesis. Mol. Cell. Biol. 13:5133−5140.
  179. M.F. 1982. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell. 28:433−434.
  180. SingerM.F., Thayer R.E., Grimaldi G., Lerman M.I., Fanning T.G. 1983. Homology between the Kpnl primate and BamHl (M1F-1) rodent families of long interspersed repeated sequences. Nucleic Acids Res. 11:5739−5745.
  181. Singh G., Kramer J., and Krawetz S. 1997. Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucl. Acids Res. 25:1419−1425.
  182. J., Fanning T.G., Singer M.F. 1988. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol. 8:1385−1397.
  183. S.T., Schmidt M.C., Berk AJ., Baltimore D. 1990 Transcriptional activation by Spl as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA. 87:4509513.
  184. S.T., Schmidt M.C., Berk AJ., Baltimore D. 1990. Transcriptional activation by Spl as directed through TATA or initiator specific requirement for mammalian transcription factor IID. Proc. Natl. Acad. Sci. USA. 87:4509−4513.
  185. M.B., Schon E., Efstratiadis A. 1985. Rat LINE1: the origin and evolution of a family of long interspersed middle repetitive DNA elements. J Mol Evol. 22:117−133.
  186. Sowa Y, Orita T., Minamikawa-Hiranabe S" Mizimo T., Nomura H., Sakai T. 1999. Sp3, but not Spl, mediates the transcriptional activation of the p21/WAFl/Cipl gene promoter by histone deacetylase inhibitor. Cancer Res.59:4266−4270.
  187. SpeekM. 2001. Antisense promoter of human LI retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol. 21:1973−1985.
  188. Spencer VA., Sun JM., Li L., Davie J.R. 2003. Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods. 31:67−75.
  189. Steinhoff C. f Schulz WA. 2003. Transcriptional regulation of the human LINE-1 retrotransposon L1.2B. Mol Genet Genomics. 270:394−402.
  190. F., Varshavsky A. 1984. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell. 37:889−901.
  191. G. 1999. The Sp-family of transcription factors. Gene. 238:291−300.
  192. G.D. 1990. Identification, characterization, and cell specifity of a human LINE-1 promoter, Mol. Cell. Biol. 10:6718−6729.
  193. S.T., Pickeral O.K., Makalowski W., Boguski M.S., Landsman D., Boeke J.D. 2002. Molecular archeology of LI insertions in the human genome. Genome Biol. 3: research0052
  194. D., Yagi Y., Habib N. Sugimura T., Ushijima T. 2000. Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol. 30:306−309.
  195. T., Casella J.F., Heidmann T. 2000. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28:411−415.
  196. Tchenio T., Segal-Bendirdjian E., Heidmann T. 1993. Generation of processed pseudogenes in murine cells. EMBO J. 12:1487−1497.
  197. KE., Singer M.F., Fanning T.G. 1993. Undermethylation of specific LINE-1 sequences in human cells producing a LINE-1-encoded protein. Gene. 133:273−277.
  198. Torigoe T., Izumi H., Yoshida Y, Ishiguchi H., Okamoto T., Itoh H., Kohno K. 2003. Low pH enhances Spl DNA binding activity and interaction with TBP. Nucleic Acids Res. 31:45 234 530.
  199. H., Staehelin T., Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 76:4350−4354.
  200. SA., Martin S.L. 1995. Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embiyogenesis. Proc. Natl. Acad. Sci. USA. 92:1520−1524
  201. UsdinK., ChevretP., CatzejlisF.M., VeronaR, FuranoA.V. 1995 LI (LINE-1) retrotransposable elements provide a «fossil» record of the phylogenetic history of murid rodents. Mol Biol Evol. 12:73−82.
  202. T.L., Reitman M. 1994. Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors. Mol Biol Evol. 11:886−898.
  203. Wahl GM., Stem M., Stark G. R 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. Sci. USA. 76:3683−3687,
  204. Wakefield KI., Smith B.O., Nan X., Free A., Soteriou A, Uhrin D., BirdA.P., Barlow P.N. 1999. The solution structure of the domain from MeCP2 that binds to methylated DNA. J Mol Biol. 291:1055−1065.
  205. Waterston R.H., Lindblad-Toh K., Bimey E., Rogers J., Abril J.F. et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature. 420:520−562.
  206. F., Molloy P.L. 1988. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 2:1136−1143.
  207. M. 1999. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27:1409−1420.
  208. Wei W., Gilbert N. Ooi S.L., Lawler J.F., Ostertag EM., Kazazian H.H., Boeke J.D., Moran J. V. 2001 Human LI retrotransposition: cis preference versus trans complementation. Mol Cell Biol. 21:1429−1439.
  209. L., Reinberg D. 1997. Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins. Mol. Cell. Biol. 17:2973−2984.
  210. JM., Hughes S.H. 1992. Retroviral reverse transcription and integration: progress and problems. Annu Rev Cell Biol. 8:275−306.
  211. D.C., Wolfe SA., Grimes S.R. 2002. Hlt/GC-box and Hlt/TEl element are essential for promoter activity of the testis-specific histone Hit gene. Biol. Reprod. 67:1157−1164.
  212. Woodcock DM., Williamson M. R, Doherty J.P. 1996. A sensitive RNase protection assay to detect transcripts from potentially functional human endogenous LI retrotransposons. Biochem Biophys Res Commun. 222:46065.
  213. Wurtele H, Gusew N., Lussier R, Chartrand P. 2005. Characterization of in vivo recombination activities in the mouse embryo. Mol Genet Genomics. 273:252−263.
  214. YangN., Zhang L., Zhang Y, Kazazian H.H.Jr. 2003. An important role fro RUNX3 in human LI transcription and retrotransposition. Nucleic Acids Res. 31:4929940.
  215. Yang Z., Boffelli ?>., Boonmark N. Schwartz K., Lawn R. 1998. Apolipoprotein (a) gene enhancer resides within a LINE element. J Biol Chem. 273:891−897.
  216. YoderJA., Walsh C.P., Bestor T.H. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335−340.
  217. Yu B., Datta P.K., Bagchi S. 2003. Stability of the Sp3-DNA complex is promoter-specific: Sp3 efficiently competes with Spl for binding to promoters containing multiple Sp-sites. Nucleic Acids Res. 31:5368−5376.
  218. Yu F., Thiesen J., Stratling W.H. 2000. Histone deacetylase-independent transcriptional repression by methyl-CpG-binding protein 2. Nucleic Acids Res. 28:2201−2206.
  219. Yu F., Zingler N., Schumann G., Stratling W.H. 2001. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 29:4493−4501.
  220. L., Reinberg D. 1993. Initiation of transcription by RNA polymerase II: a multi-step process. Prog Nucleic Acid Res Mol Biol. 44:67−108.
  221. Zhu W.G., Srinivasan K., Dai Z., Duan W., Druhan L.J., Ding H., Yee L., Villalona-Calero MA., Plass C., Otterson GA. 2003. Methylation of adjacent CpG sites affects Spl/Sp3 binding and activity in the p21(Cipl) promoter. Mol. Cell. Biol. 23:4056−4065.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ