Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

Π›ΠΈΠΏΠ°Π·Ρ‹ Π² систСмС ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»: Роль ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ повСрхности Π² рСгуляции липолитичСской активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

На ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ липолитичСской активности ΠΏΠΎ-ΠΏΡ€Π΅ΠΆΠ½Π΅ΠΌΡƒ являСтся нСпростой Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ рядом нСдостатков, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ…: 1) Π΄ΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΈΠ·Π½Ρƒ оборудования ΠΈ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ²- 2) Π½Π΅ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡ‚ΡŒ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… срСдах ΠΈ ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ…, содСрТащих Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹Π΅ соСдинСния, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ субстраты ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ липолитичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ- 3) ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ синтСтичСских… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • I. Π›Π˜ΠŸΠΠ—Π: Π‘Π’Π ΠžΠ•ΠΠ˜Π• И ΠžΠ‘ΠžΠ‘Π•ΠΠΠžΠ‘Π’Π˜ ΠšΠΠ’ΠΠ›Π˜Π—Π
    • 1. 1. ΠžΠ±Ρ‰Π°Ρ характСристика Π»ΠΈΠΏΠ°Π· ΠΈΠ· Ρ€Π°Π·Π½Ρ‹Ρ… источников
    • 1. 2. Аминокислотный ΠΈ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Ρ‹ΠΉ состав
    • 1. 3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΈ ΠΏΠΎΠ²Π΅Ρ€Ρ…ностная активация Π»ΠΈΠΏΠ°Π·Ρ‹
    • 1. 4. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° ΠΈ ΠΊΠΈΠ½Π΅Ρ‚ичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ дСйствия Π»ΠΈΠΏΠ°Π·
    • 1. 5. Π€Π°ΠΊΡ‚ΠΎΡ€Ρ‹, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° Π»ΠΈΠΏΠΎΠ»ΠΈΠ·
    • 1. 6. Бубстратная ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Π»ΠΈΠΏΠ°Π·
    • 1. 7. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ опрСдСлСния активности Π»ΠΈΠΏΠ°Π·
    • 1. 8. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π»ΠΈΠΏΠ°Π·
  • II. Π‘Π˜Π‘Π’Π•ΠœΠ« ΠžΠ‘Π ΠΠ©Π•ΠΠΠ«Π₯ ΠœΠ˜Π¦Π•Π›Π›, ИΠ₯ Π”ΠžΠ‘Π’ΠžΠ˜ΠΠ‘Π’Π’Π
    • 2. 1. БистСмы ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π», ΠΎΠ±Ρ‰ΠΈΠ΅ характСристики
    • 2. 2. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ… ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»: рСгуляция ΠΈΡ… Π°ΠΊΡ‚ивности ΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ состава
    • 2. 3. ΠšΠ°Ρ‚Π°Π»ΠΈΠ· Π»ΠΈΠΏΠ°Π·ΠΎΠΉ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ… ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
  • III. Π›Π˜ΠŸΠžΠšΠ‘Π˜Π“Π•ΠΠΠ—Π: Π‘Π’Π ΠžΠ•ΠΠ˜Π• И Π‘Π’ΠžΠ™Π‘Π’Π’Π
    • 3. 1. НахоТдСниС Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π²Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ липоксигСназ
    • 3. 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° липоксигСназ
  • IV. ΠšΠ˜ΠΠ•Π’Π˜Π§Π•Π‘ΠšΠ˜Π• Π—ΠΠšΠžΠΠžΠœΠ•Π ΠΠžΠ‘Π’Π˜ ΠŸΠžΠ›Π˜Π€Π•Π ΠœΠ•ΠΠ’ΠΠ«Π₯ Π Π•ΠΠšΠ¦Π˜Π™
  • ΠŸΠžΠ‘Π’ΠΠΠžΠ’ΠšΠ Π—ΠΠ”ΠΠ§Π˜
  • Π­ΠšΠ‘ΠŸΠ•Π Π˜ΠœΠ•ΠΠ’ΠΠ›Π¬ΠΠΠ― ЧАБВ
  • I. ΠœΠΠ’Π•Π Π˜ΠΠ›Π«
  • II. ΠœΠ•Π’ΠžΠ”Π«
    • 2. 1. Π₯арактСристика ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
    • 2. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ каталитичСской активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
    • 2. 3. Π₯имичСская модификация Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²
    • 2. 4. Π‘Π΅Π΄ΠΈΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·
    • 2. 5. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ собствСнной флуорСсцСнции Π»ΠΈΠΏΠ°Π·
    • 2. 6. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π»ΠΈΠΏΠ°Π·
    • 2. 7. Π‘ΠΈΠ½Ρ‚Π΅Π· Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π°Ρ†ΠΈΠΊΠ»ΠΎΠ²ΠΈΡ€Π°, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ Π»ΠΈΠΏΠ°Π·ΠΎΠΉ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
    • 2. 8. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы «Π»ΠΈΠΏΠ°Π·Π° / липоксигСназа»
  • РЕЗУЛЬВАВЫ И ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π―
  • I. ΠžΠ‘Π©ΠΠ― Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜ΠšΠ ΠŸΠ Π•ΠŸΠΠ ΠΠ’ΠžΠ’ Π›Π˜ΠŸΠΠ—
    • 1. 1. ΠŸΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π»ΠΈΠΏΠ°Π·Π° свиньи
    • 1. 2. Π›ΠΈΠΏΠ°Π·Π° ΠΈΠ· Mucor miehe
    • 1. 3. Π›ΠΈΠΏΠ°Π·Π° ΠΈΠ· Chromobacterium viscosum
  • II. Π Π•Π“Π£Π›Π―Π¦Π˜Π― Π›Π˜ΠŸΠžΠ›Π˜Π’Π˜Π§Π•Π‘ΠšΠžΠ™ ΠΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π˜ Π€Π•Π ΠœΠ•ΠΠ’ΠžΠ’
    • 2. 1. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ условий ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°
      • 2. 1. 1. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ каталитичСской активности Π»ΠΈΠΏΠ°Π· ΠΎΡ‚ Ρ€Π ΡΡ€Π΅Π΄Ρ‹, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
      • 2. 1. 2. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ характСристики Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π»ΠΈΠΏΠ°Π·Π°ΠΌΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС ΠΈ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
      • 2. 1. 3. ВлияниС ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈ ΠΆΠ΅Π»Ρ‡Π½Ρ‹Ρ… солСй Π½Π° Π»ΠΈΠΏΠΎΠ»ΠΈΠ· Π² Π²ΠΎΠ΄Π½ΠΎΠΌ растворС ΠΈ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
    • 2. 2. РСгуляция ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ состава Π»ΠΈΠΏΠ°Π· Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
    • 2. 3. РСгуляция активности Π»ΠΏΠΏΠ°Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠŸΠΠ’ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
    • 2. 4. Π₯имичСская модификация Π»ΠΈΠΏΠ°Π·Ρ‹
    • 2. 5. БобствСнная флуорСсцСнция Π»ΠΈΠΏΠ°Π·
    • 2. 6. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠ°Ρ локализация Π»ΠΈΠΏΠ°Π· Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
  • III. Π‘Π’ΠΠ‘Π˜Π›Π¬ΠΠžΠ‘Π’Π¬ Π›Π˜ΠŸΠΠ—
  • IV. Π Π•Π“Π£Π›Π―Π¦Π˜Π― Π‘Π˜ΠΠ’Π•Π’Π˜Π§Π•Π‘ΠšΠžΠ™ ΠΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π˜ Π›Π˜ΠŸΠΠ—
  • V. Π‘Π˜Π€Π•Π ΠœΠ•ΠΠ’ΠΠΠ― Π‘Π˜Π‘Π’Π•ΠœΠ «Π›Π˜ΠŸΠΠ—А / Π›Π˜ΠŸΠžΠšΠ‘Π˜Π“Π•ΠΠΠ—Π»
    • 5. 1. ΠšΠ°Ρ‚Π°Π»ΠΈΠ· соСвой липоксигСназой-1 Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
    • 5. 2. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ характСристики Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π»ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ стадии
    • 5. 3. Зависимости кинСтичСских констант Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ процСсса ΠΎΡ‚ ΡΡ‚Π΅ΠΏΠ΅Π½ΠΈ Π³ΠΈΠ΄Ρ€Π°Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ АОВ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»
    • 5. 4. ВСстированиС масСл с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы «Π»ΠΈΠΏΠ°Π·Π°/ липоксигСназа»
  • Π’Π«Π’ΠžΠ”Π«

Π›ΠΈΠΏΠ°Π·Ρ‹ Π² систСмС ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»: Роль ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ повСрхности Π² рСгуляции липолитичСской активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π›ΠΈΠΏΠ°Π·Ρ‹ (Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Ρ‹ Π²Ρ‹ΡΡˆΠΈΡ… Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ²) ΠΈΠ³Ρ€Π°ΡŽΡ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΎΠ±ΠΌΠ΅Π½Π΅ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² всСх ΠΆΠΈΠ²Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ°Ρ… отлоТСния ΠΈ ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΆΠΈΡ€Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ энСргСтичСского Ρ€Π΅Π·Π΅Ρ€Π²Π° ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. Π›ΠΈΠΏΠ°Π·Ρ‹ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΡŽΡ‚ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Ρ‹ Π² ΠΏΠΈΡ‰Π΅Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π°ΠΊΡ‚Π΅ Π΄ΠΎ Π΄ΠΈ-, ΠΌΠΎΠ½ΠΎΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½Ρ‹Ρ… ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот, Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ способны ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ с Π²Ρ‹ΡΠΎΠΊΠΎΠΉ ΡΡ‚Π΅Ρ€Π΅ΠΎΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ большого числа субстратов, ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚ Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ². Π›ΠΈΠΏΠ°Π·Ρ‹ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ Π² Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΡ… срСдах ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ с Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌ Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ ΠΈΠ· Ρ€Π°ΡΡ‚Π΅Π½ΠΈΠΉ, ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ· ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π°Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Π’ Π½Π°ΡΡ‚оящСС врСмя Π»ΠΈΠΏΠ°Π·Ρ‹ находят ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… областях, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π»Π΅Ρ‡Π΅Π±Π½ΡƒΡŽ ΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρƒ, ΠΏΠΈΡ‰Π΅Π²ΡƒΡŽ, ΠΊΠΎΡΠΌΠ΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ Π±ΡƒΠΌΠ°ΠΆΠ½ΡƒΡŽ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ, производство Π΄Π΅Ρ‚Π΅Ρ€Π³Π΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ синтСз. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅, Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ врСмя особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ удСляСтся ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ биокаталитичСских характСристик этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°.

Π˜ΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π»ΠΈΠΏΠ°Π·Ρ‹, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰Π΅ΠΉ Π΅Π΅ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… эстСраз, являСтся свойство повСрхностной Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии Π°Π³Ρ€Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» субстрата (ΠΆΠΈΡ€ΠΎΠ²Ρ‹Ρ… капСль), Ρ‡Ρ‚ΠΎ обусловлСно Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π΅Π³ΠΎ адсорбции Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…ности Π»ΠΈΠΏΠΈΠ΄Π°. Π’ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ указания Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ адсорбция Π»ΠΈΠΏΠ°Π·Ρ‹ Π½Π° Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠΌ монослоС являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π»ΠΈΠΏΠ°Π·ΠΎΠΉ, ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚-субстратного комплСкса. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ взаимодСйствия Π»ΠΈΠΏΠ°Π·Ρ‹ с ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ Π»ΠΈΠΏΠΈΠ΄Π° Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π²ΠΈΡΠ΅Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΡ‚ ΡΠ²ΠΎΠΉΡΡ‚Π² ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ повСрхности (заряда, плотности, повСрхностного натяТСния ΠΈ Ρ‚. Π΄.), Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚ ΡΠ²ΠΎΠΉΡΡ‚Π² самого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, Π² Ρ‚ΠΎΠΌ числС ΠΎΡ‚ Π½Π°Π»ΠΈΡ‡ΠΈΡ Π½Π° Π΅Π³ΠΎ повСрхности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. Вопрос ΠΎ Ρ€ΠΎΠ»ΠΈ взаимодСйствия Π»ΠΈΠΏΠ°Π·Ρ‹ с ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° прСдставляСт, с ΠΎΠ΄Π½ΠΎΠΉ стороны, Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ интСрСс для понимания закономСрностСй ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π»ΠΈΠΏΠ°Π·Π°ΠΌΠΈ Ρ€Π°Π·Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹, Π° Ρ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΠΈΠΌΠ΅Π΅Ρ‚ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π΅ΡΡ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ процСсса in vitro ΠΈ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ рСгуляции ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π»ΠΈΠΏΠ°Π·Π°ΠΌΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… биотСхнологичСских Π·Π°Π΄Π°Ρ‡. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ вопроса прСдставляСтся вСсьма ΡƒΠ΄ΠΎΠ±Π½ΠΎΠΉ систСма ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π», которая, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π»ΠΈΠΏΠΈΠ΄Π½ΠΎΠ³ΠΎ монослоя, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована ΠΊΠ°ΠΊ для модСлирования ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ окруТСния Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ Π΄Π»Ρ провСдСния биокаталитичСских процСссов. Π’ ΡΠ»ΡƒΡ‡Π°Π΅ систСмы этого Ρ‚ΠΈΠΏΠ° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ взаимодСйствия Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° с ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ (слоСм ΠŸΠΠ’) ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΏΡƒΡ‚Π΅ΠΌ измСнСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСмы, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ, Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΈ Ρ‡ΠΈΡΠ»Π° ΠΌΠΈΡ†Π΅Π»Π», Ρ‚Π°ΠΊ ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ химичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ (Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±ΠΈΠ·Π°Ρ†ΠΈΠΈ) повСрхности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, основной Ρ†Π΅Π»ΡŒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρ‹ явилось выявлСниС рСгуляции липолитичСской ΠΈ ΡΠΈΠ½Ρ‚СтичСской активности Π»ΠΈΠΏΠ°Π· Ρ€Π°Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» АОВ Π² ΠΈΠ·ΠΎΠΎΠΊΡ‚Π°Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСмы (числа ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΌΠΈΡ†Π΅Π»Π») ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π² повСрхности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Π’ ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² исслСдования Π±Ρ‹Π»ΠΈ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π»ΠΈΠΏΠ°Π·Ρ‹: панкрСатичСская Π»ΠΈΠΏΠ°Π·Π° свиньи ΠΈ Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΈΠ· Mucor miehei ΠΈ Chromobacterium viscosum.

На ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ липолитичСской активности ΠΏΠΎ-ΠΏΡ€Π΅ΠΆΠ½Π΅ΠΌΡƒ являСтся нСпростой Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ рядом нСдостатков, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ…: 1) Π΄ΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΈΠ·Π½Ρƒ оборудования ΠΈ Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ²- 2) Π½Π΅ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎΡΡ‚ΡŒ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… срСдах ΠΈ ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ…, содСрТащих Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹Π΅ соСдинСния, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ субстраты ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ липолитичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ- 3) ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ синтСтичСских субстратов, ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Π½ΠΈΠ·ΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ, Π΄Ρ€ΡƒΠ³ΠΎΠΉ Π²Π°ΠΆΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° простого Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° опрСдСлСния активности Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠΌΡƒ субстрату (Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Ρƒ) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы «Π»ΠΈΠΏΠ°Π·Π° / липоксигСиаза», Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ липолитичСскоС высвобоТдСниС полннСнасыщСнной ΠΆΠΈΡ€Π½ΠΎΠΉ кислоты ΠΈΠ· Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Π° ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ липоксигСназноС окислСниС полинСнасыщСнной ΠΆΠΈΡ€Π½ΠΎΠΉ кислоты Π΄ΠΎ Π΅Π΅ Π³ΠΈΠ΄Ρ€ΠΎΠΏΠ΅Ρ€ΠΎΠΊΡΠΈΠ΄Π°, рСгистрируСмого спСктрофотомСтричСски.

ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ бифСрмСнтная систСма «Π»ΠΈΠΏΠ°Π·Π° / липоксигСназа» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΠ΄ΠΎΠ±Π½ΠΎΠΉ для изучСния ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ спСцифичности Π»ΠΈΠΏΠ°Π· ΠΈΠ· Ρ€Π°Π·Π½Ρ‹Ρ… источников, Ссли ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ субстрата Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Ρ‹, содСрТащиС полинСнасыщСнный Π°Ρ†ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Π² ΡΡ‚Ρ€ΠΎΠ³ΠΎ ΠΎΠΏΡ€Π΅Π»Π΅Π½Π½ΠΎΠΌ s/i-ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Π°. Π£Π½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы Ρ‚Π°ΠΊΠΆΠ΅ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π·Π°ΠΌΠ΅Π½Π° Π»ΠΈΠΏΠ°Π·Ρ‹ Π½Π° Ρ„осфолипазу позволяСт Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ΠΊΡ€ΡƒΠ³ ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… липолитичСских Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΈΡ… Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹ΠΌ субстратам, содСрТащим полинСнасыщСнныС ΠΆΠΈΡ€Π½Ρ‹Π΅ кислоты.

Π’ Π½Π°ΡΡ‚оящий ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… практичСских Π·Π°Π΄Π°Ρ‡ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ ΠΈ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ стоит ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΆΠΈΡ€ΠΎΠ² ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ², содСрТащих нСнасыщСнныС ΠΆΠΈΡ€Π½Ρ‹Π΅ кислоты. ΠŸΠΎΠ»ΠΈΠ½Π΅Π½Π°ΡΡ‹Ρ‰Π΅Π½Π½Ρ‹Π΅ ΠΆΠΈΡ€Π½Ρ‹Π΅ кислоты, содСрТащиС 1,4-цис, цис-ΠΏΠ΅Π½Ρ‚Π°Π΄ΠΈΠ΅Π½ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ ΠΈ ΡΠ²Π»ΡΡŽΡ‰ΠΈΠ΅ΡΡ субстратами липоксигСназ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΈ биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСдинСний (Π»Π΅ΠΉΠΊΠΎΡ‚Ρ€ΠΈΠ΅Π½ΠΎΠ², простагландинов, тромбоксанов ΠΈ Π΄Ρ€.), Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‰ΠΈΡ… Π²Π°ΠΆΠ½Ρ‹Π΅ рСгуляторныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Π½Ρ‹Ρ… Π² ΠΈΠΌΠΌΡƒΠ½Π½ΡƒΡŽ систСму ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ утилизация ΠΈΠΌΠ΅Π½Π½ΠΎ этих ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот сниТаСт риск ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π² Ρ‚ΠΎΠΌ числС сСрдСчно-сосудистых Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Ρ€Π°ΠΊΠ° ΠΈ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… процСссов Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ этиологии.

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ прСдлагаСмая Π½Π°ΠΌΠΈ бифСрмСнтная систСма «Π»ΠΈΠΏΠ°Π·Π° / липоксигСназа» ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ ΡƒΠ΄ΠΎΠ±Π½ΠΎΠΉ тСст-систСмой ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ качСство ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… масСл ΠΈ ΠΆΠΈΡ€ΠΎΠ², Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π΅ΡΡ Π² ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ Π² Π½ΠΈΡ… биологичСски Π²Π°ΠΆΠ½Ρ‹Ρ… полинСнасыщСнных ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

I. Π›Π˜ΠŸΠΠ—Π: Π‘Π’Π ΠžΠ•ΠΠ˜Π• И ΠžΠ‘ΠžΠ‘Π•ΠΠΠžΠ‘Π’Π˜ ΠšΠΠ’ΠΠ›Π˜Π—Π.

1.1.0бщая характСристика Π»ΠΈΠΏΠ°Π· ΠΈΠ· Ρ€Π°Π·Π½Ρ‹Ρ… источников.

Π›ΠΈΠΏΠ°Π·Π° (Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π·Π° Ρ‚Ρ€ΠΈΠ°Ρ†ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ², К.Π€. 3.1.1.3) прСдставляСт собой Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ in vivo Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ· Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² Π΄ΠΎ ΠΌΠΎΠ½ΠΎΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² ΠΈ ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот [1]. ЛиполитичСский процСсс Π² ΠΏΠΈΡ‰Π΅Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π°ΠΊΡ‚Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° контролируСтся ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½Ρ‹ΠΌΠΈ Π»ΠΈΠΏΠ°Π·Π°ΠΌΠΈ, Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΎΠΊΠΎΠ»ΠΎ 10% ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² Π΄ΠΎ ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот ΠΈ .ΠΌ-1,2-Π΄ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ², ΠΈ Π΄Π°Π»Π΅Π΅ панкрСатичСскими Π»ΠΈΠΏΠ°Π·Π°ΠΌΠΈ, ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² ΠΈ sw-1,2-Π΄ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² Π² ΠΆΠΈΡ€Π½Ρ‹Π΅ кислоты ΠΈ .ΡƒΠΈ-2-ΠΌΠΎΠ½ΠΎΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π»Π΅Ρ‚Π΅ ΡƒΡΠ²Π°ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠΌ.

Π›ΠΈΠΏΠ°Π·Ρ‹ Ρ‚Π°ΠΊΠΆΠ΅ способны ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… условиях ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ ацилирования ΠΆΠΈΡ€Π½ΠΎΠΉ кислотой Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½Π°, ΠΌΠΎΠ½ΠΎΠΈ Π΄ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ΅Ρ€Π΅ΡΡ‚Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² (Рис.1). НСсмотря Π½Π° ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠ΅ ΠΊ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Π°ΠΌ, Π»ΠΈΠΏΠ°Π·Ρ‹ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΡŽΡ‚ большоС Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² субстратов, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ алифатичСскиС, ацикличСскиС, бицикличСскиС ΠΈ Π°Ρ€ΠΎΠΌΠ°Ρ‚ичСскиС эфиры ΠΈ Π΄Π°ΠΆΠ΅ эфиры Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ органомСталличСских сСндвнч соСдинСний [2]. По ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ€Π°Ρ†Π΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΠΌ эфирам ΠΈΠ»ΠΈ субстратам с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ, Π»ΠΈΠΏΠ°Π·Ρ‹ Ρ€Π΅Π°Π³ΠΈΡ€ΡƒΡŽΡ‚ с Π²Ρ‹ΡΠΎΠΊΠΎΠΉ энантиои Ρ€Π΅Π³ΠΈΠΎΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ.

Π›ΠΈΠΏΠ°Π·Π° являСтся ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнным Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ, ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹ΠΌ Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… [3−5], растСниий [6,7] ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² [8−10]. ΠšΠΎΠΌΠΌΠ΅Ρ€Ρ‡Π΅ΡΠΊΠΈ доступныС Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ производят ΠΈΠ· ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π° Ρ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ»ΠΎΡΡŒ число Π»ΠΈΠΏΠ°Π·, ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… ΠΈΠ· Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ [3].

ΠžΠ±Ρ‹Ρ‡Π½ΠΎ Π»ΠΈΠΏΠ°Π·Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… «Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΡ‚ичСского Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ коктСйля», Π½Π°Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠΌ с Ρ†Π΅Π»ΡŒΡŽ поддСрТания Π΅Π³ΠΎ роста. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° очистки Π»ΠΈΠΏΠ°Π· ΠΎΡ‚ ΡΡΡ‚Π΅Ρ€Π°Π· ΠΈ ΠΏΡ€ΠΎΡ‚Π΅Π°Π· вСсьма Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠ°, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΡΡ‚ΡŒ Π»ΠΈΠΏΠ°Π· высока Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ Π³Ρ€Π°Π½ΠΈΡ†Π΅ Π²ΠΎΠ΄Π° / масло, Π½ΠΎ ΠΈ ΠΊ Π΄Ρ€ΡƒΠ³ΠΈΠΌ повСрхностям с ΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΉ ΠΏΠΎΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒΡŽ (Π²ΠΎΠ΄Π° / органичСский Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒ, стСкло, пластик, Π²ΠΎΠ·Π΄ΡƒΡˆΠ½Ρ‹Π΅ ΠΏΡƒΠ·Ρ‹Ρ€ΠΈ), Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»ΠΈΠΏΠ°Π·Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΠΎ Π°Π΄ΡΠΎΡ€Π±ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΈ Π΄Π΅Π½Π°Ρ‚ΡƒΡ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ [II]. Π³ ΠΈ Π΄ Ρ€ ΠΎ Π» ΠΈ 3.

OR or э Ρ‚.

Π• Π .

И Ρ„ ΠΈ ΠΊ.

А Ц

И Π― r or Ρ‚Ρ€ΠΈΠ³Π»Π½Ρ†Π΅Ρ€ΠΈΠ΄ r ΠΎΠ½ Π΄ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½ 4r-c00h.

Н ΠΎΠ½ ΠΌΠΎΠ½ΠΎΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ r or Ρ‚Ρ€ΠΈΠ³Π»ΠΊΡ†Π΅Ρ€ΠΊΠ΄.

Н ΠžΠ Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½.

Рис. 1. Π Π΅Π°ΠΊΡ†ΠΈΠΈ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π»ΠΈΠΏΠ°Π·ΠΎΠΉ.

МногиС ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡ‹ производят смСси Π»ΠΈΠΏΠ°Π·Π½Ρ‹Ρ… ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ нСбольшоС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΠ² ΠΈΠ»ΠΈ стСпСни гликозилирования Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Однако, ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌΡ‹ Π»ΠΈΠΏΠ°Π· способны ΠΏΡ€ΠΎΡΠ²Π»ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΡƒΡŽ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ ΡΡƒΠ±ΡΡ‚Ρ€Π°Ρ‚Π½ΡƒΡŽ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ ΠΏΠΎ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ (Π’Π°Π±Π». 1).

Π’ Π½Π°ΡΡ‚оящСС врСмя Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π»ΠΈΠΏΠ°Π·Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΎΠ΄Π½Π°ΠΊΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈ Ρ€Π°Π½Π΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ прСдставитСлСм Π»ΠΈΠΏΠ°Π· являСтся панкрСатичСская Π»ΠΈΠΏΠ°Π·Π° [1].

ΠžΠΏΡ‚ΠΈΠΌΡƒΠΌ дСйствия Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Π»ΠΈΠΏΠ°Π· Π»Π΅ΠΆΠΈΡ‚ Π² ΠΎΠ±Π»Π°ΡΡ‚ΠΈ рН 7−9. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ языковыС ΠΈ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ…, Ρ‚ΠΊΠ°Π½Π΅Π²Ρ‹Π΅ Π»ΠΈΠΏΠ°Π·Ρ‹ липосомного происхоТдСния ΠΈ Π»ΠΈΠΏΠ°Π·Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ кислых рН [1]. рН-ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠΏΠ°Π· Ρ€Π°Π²Π΅Π½ рН 5.4 [12] Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Ρ€Π 8−9 для панкрСатичСских Π»ΠΈΠΏΠ°Π· [13]. Π›ΠΈΠΏΠ°Π·Π° ΠΈΠ· ΠΊΠ»Π΅Ρ‰Π΅Π²ΠΈΠ½Ρ‹ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Π° ΠΏΡ€ΠΈ рН 4.2, Π° Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΈΠ· ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Mucorpusillus ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² ΠΎΠ±Π»Π°ΡΡ‚ΠΈ рН 5−6 [1].

ЛиполитичСскиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΎΡ‡Π΅Π½ΡŒ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€. НапримСр, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ ΠΏΡ€ΠΈ -20Β°Π‘ [1], Π° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ ΠΈΠ· ΡΠ΅ΠΌΡΠ½ Vernonia anthclm’mthica — ΠΏΡ€ΠΈ 65 Β°C. Π’Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Π»ΠΈΠΏΠ°Π· Π»Π΅ΠΆΠΈΡ‚ Π² Ρ€Π°ΠΉΠΎΠ½Π΅ 30−37 Β°Π‘.

Π›ΠΈΠΏΠ°Π·Π° нуТдаСтся Π² ΠΈΠΎΠ½Π°Ρ… Na+, ΡƒΠ»ΡƒΡ‡ΡˆΠ°ΡŽΡ‰ΠΈΡ… сС ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ с ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ Π»ΠΈΠΏΠΈΠ΄Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΈΠΎΠ½Π°Ρ… ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° свободными ΠΆΠΈΡ€Π½Ρ‹ΠΌΠΈ кислотами.

Π’Π°Π±Π»ΠΈΡ†Π° 1. Π₯арактСристика Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… коммСрчСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π»ΠΈΠΏΠ°Π· [2].

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ Π»ΠΈΠΏΠ°Π·Ρ‹ Π₯арактСристика.

Candida rugosa Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ Candida cylindracea, очистка ΠΈ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π΄Π°Π΅Ρ‚ 5 родствСнных ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌ Π»ΠΈΠΏΠ°Π·Ρ‹, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ гликозилирования ΠΈ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π½ΡƒΡŽ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠΈ Π΄Π»ΠΈΠ½Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Π°ΠΌ.

Geotrtchum candidum содСрТит 2 ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌΡ‹, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΠΎ ΡΠΏΠ΅Ρ†ΠΈΡ„ичности ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Ρ†ΠΈΡ-Π”9- ΠŸΠΠ–Πš.

Rhizopus sp. Π»ΠΈΠΏΠ°Π·Ρ‹ R. arrhizus, R, oryzae, R. delemar ΠΈ R. niveus ΠΈΠΌΠ΅Π΅ΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ идСнтичнсти аминокислотной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Ρ€Π°Π·Π½ΡƒΡŽ ΡΡƒΠ±ΡΡ‚Ρ€Π°Ρ‚Π½ΡƒΡŽ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ.

Peniciltium camembertii Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ P. cyclopium, содСрТит 4 Π»ΠΈΠΏΠ°Π·Π½Ρ‹Ρ… ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌΡ‹, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Ρ‹ΠΌ составом Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π°.

Pseudomonas glumae Π»ΠΈΠΏΠ°Π·Π° ΠΈΠ· ΡΡ‚ΠΎΠ³ΠΎ источника ΠΈΠΌΠ΅Π΅Ρ‚ 100% ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ с Π»ΠΈΠΏΠ°Π·ΠΎΠΉ ΠΈΠ· Chromobacterium viscosum.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ панкрСатичСской Π»ΠΈΠΏΠ°Π·Ρ‹ свиньи (PPL), Π³Ρ€ΠΈΠ±Π½ΠΎΠΉ Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΈΠ· ΠœΠΈΡΠΎΠ³ miehei (MmL) ΠΈ Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΈΠ· Chromobacterium viscosum (CvL, А ΠΈ CvL Π’) ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ каталитичСской активности Π»ΠΈΠΏΠ°Π· Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» являСтся взаимодСйствиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² с ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ, опрСдСляСмоС свойствами повСрхности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ΅ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ систСмы ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π».

2. УстановлСно, Ρ‡Ρ‚ΠΎ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π», ΠΊΠ°ΠΊ ΠΈ Π² Π²ΠΎΠ΄Π½ΠΎΠΌ растворС, липолитичСский процСсс ΠΈΠΌΠ΅Π΅Ρ‚ Π»Π°Π³-ΠΏΠ΅Ρ€ΠΈΠΎΠ΄, опрСдСляСмый стадиСй адсорбции Π»ΠΈΠΏΠ°Π· Π½Π° ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ повСрхности, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ зависит ΠΎΡ‚ ΡΡ„фСктивности взаимодСйствия Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² с ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π° для Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π»ΠΈΠΏΠ°Π· (PPL ΠΈ CvLA) ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π±ΠΎΠ»Π΅Π΅ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹ΠΌΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ (MmL ΠΈ CvLB).

3. Показано, Ρ‡Ρ‚ΠΎ для ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π»ΠΈΠΏΠ°Π·Π°ΠΌΠΈ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€Ρ‹ Π»ΠΈΠΏΠΎΠ»ΠΈΠ·Π°, ΠΊΠ°ΠΊ ΠΈΠΎΠ½Ρ‹ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈ ΡΠΎΠ»ΠΈ ΠΆΠ΅Π»Ρ‡Π½Ρ‹Ρ… кислот, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π² Π²ΠΎΠ΄Π½ΠΎΠΌ растворС. Π’ ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π²ΠΎΠ΄Π½Ρ‹ΠΌ раствором Π½Π΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ся эффСкт ингибирования Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° субстратом, Π° Ρ‚Π°ΠΊΠΆΠ΅ установлСно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ эффСкта Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΠΎΠ³ΠΎ ингибирования Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠΌ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ (свободной ΠΆΠΈΡ€Π½ΠΎΠΉ кислотой) ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠŸΠΠ’.

4. Π’ ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π»ΠΈΠΏΠ°Π·Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‚ Π² Π²ΠΈΠ΄Π΅ высокоактивных ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅Ρ€Π°ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… контролируСтся ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ Π³ΠΈΠ΄Ρ€Π°Ρ‚Π°Ρ†ΠΈΠΈ ΠΌΠΈΡ†Π΅Π»Π» (ΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ).

5. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ всС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π»ΠΈΠΏΠ°Π·Ρ‹ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с ΠΌΠΈΡ†Π΅Π»Π»ΡΡ€Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ, ΠΎΠ΄Π½Π°ΠΊΠΎ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ рСгуляции каталитичСской активности Π»ΠΈΠΏΠ°Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠŸΠΠ’ (числа ΠΌΠΈΡ†Π΅Π»Π») зависит ΠΎΡ‚ ΡΠ²ΠΎΠΉΡΡ‚Π² повСрхности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ Ρ…арактСризуСтся бСсконкурСнтным Ρ‚ΠΈΠΏΠΎΠΌ ингибирования ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ АОВ Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π»ΠΈΠΏΠ°Π· (PPL ΠΈ Ρ‚Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€Π° CvL А) ΠΈ ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈΠΌΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Ρ… Π»ΠΈΠΏΠ°Π· (MmL ΠΈ CvL Π’).

6. Показано, Ρ‡Ρ‚ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ зависимости каталитичСской активности Π»ΠΈΠΏΠ°Π·Ρ‹ ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠŸΠΠ’ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ химичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ (Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ) повСрхности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Гидрофобизация MmL остатками ΠΏΠ°Π»ΡŒΠΌΠΈΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислоты ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ эффСкта Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ АОВ (ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Ρ‚ΠΈΠΏ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ci6-MmL), Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ гидрофилизация MmL Ρ†Π΅Π»Π»ΠΎΠ±ΠΈΠΎΠ·ΠΎΠΉ способствуСт Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ бСсконкурСнтного Ρ‚ΠΈΠΏΠ° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ АОВ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΈ Ρ‚Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€Π° этой Ρ„ΠΎΡ€ΠΌΡ‹ Π»ΠΈΠΏΠ°Π·Ρ‹ (CB-MmL), соотвСтствСнно.

7. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ химичСская модификация повСрхности MmL Π½Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° рСгуляции ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ состава Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π», Π½ΠΎ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΠ΅Ρ‚ Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΎΠΌΡƒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ каталитичСской активности Π»ΠΈΠΏΠ°Π·Ρ‹.

8. Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π»ΠΈΠΏΠ°Π· Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» зависит ΠΎΡ‚ ΡΠ²ΠΎΠΉΡΡ‚Π² повСрхности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΈ Π΅Π³ΠΎ ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ состава, ΠΏΡ€ΠΈ этом Π»ΠΈΠΏΠ°Π·Ρ‹, содСрТащиС ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ (PPL ΠΈ CB-MmL), Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ Π² Π²ΠΈΠ΄Π΅ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ΠΎΠ², Π° Π½Π΅Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π»ΠΈΠΏΠ°Π·Ρ‹ (MmL ΠΈ CvLB) ΠΈ Π»ΠΈΠΏΠ°Π·Ρ‹, Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…ности ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ остатки ΠΆΠΈΡ€Π½ΠΎΠΉ кислоты (CvLA ΠΈ C]6-MmL), Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ Π² Π²ΠΈΠ΄Π΅ Ρ‚Π΅Ρ‚Ρ€Π°ΠΌΠ΅Ρ€ΠΎΠ². Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ гидрофилизация MmL Ρ†Π΅Π»Π»ΠΎΠ±ΠΈΠΎΠ·ΠΎΠΉ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΡŽ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π»ΠΈΠΏΠ°Π·Ρ‹, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ Π΅Π΅ Π³ΠΈΠ΄Ρ€ΠΎΡ„обизация остатками ΠΏΠ°Π»ΡŒΠΌΠΈΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислоты — ΠΊ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°.

9. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ этСрификации Π°Ρ†ΠΈΠΊΠ»ΠΎΠ²ΠΈΡ€Π° Π»ΠΈΠ½ΠΎΠ»Π΅Π²ΠΎΠΉ кислотой, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π»ΠΈΠΏΠ°Π·Π°ΠΌΠΈ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π», ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ рСгуляции Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ (Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°ΠΏΠ½ΠΎΠ³ΠΎ Π°Ρ†ΠΈΠΊΠ»ΠΎΠ²ΠΈΡ€Π°) ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ АОВ для ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π³ΠΈΠ±Ρ€ΠΎΡ„ΠΎΠ±Π½ΠΎΠΉ Π»ΠΈΠΏΠ°Π·ΠΎΠΉ (MmL) ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ АОВ для ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π»ΠΈΠΏΠ°Π·ΠΎΠΉ (PPL).

10. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния активности Π»ΠΈΠΏΠ°Π· ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹ΠΌ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄Π°ΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы «Π»ΠΈΠΏΠ°Π·Π° / липоксигСназа». Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ·ΡƒΡ‡Π΅Π½Π° рСгуляция каталитичСской активности Π»ΠΈΠΏΠ°Π· Ρ€Π°Π·Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ стСпСни Π³ΠΈΠ΄Ρ€Π°Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠŸΠΠ’ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π».

11. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы «Π»ΠΈΠΏΠ°Π·Π° / липоксигСназа» Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ простой ΠΈ ΡΠΊΡΠΏΡ€Π΅ΡΡΠ½ΠΎΠΉ тСст-систСмы для ΠΎΡ†Π΅Π½ΠΊΠΈ содСрТания биологичСски Π²Π°ΠΆΠ½Ρ‹Ρ… полинСнасыщСнных ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ².

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. X., ДТСксСн Π . ЛиполитичСскиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹. Москва, ΠœΠΈΡ€, 1978.
  2. Schmid R., Verger R. Lipases: Interfacial enzymes with attractive applications. // Angew. Chem. Int. Ed. (1998) 37: 1608−1633.
  3. Wooley P., Petersen S.B. Lipases: Their structure, biochemistry and application. Cambridge University Press, Cambridge, 1994.
  4. Miled N., Canaan S., Dupuis L., Roussel A., Riviere M., Carriere F., de Π‘Π°Π³ΠΎ A., Cambillau C., Verger R. Digestive lipases: From three-dimensional structure to physiology. // Biochimie. (2000) 82: 973−986.
  5. Carriere F., Bezzine S., Verger R. Molecular evolution of the pancreatic lipase and two related enzymes towards different substrate selectivities. // J. Mol. Cat. B: Enzymatic, (1997) 3: 55−64.
  6. Borgstrom B, Brockman H.L. Lipases. Elsevier, Amsterdam, 1984.
  7. Mukheijee K.D., Hills M.J. Lipolytic Enzymes. Brockerhoff H., Jensen R.G. (Eds.), Academic Press, New York, 1974, v. 21,49−76.
  8. Jaeger K.E., Ransas S., Dijkstra B.W., Colson C., van Heuvel M., Misset O. Bacterial lipases. //FEMS Microbiol. Rev. (1994) 15: 29−63.
  9. Gilbert E.J. Pseudomonas lipases: biochemical properties and molecular cloning. It Enzyme Microb. Technol. (1993) 15: 634−645.
  10. Wohlfahrt S., Jaeger K.E. Bacterial lipases: biochemistry, molecular genetics and application in biotechnology. // Bioengineering. (1993) 9:39−46.
  11. Aires-Barros M.R., Taipa M.A., Cabral J.M.S. Isolation and purification of lipases. Wooley P., Petersen S.B. (Eds.), Cambridge University Press, Cambridge, 1994,243−270.
  12. Carriere F., Barrowman J.A., Verger R., Laugier R. Secretion and contribution to Iipolysis of gastric and pancreatic lipases during a test meal in humans. II Gastroenterology. (1993) 105:876−888.
  13. Verger R. Lipases. Borgstrom Π’., Brockman H.L. (Eds.), Elsevier, Amsterdam (1984) 83−150.
  14. Garner C.W., Smith L.C. Porcine pancreatic lipase: A glycoprotein. // J.Biol. Chem. (1972)247:561−565.
  15. Verger R., de Haas G.H., Sarda L., Dcsnuelle P. Purification from porcine pancreas of two molecular species with lipase activity. // Biochim. Biophys. Acta. (1969) 188:272 282.
  16. Plummer Π’.Н., Sarda L. Isolation and characterization of the glycopeptides of porcine pancreatic lipase LA and LB. // J. Biol. Chem. (1973) 248: 7865−7869.
  17. Isobe M., Sugiura M. Studies on the lipase of Chromobacterium viscosum. V. Physical and chemical properties of the lipases. // Chem. Pharm. Bull. (1977) 25: 1980- 1986.
  18. Taipa M.A., Liebeton K., Costa J.V., Cabral J.M., Jaeger K.E. Lipase from Chromobacterium viscosum: biochemical characterization indicating homology to the lipase from Pseudomonas glumae. // Biochim. Biophys. Acta. (1995) 1256: 396 402.
  19. Lotti M., Tramontano A., Longhi S., Fusetti F., Brocca S., Pizzi E., Alberghina L. Variability within the Candida rugosa lipases family. // Protein Eng. (1994) 7: 531−535.
  20. Huge-Jensen Π’., Galluzzo D.R., Jensen R.G. Partial purification and characterization of free and immobilized lipase from Mucor miehei. Π› Lipids. (1978) 22: 559−565.
  21. Nagato Π’., Shimada Y., Sugihara A., Tominaga Y. Cloning and sequencing of two chromosomal lipase genes from Geotrichum candidum. И J. Biochem. (1993) 113: 776−780.
  22. Veeraragavan K., Colpitts Π’., Gibbs B.F. Purification and characterization of two distinct lipases from Geotrichum candidum. // Biochim. Biophys. Acta. (1990) 1044: 26−33.
  23. Sugihara A., Shimada Y., Tomonaga Y. Separation and characterization of two molecular forms of Geotrichum candidum lipase. // J. Biochem. (1990) 107: 426−430.
  24. Semeriva M., Benzonana G., Desnuelle P. Some properties of a lipase from Rhizopus arrhizus: Separation of a glycopeptide bound to the enzyme. // Biochim. Biophys. Acta. (1969) 191:598−610.
  25. Sarda L., Desnuelle P. Action of pancreatic lipase on emulsified esters. // Biochim. Biophys. Acta. (1998) 37:1608−1633.
  26. Winkler F.K., D’Arcy A., Hunziker W. Structure of human pancreatic lipase // Nature. (1990)343:771−774.
  27. Grochulski P., Li J., Schrag J.D., Bouthillien F., Smith P., Harrisn D., Rubin Π’., Cygler M. Insights into interfacial activation from an open structure of Candida rugosa lipase. // J. Biol. Chem. (1993) 268: 12 843−2847.
  28. J.D., Cygler M. 1.8 A refined structure of the lipase from Geotrichum candidum. //J. Mol. Biol. (1993)230: 575−591.
  29. Bourne Y., Martinez C., Kerfelec Π’., Lombardo D., Chapus C., Cambillau C. Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution. // J. Mol. Biol. (1994) 238: 709−732.
  30. Derevenda U., Swenson L., Green R., Wei Y., Dodson G.G., Yamaguchi S., Haas M.J., Derevenda Z.S. An unusual buried polar cluster in a family of fungal lipases. // Nat. Struct. Biol. (1994) 1:36−47.
  31. Noble M.E.M., Cleasby A., Johnson L.N., Frenken L.G.J., Egmond M.R. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate.//FEBS Lett. (1993)331: 123−128.
  32. Uppenberg J, Patkar S, Bergfors T, Jones Π’А. Crystallization and preliminary X-ray studies of lipase Π’ from Candida antarctica //J Mol Biol. (1994) 235:790−792.
  33. Jaeger K.E., Ransac S., Koch H.B., Ferrato F., Dijkstra B.W. Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. II FEBS Lett. (1993) 332:143−149.
  34. Nardini M., Lang D.A., Liebeton K., Jaeger K.-E., Dijkstr B.W. Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. // J. Biol. Chem. (2000) 275: 3 121 931 225.
  35. Hjorth A., Carri ere F., Cudrey C., Woldike H., Boel E., Lawson D.M., Verger R. A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. // Biochemistry. (1993) 32: 4702−4707.
  36. Jennens M.L., Lowe M.E. A surface loop covering the active site of human pancreatic lipase influences interfacial activation and lipid binding. // J. Biol. Chem. (1994) 269: 2 547 025 474.
  37. Ollis D.L., Cheah E., Cygler M., Dijkstra B.D., Frolow F., Franken S., Harel M., Remington S.J., Silman J. The alpha / beta hydrolase fold. // Protein Eng. (1992) 5: 197−211.
  38. De Caro J.D., Boundouard M., Bonicel J.J., Guidoni A., Desnuelle P., Rovery M. Porcine pancreatic lipase: completion of the primary structure. // Biochim. Biophys. Acta. (1981) 671: 129−138.
  39. Benkouka F., Guidoni A., De Caro J.D., Bonicel J.J., Desnuelle P., Rovery M. Porcine pancreatic lipase. The disulfide bridges and the sulfhydryl groups. // Eur. J. Biochem. (1982) 128:331−341.
  40. Fournet Π’., Leroy Y., Montreuil J., De Caro J., Rovery M., van Kuik J.A., Vliegenthart J.F.G. Primary structure of the glycans of porcine pancreatic lipase. // Eur. J. Biochem. (1987) 170:369−371.
  41. Egloff M.P., Marguet F., Buono G., Verger R., Cambillau C., van Tilbeurgh H. The 2.46A resolution structure of the pancreatic lipase-colipase complex inhibited by a CI 1 alkyl phosphonate. // Biochemistry. (1995) 34:2751−2762.
  42. Derewenda Z.S., Derevvenda U. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. // J. Mol. Biol. (1992) 227: 818−839.
  43. Lang D., Hofmann Π’., Haalck L., Hecht H.-J., Spener F., Schmid R.D., Schomburg D. Crystal structure of bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6A resolution. //J. Mol. Biol. (1996) 259:704−717.
  44. Derevvenda U., Derewenda Z.S. Relationships among serine hydrolases: evidence for a common structural motif in triacylglyceride lipases and esterases. // Biochem. Cell. Biol. (1991) 169: 842−851.
  45. Derewenda Z.S., Sharp A.M. News from the interface: the molecular structures of triacylglyceride lipases.//TIBS. (1993) 18:20−25.
  46. Blow D. Lipases reach the surface. //Nature. (1991) 351:444−445.
  47. Verger R., Mieras M.C.E., Haas G.H. Action of phospholipase A at interfaces. // J. Biol. Chem. (1973) 248: 4023−4045.
  48. Verger R. Enzyme kinetics of lipolysis. // Methods Enzymol. (1980) 64: 340−392.
  49. Jain M.K., Berg O.G. The kinetics of interfacial catalysis by phospholipase Аг and regulation of interfacial activation: hopping versus scooting. // Biochim. Biophys. Acta. (1989) 1002: 127−156.
  50. Bengtsson G., Olivecrona T. Lipoprotein lipase moves rapidly between lipid droplets. // FEBS Lett. (1983) 154:211−213.
  51. Benzonana G., Desnuelle P. Action of some effectors on the hydrolysis of long-chain triglycerides by pancreatic lipase. // Biochim Biophys Acta. (1968) 164 (1): 47−58.
  52. Entressangles Π’., Desnuelle P. Action of pancreatic lipase on aggregated glyceride molecules in an isotropic system. // Biochim. Biophys. Acta. (1968) 159 (2): 285−295.
  53. Borgstrom B. Effect of taurocholic acid on the pH / activity curve of rat pancreatic lipase. //Biochim Biophys Acta. (1954) 13 (1): 149−150.
  54. Han D., Rhee J.S. Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles // Biotechnol. Bioeng. (1986) 28: 1250−1255.
  55. Hofmann A.F., Borgstrom B. The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption.//J. Clin. Invest. (1964) 43:247−257.
  56. Hofmann A.F., Small D.M. Detergent properties of bile salts: correlation with physiological function. // Annu Rev Med. (1967) 18:333−376.
  57. Schoor W.P., Melius P. The influence of sodium taurocholate on the pancreatic lipase-substrate adsorption and activity // Biochim. Biophys. Acta. (1970) 212: 173−175.
  58. Alvarez F.J., Stella V.J. The role of calcium ions and bile salts on the pancreatic lipase-catalyzed hydrolysis of triglyceride emulsions stabilized with lecithin. // Pharm. Research. (1989) 6 (6): 449−457.
  59. Patton J.S., Carey M.C. Inhibition of human pancreatic lipase-colipase activity by mixed bilesalt-phospholipidmicelles.//Am. J. Physiol. (1981)241: G328-G336.
  60. Lairon D., Nalbone G., Lafont H., Leonardi J., Domingo N, Hauton J.C., Verger R. Possible roles of bile lipids and colipase in lipase adsorption. // Biochemistry. (1978) 17: 52 635 269.
  61. Lairon D., Nalbone G., Lafont H., Leonardi J., Domingo N, Hauton J.C. Protective effect of biliary lipids on rat pancreatic lipase and colipase. // Lipids. (1978) 13:211−216.
  62. Masoro E.J. Lipids and lipid metabolism. // Annu. Rev. Physiol. (1977) 39: 301−321.
  63. Borgstrom B. Importance of phospholipids, pancreatic phospholipase A2 and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. // Gastroenterology. (1980) 78: 954−962.
  64. Nalbone G., Charbonnier-Augeire M., lafont H., Grataroli R., Vigne J.L., Lairon D., Chabert C., Leonardi J., Hauton C., Verger R. Adsorption of pancreatic (pro)phospholipase A2 to various physiological substrates. // J. Lipid Res. (1983) 24: 1441−1450.
  65. Pignol D., Ayvazian L., Kerfelec Π’., Timmins P., Crenon I., Hermoso J., Fontecilla-Camps J.C., Chapus C. Critical role of micelles in pancreatic lipase activation revealed by angle neutron scattering. //J.Biol. Chem. (2000) 275 (6): 4220−4224.
  66. Pedersen J.S., Egelhaaf S., Schurtenberger P. Critical role of micelles in pancreatic lipase activation revealed by small angle neutron scattering// J. Physiol. Chem. (1995) 99:1299−1305.
  67. Tso P., Scobey M. Fat Absorption. A. Kuis (Ed.), CRC Press, Boca Raton, Fla., 1986, v. 1, 177−196.
  68. Hauser H., Guyer w., Howell K. Lateral distribution of negatively charged lipids in lecithin membranes. Clustering of fatty acids. // Biochemistry. (1979) 18:3285−3291
  69. Neuman R.D. Calcium binding in stearic acid monomolecular films. // J. Colloid. Interface Sci. (1975) 53: 161−171
  70. Wieloch Π’., Borgstrom Π’., Pieroni G., Pattus F., Verger R. Product activation of pancreatic lipase. Lipolytic enzymes as probes for lipid/water interfaces. // J. Biol. Chem. (1982) 257(19): 11 523−11 528
  71. Ramsey H.A., Wise G.H., Tove S.B. Fat digestion.//J. Dairy Sci. (1956) 10: 1319−1322.
  72. Borgstrom Π’., Dahlquist A., Ludh G., Sjovall J. Studies of intestinal digestion and absorption in the human. //J. Clin. Invest. (1957) 36:1521−1536.
  73. Hamosh M., Scow R.O. Lingual lipase and its role in the digestion of dietary lipid. // J.Clin. Invest. (1973) 52: 88−95.
  74. Plucinski T.M., Hamosh M., Hamosh P. Fat digestion in rat: role of lingual lipase. //Am. J. Physiol. Endocrinol. Metab. (1979) 237: 541−547.
  75. Willstatter R., Waldschmitz Leitz E., Memmen F. Lipase studies. // Physiol. Chem. (1923) 125: 93−95.
  76. Gargouri Y., Pieroni G., Riviere C., Sugihara A., Sarda L., Verger R. Inhibition of lipases by proteins: a kinetic study with dicaprin monolayers. // J. Biol. Chem. (1985) 260:2268−2273.
  77. Canioni P., Julien R., Rathelot J., Sarda L. Pancreatic and microbial lipases: comparison of inreaction of pancreatic colipase with lipases of various origins. // Lipids (1977) 12: 393−397.
  78. Figarella C., Negri G.A., Sarles H. Presence of colipase in a congenital pancreatic lipase deficiency. // Biochim. Biophys. Acta. (1972) 280:205−207.
  79. Kason C.M., Pavamani I.V.P., Nakai S. Physiological importance of mammalian colipase in fat digestion. // J. Dairy Sci. (1972) 55: 1420−1425.
  80. Momsen W.E., Brockman H.L. Inhibition of pancreatic lipase Π’ activity by taurudeoxycholate and its reversal by colipase. // J. Biol. Chem. (1976) 251:384−388.
  81. Brockerhoff H. Substrate specificity of pancreatic lipase: influence of the structure of fatty acids on the reactivity of esters. // Biochim. Biophys. Acta. (1970) 212: 92−101.
  82. Larsson A., Erlanson-AIbertsson C. The importance of bile salt for the reactivation of pancreatic lipase by colipase. // Biochim. Biophys. Acta. (1983) 750: 171−177.
  83. Brockerhoff H. A model of pancreatic lipase and the orientation of enzymes at interfaces. //Chem. Phys. Lipids. (1973) 10: 215−222.
  84. Borgstrom Π’., Erlanson C. Pancreatic juice colipase: physiological importance. // Biochim Biophys Acta. (1971) 242: 509−513.
  85. Morgan R.G.H., Hoffman N.E. The interacion of lipase, lipase cofactor and bile salts in triglyceride hydrolysis. // Biochim. Biophys. Acta. (1971) 248: 143−147.
  86. Lowe M.E., Rosenblum J.L., McEvven P., Strausss A. W Cloning and characterization of the human colipase cDNA. // Biochemistry. (1990) 29: 823−828.
  87. Charles M., Erlanson C., Biachetta J., Joffre J., Guidoni A., Rovery M. The primary structure of porcine colipase. I. The amino acid sequence. // Biochim. Biophys. Acta. (1974) 359:186−197.
  88. Erlanson C., Charles M.A., Desnuelle P. The primary structure of colipase. // Biochim. Biophys. Acta. (1974) 359: 198−203.
  89. Erlanson C., Borgstrom B. Purification and futher characterization of colipase from porcine pancrease. // Biochim. Biophys. Acta. (1972) 271:400−412.
  90. Borgstrom Π’., Wieloch Π’., Erlanson-AIbertsson C. Evidence for a pancreatic pro-colipase and its activation by trypsin. // FEBS Lett. (1979) 108:407−410.
  91. Erlanson-AIbertsson C. The existence of pro-colipase in pancreatic juice. // Biochim. Biophys. Acta. (1981) 666:299−300.
  92. Larsson A., Erlanson-AIbertsson C. The effect of pancreatic procolipase and colipase on pancreatic lipase activation. // Biochim. Biophys. Acta. (1991) 1983:283−288.
  93. Erlanson-Albertsson Π‘. Enterostatin: the pancreatic procolipase activation peptide a signal for regulation of fat intake. // Nutr. Rev. (1992) 50: 307−310.procolipase complex. //Nature. (1992) 359: 159−162.
  94. Chaillan C., Rogalska E., Chapus C., Lombardo D. A cross-linked complex between horse pancreatic lipase and colipase. // FEBS Lett. (1989) 257:443−446.
  95. Chaillan C., Kerfelec Π’., Foglizzo E., Chapus C. Direct involvement of the C-terminal extremity of pancreatic lipase (403−449) in colipase binding. // Biochim. Biophys. Acta. (1992) 184:206−211.
  96. Mahe-Gouhier N., Leger CL. Immobilized colipase affinities for lipase Π’, А, Π‘ and their terminal peptide (336−449): the lipase recognition site lysine residues are located in the C-terminal region. II Biochim. Biophys. Acta. (1988) 962: 91−97.
  97. Abousalhan A., Chaillan C., Kerfelec Π’., Foglizzo E., Chapus C. Uncoupling of catalysis and colipase binding in pancreatic lipase by limited proteolysis. // Protein Eng. (1992) 5: 105 111.
  98. Patton J.S., Albertsson P.A., Erlanson C., Borgstrom B. Binding of porcine pancreatic lipase and colipase in the absence of substrate studied by two-phase partition and affinity chromatography. //J. Biol. Chem. (1978) 253:4195−4202.
  99. Larsson A., Erlanson-Albertsson C. The identity and properties of two forms of activated colipase from porcine pancreas. // Biochim. Biophys. Acta. (1981) 664: 538−548.
  100. Wieloch Π’., Borgstrom Π’., Falk K-E., Forsen S. High-resolution proton magnetic resonance study of porcine colipase and its interactions with taurodeoxycholate. // Biochemistry. (1979) 18: 1622−1628.
  101. De Caro J.D., Behnke W.D., Bonicel J.J., Desnuelle P.A., Rovery M. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane, and properties of the nitrated derivatives. // Biochim. Biophys. Acta. (1983) 747:253−262,
  102. Granon S. Spectrofluorimetric study of the bile salt micelle binding site of pig and horse colipase. // Biochim. Biophys. Acta. (1986) 874: 54−60.
  103. Jennens M.L., Lowe M.E. The C-terminal domain of human pancreatic lipase is required for stability and maximal activity but not colipase reactivation. // J. Lipid. Res. (1995) 36: 10 291 036.
  104. Kaambre Π’., Tougu V., Kaambre P., Vija H., Sikk P. Hydrolysis of emulsified mixtures of triacylglycerols by pancreatic lipase. //Biochim. Biophys. Acta. (1999) 1431:97−106.
  105. Mattson F.H., Beck L.W. The digestion in vitro of triglycerides by pancreatic lipase. // J. Biol. Chem. (1955) 214: 115−125.
  106. Mattson F.H., Beck L.W. The specificity of pancreatic lipase for the primary hydroxyl groups of glycerides. // J. Biol. Chem. (1956) 219: 735−740.
  107. Savary P., Desnuelle P. Specific elements of enzymatic hydrolysis of triglycerides // Biochim. Biophys. Acta. (1956) 21: 349−360.
  108. Leger C. Lipase purification trial of trout intercaecal tissue. // Ann. Biol. Anim. Biochim. Biophys. (1972) 12:341−345.
  109. Brockerhoff H., Hoyleee R.J. Hydrolysis of triglycerides by the pancreatic lipase of a skate. // Biochim. Biophys. Acta. (1965) 98:435−436.
  110. Berner D., Hammand E.G. Phylogeny of lipase specificity. // Lipids. (1970) 5: 558−562.
  111. Coutts J.R.T., Stansfield D.A. Pancreatic cholesterol esterases: a comparative study. // Biochemistry. (1967) 104: 27−32.
  112. Pleis J., Fischer M., Schmid R.D. Anatomy of lipase binding sites: the scissile fatty acid binding site. II Chem. Phys. Lip. (1998) 93:67−80.
  113. Tattrie N.H., Bailey R.A., Kates M. The action of pancreatic lipase on stereoisomeric triglycerides.//Arch. Biochem. Biophys. (1958) 78: 319−327.
  114. Jensen R.G., Pitas R.E., Quinn J.G., Sampugna J. Pancreatic lipolysis of enantiomeric triglycerides.//Lipids.(1970) 5: 580−581.
  115. Rogalska E., Cudrey C., Ferrato F., Verger R. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. // Chirality. (1993) 5: 24−30.
  116. Rogalska E., Ransac S., Verger R. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. // J. Biol. Chem. (1990) 265:2 027 120 276.
  117. Chandler I.C., Quinlan P.T., Mcneill G.P. Lipase-catalyzed synthesis of chiral triglycerides. //J. Am. Oil. Chem. Soc. (1998) 75:1513−1518.
  118. Alford J.A., Pierce D.A., Suggs F.G. Activity of microbial lipases on natural fats and synthetic triglycerides. //J. Lipid Res. (1964) 5:390−394.
  119. Ory R.L., St. Angelo A.J., Altshul A.M. Castor bean lipase: action on its endogenous substrate. //J. Lipid Res. (1960) 1:208−213.
  120. Berner D.L., Hammond E.G. Specificity of lipase from several seeds and Leptospira pomona. //Lipids. (1970) 5: 572−573.
  121. Shastry B.S., Rao M.R. Studies on rice bran lipase. // J. Biochem. Biophys. (1971) 8: 327−332.
  122. Entressangles Π’., Pasero L., Savary P., Sarda L., Desnuelle P. Influence of the nature of the chains on the rate of their hydrolysis by pancreatic lipase. // Bull. Soc. Chim. Biol. (1961) 43: 581−591.
  123. Mani V.V.S., lakshminarayana G. Comparative rate of lipolysis of different fatty acids in pancreatic lipase hydrolysis of ethylene glycol mixed diesters. // Biochim. Biophys. Acta. (1970) 202: 547−549.
  124. Hellyer S.A., Chandler I.C., Bosley J.A. Can the fatty acid selectivity of plant lipases be predicted from the composition of the seed triglyceride? // Biochim. Biophys. Acta. (1999) 1440: 215−224.
  125. Jensen R.G., Sampugna J., Quinn J.G., Carpenter D.L., Marks T.A. Specificity of a lipase from Geotrichum candidum for cis-octadecenoic acid. // J. Amer. Oil. Chem. Soc. (1965) 42: 1029−1032.
  126. Jensen R.G., Gordon D.T., Scholfield E.R. Specificity of Geotrichum candidum lipase with respect to double bond position in triglycerides containng cis-octadecenoic acids. // Lipids. (1972) 7:738−741.
  127. Charton E., Macrae A.R. Specificities of immobilized Geotrichum candidum CMICC335426 lipase A and Π’ in hydrolysis and ester synthesis in organic solvents. // Enz. Microbiol. Technol. (1993) 15: 489−493.
  128. Charton E., Macrae A.R. Substrate specificities of lipases A and Π’ from Geotrichum candidum CMICC335426. // Biochim. Biophys. Acta. (1992) 1123: 59−64.
  129. Lie O., Lambertsen O.G. Fatty acid specificity of Candida cylindracea lipase. // Fett. Siefen. Ansstrichm. (1986) 88:365−367.
  130. Kleiman R., Earle F.R., Tallcnt W.H., Wolff I.A. Retarded hydrolysis by pancreatic lipase of seed oils with trans-3 unsaturation. // Lipids. (1970) 5:513 -518.
  131. Brockerhoff H. Substrate specificity of pancreatic lipase. Influence of the structure of fatty acids on the reactivity of esters. // Biochim. Biophys. Acta. (1970) 212:92−101.
  132. Heimermann W.H., Holman R.T., Gordon D.T., Kowalyshyn D.E., Jensen R.G. Effect of double bond position in octadecenoates upon hydrolysis by pancreatic lipase. // Lipids. (1973) 8: 45−47.
  133. Macrae A.R., Visicchio J.E., Lanot A. Application of potato lipid acyl hydrolase for the synthesis ofmonoacylglycerols. //J. Am. Oil. Chem. Soc. (1998) 75: 1489−1494.
  134. Yamaguchi S., Mase T. High yield synthesis of monoglyceride by mono- and diacylglycerol lipase from Penicillium camembertii U-150. // J. Ferm. Bioeng. (1991) 72: 162 167.
  135. Ferrato F., Cam ere F., Sarda L., Verger R. A critical reevaluation of the phenomenon of interfacial activation. // Methods Enzymol. (1997) 286:327−347.
  136. Beisson F" Tiss A., Riviere C., Verger R. Methods for lipase detection and assay: a critical review. // Eur. J. Lipid. Sci. Technol. (2000) 133−153.
  137. Verger R., de Haas G.H. Enzyme reaction in a membrane model. 1: A new technique to study enzyme reactions in monolaters. // Chem. Phys. Lipids. (1973) 10: 127−136.
  138. Aoubala M., Ivanova M., Douchet I., De Caro A., Verger R. Interfacial binding of human gastric lipase to lipid monolayers, measured with an ELISA. // Biochem. (1995) 34: 1 078 610 793.
  139. Momsen W.E., Brockman H.L. Recovery of monomolecular films in studies of lipolysis. // Methods Enzymol. (1997) 286:292−305.
  140. Rietsch J., Pattus F., Desnuelle P., Verger R. Enzyme reactions in a membrane model. III. Futher studies of mode of action of lipolytic enzymes. //J. Biol. Chem. (1977) 252: 4313−4318.
  141. Momsen W.E., Brockman H.L. The adsorption to and hydrolysis of 1,3-didecanoyl glycerol monolayers by pancreatic lipase. Effect of substrate packing density. // J. Biol. Chem. (1981)256: 6913−6916.
  142. Nielsen L., Risbo J., Callisen Π’., Bjornholm T. Lag-burst kinetics in phospholipase A2 hydrolysis of DPPC bilayers visualized by atomic force microscopy. // Biochim. Biophys. Acta. (1999) 1420:266−271.
  143. Walde P., Luisi P.L. A continuous assay for lipases in reverse micelles based on Fourier transform infrared spectroscopy. H Biochem. (1989) 28: 3353−3360.
  144. Brockman H.L. Triglyceride lipase from porcine pancreas. // Methods Enzymol. (1981) 71:619−627.
  145. Entressangles Π’., Desnuelle P. Action of pancreatic lipase on aggregated glyceride molecules in an isotopic system. // Biochim. Biophys. Acta. (1968) 159:285−295.
  146. Hoppe A., Theimer R.R. Titrimetric test for lipase activity using stabilized triolein emulsion. // Phytochem. (1996) 42: 973−978.
  147. Ceriotti F., Bonin P.A., Murone M., Barenghi L., Luzzana M., Mosca A., Ripamonti M. Measurement of lipase activity by differential pH technique. // Clin. Chem. (1985) 31:257−260.
  148. Tietz N.W., Astles J.R., Shuey D.F. Lipase activity measured in serum by a continuous-monitoring pH-stat technique: an update. // Clin. Chem. (1989) 35: 1688−1693.
  149. Ravvyler A., Siegenthaler P.A. A single and continuous spectrophotometry assay for various lipolytic enzymes, using natural, non-labelled lipid substrates. // Biochim. Biophys. Acta. (1989) 1004: 337−344.
  150. Duncombe W.G. The colorimetric determination of long-chain fatty acids in the 0.05−0.5 jimole range. // Biochem. J. (1963) 88: 7.
  151. Mahadevan S., Dillard C.J., Tappel A.L. A modified colorimetric micro method for long-chain fatty acids and its application for assay of lipolytic enzymes. // Anal. Biochem. (1969) 27: 387−396.
  152. Kwon D.Y., Rhee J.S. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. // J. Am. Oil. Chem. Soc. (1986) 63: 89−92.
  153. Kouker G., Jaeger K.E. Specific and sensitive plate assay or bacterial lipases. // Appl. Environ. Microbial. (1987) 53:211−213.
  154. Chapus C., Semeriva M., Bovier-Lapierre C., Desnuelle P. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. // Biochem. (1976) 15:4980−4987.
  155. Vorderwulbecke Π’., Kieslich K., Erdmann H. Comparison of lipases by different assays. // Enzyme. Microb. Technol. (1992) 14: 631−639.
  156. Mosmuller E.W.J., van Heemst J.D.H., van Delden C.J., Franssen M.C.R., Engbersen J.F.J. A new spectrophotometric method for the detection of lipase activity using 2,4-dinitrophenyl butirate as a substrate. // Biocatalysis. (1992) 5:279−278.
  157. Whitaker J. A rapid and specific method for the determination of pancreatic lipase in serum and urine. // Clin. Chim. Acta. (1973) 44: 133−138.
  158. Rogel A.M., Stone W.L., Adebonojo F.O. A novel spectrometry assay for lipase activity utilizing cis-parinaric acid. // Lipids. (1989) 24:518−524.
  159. Biesson F., Ferte N., Nari J., Noat G., Arondel V., Verger R. Use of naturally fluorescent triacylglicerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. // J. Lipid Res. (1999) 40:2313−2321.
  160. WolfC., Sagaert L., Bereziat G. A sensitive assay of phospholipase using the fluorescent probe 2-parinaroellecitin. // Biochem. Biophys. Res. Comm. (1981) 99:275−283.
  161. Hendrickson H.S., Rauk P.N. Continuous assay of phospholipase A2 with pyrene-labelled lecithin as a substrate. // Anal. Biochem. (1981) 116: 553−558.
  162. Thuren Π’., Virtanen J.A., Verger R., Kinnunen P.K.J. Hydrolysis of l-palmitoyl-26-(pyren-l-yl)]-hexanoyl-sn-glycerol-3-phospholipids by phospholipase Аг*. Effect of the polar head-group. // Biochim. Biophys. Acta. (1987) 917:411−417.
  163. Negre A., Salvayre R.S., Dagan A., Gatt S. New fluorometric assay of lysosomal acid and its application to the diagnosis of Wolman and cholesteryl ester storage diseases. // Clin. Chim. Acta. (1985) 149:81−88.
  164. Negre A., Salvayre R.S., Dagan A., Gatt S. Pyrenemethel laurate, a new fluorescent substrate for continuous kinetic determination of lipase activity. // Biochim. Biophys. Acta. (1989) 1006: 84−88.
  165. Fleisher M., Schwartz M. An automated, fluorometric procedure for determining serum lipase. // Clim. Chem. (1971) 17:417−422.
  166. Wilton D.C. A continuous fluorescence-displacement assay for triacylglycerol lipase and phospholipase Π‘ that also allows the measurement of acyglycerols. // Biochem. J. (1991) 219: 129−260.
  167. Mangold H. Lipids. Zweig G., Sherma J. (Eds.), CRC press, Inc., Boca Raton, Florida, 1984.
  168. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. Burdon R.H., van Knippenberg P.H. (Eds.), Elsevier, Amsterdam, New York, 1986.
  169. Maurich V., Moneghini M., Zacchigna M., Pitotti A., Lencioni E. High-perfomance liquid chromatographic assay of pancreatic lipase activity. // J. Pharm. Biomed. Anal. (1991) 9: 427−431.
  170. Maurich V., Zacchigna M., Pitotti A. p-Nitrophenyllaurate: a subsrate for the high-performance liquid chromatographic assay of pancreatic lipase activity. // J. Chromatogr. (1991) 566:453−459.
  171. Ruiz L., Rodriguez-Fernandez C. Kinetic study of hepatic triglyceride lipase from rat liver soluble fraction. II Enzyme. (1982) 27:215−219.
  172. Ulitzur S., Heller M. Bioluminescent assay for lipase, phospholipase A2, and phospholipase C. // Methods. Enzymol. (1981) 72: 338−346.
  173. Proelss F., Wright B.W. Lipoxygenic micromethod for specific determination of lipase activity in serum and duodenal fluid. // Clin. Chem. (1977) 23: 522−531.
  174. Griebel R.J., Knoblocj E.C., Koch T.R. Measurement of serum lipase activity with the oxygen electrode. // Clin. Chem. (1981) 27: 163−167.
  175. Shimizu S., Tani Y., Yamada H., Tabata M., Murachi T. Enzymatic determination of serum-free acids: a colorimetric method. // Anal. Biochem. (1980) 107: 193−198.
  176. Bjoerkhem I., Sandelin K., Thore A. A simple, fully enzymic bioluminescent assay for triglycerides in serum. // Clin. Chem. (1982) 28: 1742−1744.
  177. Imamura S., Hirayama Π’., Arai Π’., Takao K., Misaki H. An enzymatic method using 1,2-diglyceride for pancreatic lipase test in serum. // Clin. Chem. (1989) 35: 1126−1129.
  178. Mensink R.P., Katan M.B. Effect of dietary trans fatty acids on the high-density and low-density lipoprotein cholesterol levels in healthy subjects. // Eng. J. Med. (1990) 323:439−345.
  179. Mukheijee K.D. Lipase catalyzed reactions for modification of fats and other lipids. // Biocatalysis. (1990) 3:277−293.
  180. Forssell P., Kervinen R., Lappi M., Linko P., Suortii Π’., Poutanen K. Effect of enzymatic interesterification on the melting point of tallow-rapeseed oil (LEAR) mixture. // J. Am. Oil. Chem. Soc. (1992) 69: 126−129.
  181. Zeitoun M.A.M., Neff W.E., List G.R., Mounts T.L. Physical properties of interesterified fat blends. //J. Am. Oil. Chem. Soc. (1993) 70:467−471.
  182. Rouseau D., Marangoni A.G. Tailoring the textural attributes of butter fat/canola oil blends via Rhizopus arrhizus lipase-catalyzed interesterification. 1. Compositional modification. // J. Agric. Food. Chem. (1998) 46:2368−2374.
  183. Rouseau D., Marangoni A.G. Tailoring the textural attributes of butter fat/canola oil blends via Rhizopus arrhizus lipase-catalyzed interesterification. 2. Modifications of physical properties.//J. Agric. Food. Chem. (1998) 46:2375−2381.
  184. Bloomer S., Adlercreutz P., Mattiasson B. Triglyceride interesterification by lipases. I. Cocoa butter equivalents from a fraction of palm oil. // J.Am. Oil. Chem. Soc. (1990) 67: 519 524.
  185. Mohamed H.M.A., Bloomer S., Hammadi K. Modification of fats by lipase interesterification. I. Changes in triglyceride structure. // Fat. Sci. Technol. (1993) 95:428−431.
  186. Basheer S., Mogi K., Nakajima M. Interesterification kinetics of triglycerides and fatty acids with modified lipase in n-hexane.//J.Am. Oil. Chem. Soc. (1995) 72: 511−518.
  187. Bracco U. Effect of triglyceride structure on fat absorption. // J.Am. Clin. Nutr. (1994) 60: 1002−1009.201. Kennedy J.P. Srtructured lipids: fats for the future. // Food Technol. (1991) 45: 76−83.
  188. Schmid U. Highly selective synthesis of l, 3-oleoyl-2-palmitoy!glycerol by lipase catalysis. //Biotechnol. Bioeng. (1999) 64: 678−684.
  189. Quilan P., Moore S. Modification of triglycerides by lipases: process technology and its application to the production of nutritionally improved fats. // INFORM (1990) 4: 580−585.
  190. Haraldsson G.G. Using biotechnology to modify marine lipids. // INFORM. (1992) 3: 626−629.
  191. Sridhar R., Lakshminarayana G. Incorporation of eicosapentaenoic and docosahexaenoic acids into groundnut oil by lipase-catalyzed ester interchange. // J.Am. Oil. Chem. Soc. (1992) 69: 1041−1044.
  192. Diks R.M.M., Lee M.J. Production of a very low saturate oil based on the specificity of Geotrichum candidum lipase. // J.Am. Oil. Chem. Soc. (1999) 76: 455−462.
  193. Vulfson E.N. Lipases: their structure, biochemistry and application. Wooley P., Petersen S. B (Eds.), Cambridge University Press, Cambridge, 1994,271−286.
  194. Hoshimo Π’., Yamane Π’., Shimizu S. Selective hydrolysis of fish oil by lipase to concentrate n-3 polyunsaturated fatty acids. // Agric. Biol. Chem. (1990) 54: 1459−1467.
  195. Tanaka Y., Hirano J., Funada T. Concentration of docosahexaenoic acid by gliceride by hydrolysis of fish oil with Candida cylindracea lipase. // J.Am. Oil. Chem. Soc. (1992) 69: 12 101 214.
  196. Shimada Y., Sugihara A., Nakano H., Kuramoto Π’., Nagao Π’., Gemba M., Tomonaga Y. Purification of docosahexaenoic acid by selective esterification of fatty acids from tuna oil with Rhizopus delemar lipase. // J.Am. Oil. Chem. Soc. (1997) 74:97−101.
  197. McNeill G.P., Ackhman R.G., Moore S.R. Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acids. //J.Am. Oil. Chem. Soc. (1996) 73: 1403−1407.
  198. Akoh C.C. Lipase-catalyzed synthesis of partial glyceride. // Biotechnol. Lett. (1993) 15: 949−954.
  199. McNiell G.P., Shimizu S., Yamane T. High-yield glycerolysis of oils and fats. // J. Am. Oil. Chem. Soc. (1991) 68: 1−5.
  200. Berger M., Schneider M.P. Enzymatic esteriflcation of glycerol. II. Lipase-catalyzed synthesis of regioisometrically pure l (3)-rac-monoacyl glycerols. // J.Am. Oil. Chem. Soc. (1992) 69: 961−965.
  201. Bornscheuer U., Stamatis H., Xenakis A.T., Yamane Π’., Kolisis F.N. A comparison of different strategies for lipase-catalyzed synthesis of partial glycerides. // Biotechnol. Lett. (1994) 16:679−702.
  202. Millqvist A., Adlercreutz P., Mattiasson B. Lipase-catalyzed alcoholysis of triglycerides for the preparation of 2-monoglycerides. // Enzyme Microb. Technol. (1994) 16:1042−1047.
  203. Bellot J.C., Choisnard L., Castillo E., Marty A. Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esteriflcation. // Enzyme. Microb. Technol. (2001) 28:362−369.
  204. E., Christensen Π’., Woldike H. (Novo Nordisk AS), US-A 5 536 661, 1996 // Chem. Abstr. (1996) 125: 160 364.
  205. Fujita Y., Awaji H., Matsukura M., Hata K., Shimoto H., Sharyo M., Skaguchi H., Gibson K. Recent advances in enzymic pitch control. // Tappi J. (1992) 75:117−122.
  206. Benicourt C., Blanchard C, Carruere F., Verger R., Junien J.L. Clinical ecology in cystic fibrosis. Escobar H., Baquero C.F., Suarez L. (Eds.), Elsevier, Amsterdam, 1993,291−295.
  207. Lankisch P.G. Enzyme treatment of exocrine pancreatic insufficiency in chronic pancreatitis. // Digestion. (1993) 54:21−29.
  208. Wickler-Planquart C., Canaan S., Riviere M., Dupuis L., Verger R. Expression in insect cells and purification of a catalytically active recombinant human gastric lipase. // Protein Eng.1996)9: 1225−1232.
  209. Suzuki A., Mizumoto A., Sarr M.G., Dimagno E.P. Bacterial lipase and high-fat diets in canine exocrine pancreatic insufficiency: a new therapy of steatorrhea. II Gastroenterology.1997) 112:2048−2055.
  210. Bennet W. Dietary treatments of obesity. // Ann. N.Y. Acad Sci. (1987) 499: 250−263.
  211. Zhi J., Melia G" Kosstwardy S.G., Min Π’., Guerciolini R., Freundlich N.L., Milla G., Patel I.H. The influence of orlistat on the pharmacokinetics and pharmacodynamics of glyburide in healthy volunteers. // J. Clin. Pharmacol. (1995) 35: 521−525.
  212. Schwizer W., Asal K., Kreiss C., Mettraux C., Boroviclka J., Remy Π’., Guzelhan C., Hartmann D., fried M. Role of lipase in the regulation of upper gastrointestinal function in humans. // Am. J. Physiol. (1997) 273: G612-G620.
  213. Hildebrand P., Petrig C., Burckhardt Π’., Ketterer S., Lengsfeld H., Fleury A., Hadvary P., Beglinger C. Hydrolysis of dietary fat by pancreatic lipase stimulates cholecystokinin release. // Gastroenterology. (1998) 114:123−129.
  214. Borgstrom B. Mode of action of tetrahydrolipstatin: a derivative of the naturally occurring lipase inhibitor lipstatin. // Biochim. Biophys. Acta. (1988) 962: 308−316.
  215. Hadvary p., Lengsfeld H., Wolfer H. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. // Biochem. J. (1988) 256: 357−361.
  216. Gargouri Y., Chahinian H., Moreaull., Ransac S., Verger R. Inactivation of pancreatic and gastric lipases by THL and C12:0-TNB: a kinetic study with emulsified tributyrin. // Biochim. Biophys. Acta. (1991) 1085: 322−328.
  217. Ransac S., Gargouri Y., MoreauH., Verger R. Inactivation of pancreatic and gastric lipases by THL and akyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers. // Eur. J. Biochem. (1991) 202: 395−400.
  218. Bjorkling F., Godfredsen S.E., Kirk O. A highly selective enzyme catalyzed esterification of simple glucosides. //J. Chem. Soc. Commun. (1989) 14: 934−935.
  219. Adelhorst K., Bjorling F., Godtfredsen S.E., Kirk O. Enzyme catalyzed preparation of 6-O-acylglucopyranosides. H Synthesis. (1990) 5: 112−115.
  220. Mutua L.N., Akoh C.C. Synthesis of alkyl glycoside fatty acid esters in nonaqueous media by Candida sp. lipase. // J. Am. Oil. Chem. Soc. (1993) 70:43−46.
  221. Scheckermann C., Schlotterbeck A., Schmid M., Wray V., Lang S. Enzymatic monoacylation of fructose by two procedures. // Enzym. Microb. Technol. (1995) 17: 157−162.
  222. Janssen A.E.M., Lefferts A.G., van Riet K. Enzymatic synthesis of carbohydrate esters in aqueous media. // Biotechnol. Lett. (1996) 12: 711−716.
  223. Lay L., Panza L., Riva S., Khitri M., Tirendi S. Regioselective acylation of disaccharides by enzymatic transesterification. // Carbohydrate Res. (1996) 291: 197−204.
  224. Gao C., Whitcombe M.J., Vulfson E.N. Enzymatic synthesis of dimeric and trimeric sugar-fatty acid esters. // Enzym. Microb. Technol. (1999) 25: 264−270.
  225. Riva S. Enzymatic modification of sugar moieties of natural glycosides. // J. Mol. Cat. B: Enzymatic. (2002) 19:43−54.
  226. Colombo D., Ronchetti F., Scala A., Taino I.M., Marinone F., Toma L. Optically pure 1-O- and 3-O-p-D-gIucosyl- and gactosyl-sn-glycerols through lipase-catalyzed transformations. // Tetrahedron Lett. (1995) 36: 4865−4868.
  227. Colombo D., Ronchetti F., Scala A., Taino I.M., Toma L. A facile lipase catalyzed access to fatty acid monoesters of 2-O-P-glucosylglycerol. // Tetrahedron: Asymmetry. (1996) 7: 771 777.
  228. Colombo D., Ronchetti F., Scala A., Toma L. Bioactive glycoglycerolipid analogues: an expeditious enzymatic approach to mono- and diesters of 2-O-p-D-galactosylglycerol. // Tetrahedron: Asymmetry. (1998) 9:2113−2119.
  229. Nishino H., Colombo D., Ronchetti F., Scala A., Toma L., Tokuda H., Compostella F. Chemoenzymatic synthesis and antitumor promoting activity of 6 and 3-esters of 2-O-b-D-glucosylglycerol. // Bioorg. Med. Chem. (1999) 7: 1867−1871.
  230. Bousquet M.P., Willemot R.M., Monsan P., Boures E. Enzymatic synthesis of AHA derivatives for cosmetic application. //J. Mol. Cat. B: Enz. (1998) 5:49−53.
  231. Bousquet M.P., Willemot R.M., Monsan P., Boures E. Lipase-catalyzed a-butylglucoside lactate synthesis in organic solvent for dermo-cosmetic application. // J. Biotcchnol. (1999) 68: 61−69.
  232. Manjon A., Iborra J.L., Arocas A. Short chain flavour ester synthesis by ommobilized lipase in organic media. // Biotechnol. Lett (1991) 13:339−344.
  233. Chulalaksananukul W., Condoret J.S., Combes D. Kinetics of geranyl acetate synthesis by lipase-catalyzed transesterification in n-hexane. // Enzyme Microb. Tecnol. (1992) 14: 293 298.
  234. Claon P.A., Akoh C.C. Effect of reaction parameters on sp435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent. // Enzyme Microb. Technol. (1994) 16: 835−838.
  235. Crosby J. Synthesis of optically active compounds: a large scale perspective. // Tetrahedron. (1991) 47: 4789−4846.
  236. Santaniello E., Ferraboschi P., Grisenti P., Manzocchi A. The biocatalytic approach to the preparation of enatiomerically pure chiral building blocks. // Chem. Rev. (1992) 92: 1071−1140.
  237. Margolin A.L. Enzymes in the synthesis of chiral drugs. // Enzyme Microb. Technol. (1993) 15:266−280.
  238. Buchalska E., Plenkiewicz J. Synthesis of optically active aminooxy alcohols. // J. Mol. Cat. B: Enzymatic. (2001) 11:255−263.
  239. Ghanem A., Aboul-Enein H.Y. Application of lipase in kinetic resolution of racemates. // Chirality. (2005) 17: 1−15.
  240. Dordick J.S. Enzymatic and chemoenzymatic approaches to polymer synthesis. // Trends. Biotechnol. (1992) 10: 287−293.
  241. Martin B.D., Ampofo S.A., Linhardt R.J., Dordick F.S. Biocatalytic synthesis of sugar cantaining poly (acrylate)-based hydrogeles. // Macromolecules. (1992) 25: 7081−7085.
  242. Frank S.G., Zografi G.J. Solubilization of water by dialkyl sodiumsulfosuccinates in hydrocarbon solutions. // J. Colloid and Interface Sci. (1969) 29:27−35.
  243. Ekwall P., Mandell L., Fontell K. Some observation on binary and ternary Aerosol ΠžΠ’ systems. //J. Colloid and Interface Sci. (1970) 33:215−235.
  244. Eicke H.-F. Surfactants in nonpolar solvents: Agregation and micellization. // Top. Curr. Chem. (1980) 87: 85−145.
  245. Eicke H.-F., Kubick R. The optical matching phenomenon in water/oil-microemulsion. // Phys. Chem. (1980) 84: 36−41.
  246. Eicke H.F. Surfactants in nonpolar solvents: aggregation and micellization. // Top. Curr.Chem. (1980) 87: 85−145.
  247. A.B. ΠšΠ°Ρ‚Π°Π»ΠΈΠ· Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ… ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π». Дис. Π΄ΠΎΠΊΡ‚. Ρ…ΠΈΠΌ. Π½Π°ΡƒΠΊ. М., ΠœΠ“Π£, 1987.
  248. Zinsli Π .Π•. Inhomogeneous interior of Aerosol ΠžΠ’ microemulsion, probed by fluorescence and polarization decay. //J. Phys. Chem. (1979) 33:3223−3231.
  249. Zulauf M., Eicke H.-F. Inverted micelles and microemulsions in the ternary system
  250. НгО/aerosol OT/isooctane as studied by photon correlation spectroscopy. // J. Phys. Chem. (1979) 83: 480−486.
  251. Martinek K., Klyachko N.L., Kabanov A.V., Khmelnitsky Yu.L., Levashov A.V. Micellar enzymology: its relation to membranology. //Biochim. Biophys. Acta. (1989) 981: 161 172.
  252. Martinek К., Levashov A.V., Klyachko N.L., Khmelnitsky Y.L., Berezin I.V. Micellar enzymology. // Eur. J. Biochem. (1986) 155:453−468.
  253. Luisi P.L., Giomini M., Pileni M.P., Robinson B.H. Reverse micelles as hosts for proteins and small molecules. // Biochim. Biophys. Acta. (1988) 947: 209−246.
  254. Oldfleld C. Ezymes in vvater-in-oil microemulsions ('reversed micelles'): principles and applications. II Biotechnol. Genetic. Eng. Rev. (1994) 12: 255−327.
  255. A.B., ΠšΠ»ΡΡ‡ΠΊΠΎ Н. Π›. ΠœΠΈΡ†Π΅Π»Π»ΡΡ€Π½Π°Ρ энзимология: ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ°. // Π˜Π·Π²Π΅ΡΡ‚ΠΈΡ АН. БСрия химичСская. (2001) 10: 1638−1651.
  256. Levashov A.V., Klyachko N.L. Interfacial catalysis. A. Volkov (Ed.), Basel: Marcel Dekker, New York, (2002) 355−376.
  257. Nicot C., Waks M. Proteins as invited guests of reverse micelles: conformational effects, significance, applications.//Biotechnol. Genet. Eng. Rev. (1996) 13:267−314.
  258. A.V. Kabanov, S.N. Nametkin, A.V. Levashov. The principal difference in regulation of the catalytic activity of water-soluble and membrane forms of enzymes in reversed micelles. FEBS Lett. (1990) 267:236−238.
  259. Н.Π›., ΠŸΡˆΠ΅ΠΆΠ΅Ρ†ΠΊΠΈΠΉ A.B., Кабанов A.B., Π’Π°ΠΊΡƒΠ»Π° Π‘. Π’., ΠœΠ°Ρ€Ρ‚ΠΈΠ½Π΅ΠΊ К. ΠšΠ°Ρ‚Π°Π»ΠΈΠ· Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π² Π°Π³Ρ€Π΅Π³Π°Ρ‚Π°Ρ… ΠŸΠΠ’: ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ конструкция ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠŸΠΠ’. // Π‘ΠΈΠΎΠ». ΠœΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹. (1990) 7:467−472.
  260. А.Π’., ΠŸΠ°Π½Ρ‚ΠΈΠ½ Π’. И., ΠœΠ°Ρ€Ρ‚ΠΈΠ½Π΅ΠΊ К., Π‘Π΅Ρ€Π΅Π·ΠΈΠ½ И. Π’. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ тСория Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ, ΡΠΎΠ»ΡŽΠ±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°ΠΈΠ½Ρ‹ΠΌΠΈ Π² ΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΡ… растворитСлях с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств. // Π”ΠΎΠΊΠ». АН Π‘Π‘Π‘Π  (1980) 252: 133−136.
  261. Bru R., Sanchez-Ferrc, A., Garcia-Carmona F. Kinetics models in reverse micelles. // Biochem. J. (1995) 310:721−739.
  262. Aguilar L.F., Abuin E., Lissi E. A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalysed by enzymes in reverse micellar solutions.// Arch. Biochem. Biophys. (2001) 338: 231−236.
  263. Huang T.-M., Huang H.-C., Chang T.-C., Chang G.-G. Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles. // Biochem. J. (1998) 330: 267−275.
  264. A.B. ΠšΠ°Ρ‚Π°Π»ΠΈΠ· Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π² ΠΌΠΈΠΊΡ€ΠΎΠ³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… систСмах Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² ΠŸΠΠ’. И Π‘ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ: Π˜Ρ‚ΠΎΠ³ΠΈ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ, Π’Π˜ΠΠ˜Π’Π˜ ΠΠ Π‘Π‘Π‘Π . (1987) 4: 112−158.
  265. А.Π’. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ Π² Π°Π³Ρ€Π΅Π³Π°Ρ‚Π°Ρ… повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств: рСгуляция каталитичСской активности структурной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹. Дис. ΠΊΠ°Π½Π΄. Ρ…ΠΈΠΌ. Π½Π°ΡƒΠΊ. М., ΠœΠ“Π£, 1987.
  266. Н.Π›., ΠœΠ΅Ρ€ΠΊΠ΅Ρ€ Π¨., Π’Π°ΠΊΡƒΠ»Π° Π‘. Π’., Иванов М. Π’., Π‘Π΅Ρ€Π΅Π·ΠΈΠ½ И. Π’., ΠœΠ°Ρ€Ρ‚ΠΈΠ½Π΅ΠΊ К., Π›Π΅Π²Π°ΡˆΠΎΠ² А. Π’. РСгуляция каталитичСской активности ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ… ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» ΠŸΠΠ’. Π›Π°ΠΊΡ‚Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Π°. // Π”ΠΎΠΊΠ». АН Π‘Π‘Π‘Π  (1988) 298: 1479−1481.
  267. Lamzin V.S., Dauter Z., Popov V.O., Harutyunyan E.H., Wilson K.S. High resolution structure of holo and apo formate dehydrogenase. // J. Mol. Biol. (1994) 236:759−785.
  268. Н.Π›., Π’Π°ΠΊΡƒΠ»Π° C.B., Π“Π»Π°Π΄Ρ‹ΡˆΠ΅Π² B.H., Вишков Π’. И., Π›Π΅Π²Π°ΡˆΠΎΠ² А. Π’. Π€ΠΎΡ€ΠΌΠΈΠ°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Π° Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π»: рСгуляция каталитичСской активности ΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ состава Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. // Биохимия. (1997) 62: 1683−1687.
  269. Kamyshny A., Trofimova D., Magdassi S., Levashov A.V. Native and modified glucose oxidase in reversed micelles. // Colloids Surf. B: Biointerfaces. (2001) 23:45−49.
  270. Chebotareva N.A., Kurganov B.I., Burlakova A.A. Sedimentation velocity analysis of oligomeric enzymes in hydrated reversed micelles of surfactants in organic solvents. // Progr. Colloid. Polym. Sci. (1999) 113: 129−134.
  271. Fletcher P.D.I., Rees G.D., Robinson B.H., Freedman R.B. Kinetic properties of crchymotrypsin in water-in-oil microemulsions: studies with a variety of substrates and microemulsion systems. // Biochim. Biophys. Acta. (1985) 832:204−214.
  272. A.B., ΠŸΠ°Π½Ρ‚ΠΈΠ½ Π’. И., ΠœΠ°Ρ€Ρ‚ΠΈΠ½Π΅ΠΊ К., Π‘Π΅Ρ€Π΅Π·ΠΈΠ½ И. Π’. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ тСория Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ, ΡΠΎΠ»ΡŽΠ±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π² ΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΡ… растворитСлях с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств. // Π”ΠΎΠΊΠ». АН Π‘Π‘Π‘Π . (1980) 252: 133−136
  273. ΠšΠ»ΡΡ‡ΠΊΠΎ H. J1., Π›Π΅Π²Π°ΡˆΠΎΠ² A.B., ΠœΠ°Ρ€Ρ‚ΠΈΠ½Π΅ΠΊ К. ΠšΠ°Ρ‚Π°Π»ΠΈΠ· Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Π² ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Π΅ ΠΌΠΈΡ†Π΅Π»Π»Ρ‹ повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств Π² ΠΎΡ€Π³Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΡ… растворитСлях. ΠŸΠ΅Ρ€ΠΎΠΊΡΠΈΠ΄Π°Π·Π° Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΡΡ€ΠΎΠ·ΠΎΠ»ΡŒ ОВ-Π²ΠΎΠ΄Π°-ΠΎΠΊΡ‚Π°Π½. // Мол. Π‘ΠΈΠΎΠ». (1984) 18: 1019−1031.
  274. А.Π’., Π‘ΡƒΠ΄ΡŒΠΈΠ½Π° Π“. Π€., Π›Π°Π³ΡƒΡ‚ΠΈΠ½Π° И. О., Π›Π΅Π²Π°ΡˆΠΎΠ² А. Π’. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° простагландии Н-синтазы Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» Аэрозоля ОВ Π² ΠΎΠΊΡ‚Π°Π½Π΅. // Биохимия. (1985) 5: 1719−1723.
  275. Kost О.А., Ort Π’.А., Nikolskaia I.I., Nametkin S.N., Levashov A.V. Angiotensin-converting enzyme in an AOT-oktane reversed micelle system: interaction with the matrix. // Bioorg. Khim. (1995) 21:403−407.
  276. Kabanov A.V., Levashov A.V., Alakhov V.Y. Lipid modification of proteins and their membrane transport. H Protein Eng. (1989) 3: 39−42.
  277. Kabanov A.V., Klibanov A.L., Torchilin V.P., Martinek K., Levashov A.V. Effectivenes of acylation of protein amino groups with fatty acid chlorides in a system of reversed micelles Aerosol ΠžΠ’ in octane.//Bioorg. Khim. (1987) 13: 1321−1324.
  278. , Π”.Н., Π›Π΅Π²Π°ΡˆΠΎΠ², A.B. 2002. Гидрофобная Ρ„ΠΎΡ€ΠΌΠΈΠ°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Π° ΠΈΠ· Pseudomonas sp. 101 Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» аэрозоля ΠžΠ’ Π² ΠΎΠΊΡ‚Π°Π½Π΅. Π‘ΠΈΠΎΠΎΡ€Π³. химия, Ρ‚. 28, стр. 434−439.
  279. Stamatis Н., Xenakis A., Kolisis F.N. Bioorganic reactions in microemulsions: the case of lipases. // Biotechnol. Adv. (1999) 17: 293 318.
  280. Carvalho C.M.L., Cabral J.M.S. Reverse micelles as reaction media for lipases (review). // Biochimie. (2000) 82: 1063 1085.
  281. Manoj K.M., Swaminathan T. Ester synthesis in reverse micelles using lipase. // Bioproc. Eng. (1997) 17: 185−188.
  282. Otero C., Rua M.L., Robledo L. Influence of the hydrophobicity of lipase isoenzymes from Candida rugosa on its hydrolytic activity in reverse micelles. // FEBS Lett. (1995) 360: 202−206.
  283. Rao A.M., Murray M.A., John V.T. Characteristics of lipase catalysis during ester synthesis in reversed micellar systems. // Biocatalysis. (1991) 4:253−264.
  284. Han D., Walde P., Luisi P.L. Dependence of lipase activity on water content and enzyme concentration in reverse micelles. // Biocatalysis. (1990) 4: 153−161.
  285. Tsai S.W., Chiang C.L. Kinetics, mechanism, and time course analysis of lipase-catalyzed hydrolysis of high concentration olive oil in AOT-isooctane reverse micelles. // Biotechnol. Bioeng. (1991) 38: 206−211.
  286. Hedstrom G., Backlund M., Slotte J.P. Enantioselective synthesis of ibuprofen esters in AOT/isooctane microemulsions by Candida cylindracea lipase. // Biotechnol. Bioeng. (1993) 42:618−624.
  287. Rees G.D., Robinson B.H., Stephenson G.R. Macrocyclic lactone synthesis by lipase in water-in-oil microemulsions. // Biochim. Biophys. Acta. (1995) 1257:239−248.
  288. Chen J.P., Chang K.C. Lipase catalyzed hydrolysis of milk fat in lecithin reverse micelles.//J. Ferment. Bioeng. (1993) 76: 98−104.
  289. Prazeres D.M.F., Garcia F.A.P., Cabral J.M.S. Kinetics and stability of Chromobacterium viscosum lipase in reversed micellar and aqueous media. // J. Chem. Techn. Biotechnol. (1992) 53:159−164.
  290. Prazeres D.M.F., Garcia F.A.P., Cabral J.M.S. An ultrafiltration membrane bioreactor for the lipolysis of olive oil in reversed micellar media. // Biotechnol. Bioeng. (1993) 41: 761−770.
  291. Chang P. S., Rhee J.S. Characteristics of lipase-catalyzed glycerolysis of triglyceride in AOT-isooctane reversed micelles. // Biocatalysis. (1990) 3: 343−355.
  292. Yamada Y., Kuboi R., Komasawa I. Increased activity of Chromobacteriun viscosum lipase in Aerosol ΠžΠ’ reverse micelles in the presence of nonionic surfactants. // Biotechnol. Prog. (1993) 9:468−472.
  293. Rees G.D., Robinson B.H. Esterification reactions catalyzed by Chromobacterium viscosum lipase in CTAB-based microemulsion systems. // Biotechnol. Bioeng. (1995) 45: 344 355.
  294. Carlile K., Rees G., Robinson B.H., Steer T.D., Svensson M. Lipase-catalyzed interfacial reactions in reverse micellar systems. // J. Chem. Soc. Faraday Trans. (1996) 92:4701−4708.
  295. Stamatis H., Xenakis A., Dimitriadis E., Kolisis F.N. Catalytic behavior of Pseudomonas cepacia lipase in w/o microemulsions. // Biotechnol. Bioeng. (1995) 45:33−41.
  296. Avramiotis S., Stamatis H., Kolisis F.N., Lianos P., Xenakis A. Structural studies of lecithin- and AOT-based water-in-oil microemulsions, in the presence of lipase. // Langmuir. (1996) 2:6320−6328.
  297. Schlatmann J., Aires-Barros M.R., Cabral J.M.S. Esterification of short chain organic acids with alcohols by a lipase microencapsulated in reverse micelles. // Biocatalysis. (1991) 5: 137−144.
  298. Skargelind P., Jansson M. Surfactant interface on lipase catalyzed reactions in microemulsions.//J. Chem. Techn. Biotechnol. (1992) 54: 277−282.
  299. Kim Π’., Chung К. Some characteristics of palm kernel olein hydrolysis by Rhizopus arrhizus lipase in reversed micelle of AOT in isooctane, and additive effects. // Enzyme Microb. Technol. (1989) 11:528−532.
  300. Walde P., Han D., Luisi P.L. Spectroscopic and kinetic studiesof lipase solubilized in reverse micelles. // Biochemistry. (1993) 32:4029−4034.
  301. Nagayama K., Matsu-ura S.I., Doi Π’., Imai M. Kinetic characterization of esterifiaction catalyzed by Rhizopus delemar lipase in lecithin-AOT microemulsion systems. // J. Mol. Cat. B: Enzymatic. (1998) 4: 25−32.
  302. Mojovic L., Siler-Marinkovic S., Kukic N., Vunjal-Novakovic G. Rhizopus arrhizus lipase-catalyzed interesterification of the mid-fraction of palm oil to a cocoa butter equivalent fat. // Enzyme Microb. Technol. (1993) 15:438−443.
  303. Schmidli P.K., Luisi P.L. Lipase-catalyzed reactions in reverse micelles formed by soybean lecithin. // Biocatalysis. (1990) 3: 367−376.
  304. Marangoni A.G. Effects of the interaction of porcine pancreatic lipase with AOT/isooctane reversed micelles on the enzyme structure and function follow predictable patterns. // Enzyme Microb. Technol. (1993) 15: 944−949.
  305. Gupte A., Nagarajan R., Kilara A. Food Flavours: Generation, analysis and process influence. Charalambous G. (Eds.), Elsevier, Amsterdam, 1995, 1−74.
  306. Stamatis H., Xenakis A., Provelegiou M., Kolisis F.N. Esterification reactions catalyzed by lipases in microemulsions. The role of enzyme localization in relation to its selectivity. // Biotexhnol. Bioeng. (1993) 42: 103−110.
  307. Han D., Ree J.S. Batchwise hydrolysis of olive oil by lipase in AOT / isooctane reverse micelles. // Biotechnol. Lett. (1985) 7:651−656.
  308. Han D., Ree J.S. Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles. // Biotechnol. Bioeng. (1986) 28: 1250−1255.
  309. Fletcher P.D.I., Freedman R.B., Oldfield C. Activity of lipase in water-in-oil microemulsions. // J. Chem. Soc. Faraday Trans. I. (1985) 81:2667−2679.
  310. Valis T.P., Xenakis A., Kolisis F.N. Comparative studies of lipase from Rhizopus delemar in various microemulsion systems. // Biocatalysis (1992) 6:267−279.
  311. Fukumoto J., Iwai M., Tsujisaka Y. Studies on lipase. IV. Purification and properties of a lipase secreted by Rhizopus delemar. II J. Gen. Appl. Microbiol. (1964) 10: 257−265.
  312. Stark M., Scargelind P., Holmberg K., Carlfors J. Dependence of the activity of Rhizopus lipase on microemulsion composition. // Colloid. Polymer Sci. (1990) 268: 384−388.
  313. Holmberg K. Organic and bioorganic reactions in microemulsions. // Adv. Colloid. Interface Sci. (1994) 51: 137−174.
  314. Holmberg K., Osterrberg E. Enzymatic preparation of monoglycerides in microemulsion. //J. Am. Oil Chem. Soc. (1988) 65: 1544−1548.
  315. Tsai S.W., Lee K.P., Chiang C.L. Surfactant effects on lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reverse micelles. // Biocatal. Biotrans. (1995) 13: 89−98.
  316. Talukder M.M., Hayashi J.C., Takeyama Π’., Zamam N., Kawasaki Π’., Shimizu N. Activity and stability of Chromobacterium viscosum lipase in modified AOT reverse micelles. // J. Mol. Cat. B: Enzymatic. (2003) 22:203−209.
  317. Lee S.S., Kiserow D.J., McGown L.B. Enzyme solubilization in reversed micellar microreactor with a bile salt cosurfactant. // J. Colloid Interface Sci. (1997) 193: 32−40.
  318. O’Connor C.J., Cleverly D.R. Fourier-transform infrared assay of bile salt-stimulated lipase activity in reverse micelles. //J. Chem. Technol. Biotechnol. (1994) 61:209−214.
  319. Fletcher P.D.I., Freedman R.B., Robinson B.H., Rees G.D., Schomacker R. Lipase-catalysed ester synthesis in oil-continuos microemulsions. // Biochim. Biophys. Acta. (1987) 912:278−282.
  320. Hayes D.G., Gulari E. l-Monoglyceride production from lipase-catalyzed esterification of glycerol and fatty acid in reverse micelles. // Biotechnol. Bioeng. (1991) 38:507−517.
  321. Singh C.P., Shah D.O., Holmberg K. Synthesis of mono- and diglycerides in water-in-oil microemulsions. //J. Am. Oil. Chem. Soc. (1994) 71: 583−587.
  322. Hayes D.G., Gulari E. formation of polyol-fatty acid esters by lipases in reverse micellar media. // Biotechnol. Bioeng. (1992) 40: 110−118.
  323. Macris J.B., Stamatis H., Kolisis F.N. Microemulsions as a tool for the regioselective lipase-catalyzed esterification of aliphatic diols. // Appl. Microb. Biotechnol. (1996) 46: 521 523.
  324. Stamatis H., Xenakis A., Kolisis F.N., Malliaris A. Lipase localization in w/o microemulsions studied by flyorescence energy transfer. // Progr. Colloid. Polym. Sci. (1994) 97: 253−255.
  325. Stamatis H., Xenakis A., Malliaris A., Kolisis F.N. Effect of alcohols on the structure of AOT reverse micelles with respect to different enzyme activity. // Progr. Colloid. Polym. Sci. (1993)93:373−376.
  326. Stamatis H., Kolisis F.N. Xenakis A., Bornscheuer U., Scheper Π’., Menge U. Pseudomonas cepacia lipase: Esterification reactions in AOT microemulsion systems. // Biotechnol. Lett. (1993) 15: 703−708.
  327. Shiomori K., Ishimura M., Baba Y., Kawano Y., Kuboi R., Komasawa I. Characteristics and kinetics on lipase-catalyzed hydrolysis of olive oil in a reverse micellar system. // J. Ferment. Bioeng. (1996) 81: 143−147.
  328. Ayyagari M.S., Jahn V.T. Substrate-induced stability of the lipase from Candida cylindracea in reversed micelles. H Biotechnol. Lett. (1995) 17: 177−182.
  329. Brash A. Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. I I J. Biol. Chem. (1999) 274: 23 679−23 682.
  330. Grechkin A. Recent developments in biochemistry of the plant lipoxygenase pathway. // Prog. Lipid. Res. (1998) 37:317−352.
  331. Gerwick W.H. Structure and biosynthesis of marine algal oxylipins.// Biochim. Biophys. Acta. (1994) 1211:243−255.
  332. Funk C.D. The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-dificient mice. // Biochim. Biophys. Acta. (1996) 1304: 65−84.
  333. Yamamoto S., Suzuki H., Ueda N. Arachidonate 12-lipoxygenases. // Prog. Lipid. Res. (1997)36:23−41.
  334. Marks F., Heidt M., Krieg P., Kinzig A., Furstenberger G. cDNA cloning of a 8-lipoxygenase and a novel epidermis-type lipoxygenase from phorbol ester-treated mouse skin. // Biochim. Biophys. Acta. (1998) 1391: 7−12.
  335. Boeglin W.E., Kim R.B., Brash A.R. A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. // Proc. Natl. Acad. Sci. USA. (1998) 95: 67 446 749.
  336. Sun D., Elsea S.H., Patel P.I., Funk C.D. Cloning of a human «epidermal-type» 12-lipoxygenase-related gene and chromosomal localization to 17pl3. // Cytogenet. Cell. Genet. (1998)81:79−82.
  337. Stephenson L.C., Bunker T.W., Dubbs W.E., Grimes H.D. Specific soybean lipoxygenases localize to discrete subcellular compartments and their mRNAs are differentially regulated by source-sink status. // Plant Physiol. (1998) 116: 923−933.
  338. Jisaka M., Kim R.B., Nanney L.B., Boeglin W.E., Brash A.R. Molecular cloning and functional expression of a phorbol ester-inducible 8S-lipoxygenase from mouse skin. // J. Biol. Chem. (1997) 272: 24 410−24 416.
  339. Nugteren D.H. Arachidonate lipoxygenase in blood platelets. // Biochim. Biophys. Acta. (1975)380:299−307.
  340. Ho P.P., Walters C.P., Sullivan H.R. A particulate arachidonate lipoxygenase in human blood platelets. // Biochem. Biophys. Res. Commun. (1976) 76: 398−405.
  341. Borgeat P., Hamberg M., Samuellsson B. Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. //J. Biol. Chem. (1976) 251: 7816−7820.
  342. Schewe Π’., Halangk W., Hiebsch C., Rapoport S.M. A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. // FEBS Lett. (1975) 60: 149 152.
  343. Gerwick W.H., Bernart M.W. Marine BioTechnology. I: Pharmaceutical and bioactive natural products. Attawau D.H., Zaborsky O.R. (Eds.), Plenum Publishing Corp., New York, 1993,101−152.
  344. Watanabe K., Ishikawa C., Ohtsuka I., Kamata M., Tomita M., Yazawa K., Muramatsu H. Lipid and fatty acid compositions of a novel docosahexaenoic acid-producing marine bacterium.// Lipids. (1997) 32: 975−978.
  345. Malle E., Leis H.J., Karadi I., Kostner G.M. Lipoxygenases and hydroperoxy / hydroxyl-eicosatetraenoic acid formation. // Int. J. Biochem. (1987) 19: 1013−1022.
  346. Kuhn H. Mammalian 15-lipoxygenases: enzymatic properties and biological implications. // Adv. Exp. Med. Biol. (1999) 447: 5−28.
  347. Feussner I., Kuhn H., Wasternack C. Do specific linoleate 13-lipoxygenases initiate beta-oxidation? // FEBS Lett. (1997) 406: 1−5.
  348. Hawkins D.J., Brash A.R. Eggs of the sea urchin, Strongylocentrotus purpuratus, contain a prominent (11R) and (12R) lipoxygenase activity. // J.Biol. Chem. (1987) 262: 7629−7634.
  349. Drazen J.M., Israel E., O’Byrne P.M. Treatment of asthma with drugs modifying the leukotriene pathway. // N. Engl. J. Med. (1999) 340: 197−206.
  350. D.G., Honn K.V. 12-(S)-HETE in cancer metastasis. // Adv. Exp. Med. Biol. (1999) 447: 181−191.
  351. Nagy L., Tontonoz P., Alvarez J.G.A., Chen H., Evans R.M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. // Cell. (1998) 93: 229 240.
  352. Jira W., Spiteller G., Carson W., Schramm A. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. // Chem. Phys. Lipids. (1998)91: 1−11.
  353. Shureiqi I., Lippman S.M. lipoxygenase modulation to reverse carcinogenesis. // Cancer Res. (2001) 61: 6307−6312.
  354. Rappoport S.M., Schewe T. The maturational breakdown of mitochondria in reticulocytes. // Biochim. Biophys. Acta. (1986) 864:471−495.
  355. Schewe Π’., Kuhn H. Do 15-lipoxygenases have a common biological role? // Trends. Biochem. Sci. (1991) 16:369−373.
  356. Spiteller G. Linoleic acid peroxydation the dominant lipid peroxidation process in low density lipoprotein and its relationship to chronic diseases. // Chem. Phys. Lipids. (1998) 95: 105−162.
  357. Chisolm G.M., Hazen S.L., Cathcart M.K. The oxidation of lipoproteins by monocytes-macrophages: biochemical and biological mechanisms. // J. Biol. Chem. (1999) 274: 2 595 925 962.
  358. Kulkarni A.P. Lipoxygenase a versatile biocatalyst for biotransformation of endobiotics and exobiotics. // Cell. Mol. Life. Sci. (2001) 58: 1805−1825.
  359. Lagocki J.W., Emken E.A., Law J.H., Kezdy F.J. Kinetic analysis of the action of soybean lipoxygenase on linolenic acid. // J. Biol. Chem. (1976) 251: 6001−6006.
  360. Borgeat P., Picard S., Battistini Π’., Sirois P. Measurements of arachidonic acid metabolites derived from the lipoxygenase pathway by high-pressure liquid chromatography. // Methods. Mol. Biol. (1998) 105: 209−216.
  361. Schewe Π’., Rapoport S.M., Kuhn H. Enzymology and physiology of reticulocyte lipoxygenase: comparison with other lipoxygenases. // Adv Enzymol Rel Areas Mol Biol. (1986) 58:191−272.
  362. Denis D., Falguieyrct J.-P., Riendean D., Abramovitz M. Characterization of the activity of purified recombinant human 15-lipoxygenase in the absence and presence of leukocyte factors.//J. Biol. Chem. (1991) 266:5072−5079.
  363. Noguchi M., Matsumoto T. Physicochemical characterization of ATP binding to human 5-lipoxygenase. // Lipids. (1996) 31: 367−371.
  364. Puustinen Π’., SchefTer M.M., Samuelsson B. Regulation of the human leukocyte 5-lipoxygenase: stimulation by micromolar Ca levels and phosphatidylcholine vesicles. // Biochim. Biophys. Acta. (1988) 960: 261−267.
  365. Rouger C.A., Samuelsson B. Reversible, calcium-dependent membrane association of human leukocyte lipoxygenase. // Proc. Natl. Acad. Sci. USA. (1987) 84: 7393−7397.
  366. Wong A., Hwang S.M., Cook M.N., Hogaboom K.G., Crooke S.T. Interactions of 5-lipoxygenase with membrane: studies on the association of soluble enzyme with membranes and alteration in enzyme activity. // Biochemistru. (1988) 27: 6763−6769.
  367. Egan R.W., Gale P.H. Inhibition of mammalian 5-lipoxygenase by aromatic disulfides. // J. Biol. Chem. (1985) 260: 11 554−11 559.
  368. Kemal Π‘., Louis-Flamberg p., krupinsli-Olsen R., Sharter A.L. reductive inactivation of soybean lipoxygenase-1 by catechols: a possible mechanism for regulation of lipoxygenase activity. // Biochemistry. (1987) 26: 7064−7072.
  369. Payne A.N., garland L.G., Less I.W., Salmon J.A. Selective inhibition of arachidonate 5-lipoxygenase by novel acetohydroxamic acids: effects on bronchial anaphylaxis in anaesthetized guinea-pigs. // J. Pharmacol. (1988) 94: 540−546.
  370. Cucurou C., Battioni J.P., Thag D.C., Nam N.H., Mansuy D. Mechanisms of inactivation of lipoxygenases by phenidone and BW755C. // Biochemistry. (1991) 30: 8964−8970.
  371. Puerta R., Gutierrez V.R., Hoult J.R.S. Inhibition of leucocyte 5-lipoxygenase by phenolics from virgin olive oil. // Biochem. Pharmacol. (1999) 57:445−449.
  372. Rao K.C.S., Divakar S., Rao A.G.A., Karanth N.G., Sattur A.P. lipoxygenase inhibition from Lactobacillus easel // Biotechnol. Lett. (2002) 24: 511−513.
  373. Boyington J.C., Gafhey B.J., Amzel L.M. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. // Science. (1993) 260: 1482−1486.
  374. Stezcko J., Donoho G.P., Clemens J.C., Dixon J.E., Axelrod B. Conserved histidine residues in soybean lipoxygenase: functional consequences of their replacement. // Biochemistry. (1992)31:4053−4057.
  375. W., Steczko J., Stec Π’., Otwinowski Z., Bolin J. Π’., Walter R., Axelrod B. Crystal structure of soybean lipoxygenase L-l at 1.4 A resolution. // Biochemistry. (1996) 35: 1 068 710 701.
  376. Sudharshan E., Rao A.G. Involvement of cysteine residues and domain interactions in the reversible unfolding of lipoxygenase-1. // J. Biol. Chem. (1999) 274: 35 351−35 358.
  377. Gillmor S.A., Villasenor A., Fletterick R., Sigal E., Browner M.F. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity.//Nat. Struct. Biol. (1997)4: 1003−1009.
  378. Chen X.S., Funk C.D. The N-terminal «beta-barrel» domain of 5-lipoxygenase is essential for nuclear membrane translocation. // J. Biol. Chem. (2001) 276: 811−818.
  379. Jones S.M., Luo M., Healy A.M., Peters-Golden M., Brock T.G. Structural and functional criteria reveal a new nuclear import sequence on the 5-lipoxygenase protein. // J. Biol. Chem. (2002) 277: 38 550−38 556.
  380. Walther M., Anton M., Wiedmann M., Fletterick R., Kuhn H. The N-terminal domain of the reticulocyte-type 15-lipoxygenase is not essencial for enzymatic activity but contains determinants for membrane binding. // J. Biol. Chem. (2002) 277: 27 360−27 366.
  381. Dunham W.R., Carrol R.T., Thomson J.E., Sands R.H., Funk M.O. The initial characterization of the iron environment in lipoxygenase by Mossbauer spectroscopy. // Eur. J. Biochem. (1990) 190:611−617.
  382. Gaffney B.J., Navrophilipos D.V., Doctor K.S. Access of ligands to the ferric center in lipoxygenase-1. H Biophys J. (1993) 64:773−783.
  383. Ivanov I., Schwarz K., Holzhutter H.G., Myagkova G., Kulm H. Omega-oxidation impairs oxidizability of polyenoic fatty acids by 15-lipoxygenases: consequences for substrate orientation at the active site. // Biochemistry. (1998) 336: 345−352.
  384. Gardner H.W. Recent investigations into the lipoxygenase pathway of plants. // Biochim Biophys Acta. (1991) 1084:221−239.
  385. Wang Z.-X., Killilea S.D., Srivastava D.K. Kinetic evaluation of substrate-dependent origin of the lag phase in soybean lipoxygenase-1 catalyzed reactions. U Biochemistry. (1993) 32: 1500−1509.
  386. Jones G.D., Russel L., Darley-Usman V.M., Stone D., Wilson M.T. Role of lipid hydroperoxides in the activation of 15-lipoxygenase. // Biochemistry. (1996) 35: 7197−7203.
  387. Schilstra M.Y., Veldink G.A., Vliegenthart F.G. The dioxygenation rate in lipoxygenase catalysis is determined by the amount of iron (HI) lipoxygenase in solution. // Biochemistry. (1994) 33: 3674−3979.
  388. Smith W.L., Lands W.E.M. Oxygenation of unsaturated fatty acids by soybean lipoxygenase. // J. Biol. Chem. (1972) 247:1038−1047.
  389. Gibian M.J., Galaway R.A. Steady-state kinetics of lipoxygenase oxygenation of unsaturated fatty acids. // Biochemistry. (1976) 15:4209−4214.
  390. Lagocki J.W., Emken E.A., Law J.H., Kezdy F.J. Kinetic analysis of the action of soybean lipoxygenase on linoleic acid. // J. Biol. Chem. (1976) 251: 6001−6006.
  391. Rodakiewicz-Nowak J., Maslakiewicz P., Haber J. The effect of linoleic acid on pH inside sodium bis (2-ethylhexyl)sulfosuccinate reverse micelles in isooctane and on the enzymic activity of soybean lipoxygenase. // Eur. J. Biochem. (1996) 238: 549−553.
  392. Kurganov B.I., Shkarina T.N., Malalhova E.A., Davydov D.R., Chebotarena N.A. Kinetics of soybean lipoxygenase reaction in hydrated reversed micelles. // Biochimie. (1989) 71:573−578.
  393. Raabe E, Kroh L, Vogel J. Glucoseoxidase from Aspergillus niger in reverse micelles: pH and wo dependence. // J Biochem Biophys Methods. (1994) 29:207−216.
  394. Orlich B, Schomaecker R. Enzymatic reduction of a less water-soluble ketone in reverse micelles with NADH regeneration. // Biotechnol Bioeng. (1999) 65: 357−362.
  395. Jacobs N.J., Vandemark P.J. The purification and properties of the alpha-glycerophosphate-oxidizing enzyme of Streptococcus faecalis 10C1. // Arch Biochem Biophys. (1960)88:250−255.
  396. Koditschek L.K., Umbreff W.W. Alpha-glycerophosphate oxidase in Streptococcus faecium F 24. // J. Bacterid. (1969) 98: 1063−1068.
  397. Fields R. The measurement of amino groups in proteins and peptides. // J. Biochem. (1971) 124:581−590.
  398. Levashov A.V., Khmelnitsky Yu. L., Klyachko N.L., Chernyak V.Ya., Martinek K. Formation and properties of dimeric recombinant horseradish peroxidase in a system of reversed micelles. //J. Colloid Interface Sci. (1982) 88:444−457.
  399. Stamatis H., Xenakis A., Kolisis F.N. Studies on enzyme reuse and product recovery in lipase-catalyzed reactions in microemulsions. // Ann. NY Acad. Sci. (1995) 750:237−241.
  400. Larsson K.M., Adlercreutz P., Mattiasson B. Enzymatic catalysis in microemulsions: Enzyme reuse and product recovery. // Biotechnol. Bioeng. (1990) 36: 135−141.
  401. Palomo J.M., Fuentes M., Fernandez-Lorente G., Mateo C., Guisan J.M., Fernandez-Lafuente R. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. // Biomacromolecules. (2003) 4: 1−6.
  402. Lacowicz J.R. Topics in Fluorescence Spectroscopy. Plenum Press, New York, 1991.1. Π‘Π›ΠΠ“ΠžΠ”ΠΠ ΠΠžΠ‘Π’Π˜
  403. Автор Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΡƒΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ своим Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ руководитСлям, профСссору ΠΠ½Π΄Ρ€Π΅ΡŽ Π’Π°Π΄ΠΈΠΌΠΎΠ²ΠΈΡ‡Ρƒ Π›Π΅Π²Π°ΡˆΠΎΠ²Ρƒ ΠΈ ΠΏΡ€ΠΎΡ„Сссору ΠΠ°Ρ‚Π°Π»ΡŒΠ΅ Π›ΡŒΠ²ΠΎΠ²Π½Π΅ ΠšΠ»ΡΡ‡ΠΊΠΎ Π·Π° Π½Π΅ΠΎΡ†Π΅Π½ΠΈΠΌΡƒΡŽ ΠΏΠΎΠΌΠΎΡ‰ΡŒ ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ Π½Π° Π²ΡΠ΅Ρ… этапах исслСдования.
  404. Π‘ΠΎΠ»ΡŒΡˆΡƒΡŽ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π°Π²Ρ‚ΠΎΡ€ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Ρƒ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ мицСллярной энзимологии Π₯имичСского Ρ„-Ρ‚Π° ΠœΠ“Π£.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ