Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

ВСрмодинамичСский Π°Π½Π°Π»ΠΈΠ· Ρ€ΠΎΠ»ΠΈ мСТмолСкулярных взаимодСйствий Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… свойствах систСмы: ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ β€” Π»Π΅Π³ΡƒΠΌΠΈΠ½ β€” низкомолСкулярноС повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ вСщСство

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ свойства Π»Π΅Π³ΡƒΠΌΠΈΠ½Π° Π² ΠΎΠ±ΡŠΠ΅ΠΌΠ΅ ΠΈ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ€Π°Π·Π΄Π΅Π»Π° Ρ„Π°Π· ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Ρ‹ Π·Π° ΡΡ‡Π΅Ρ‚ формирования Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… связСй с ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС. Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ рСгулирования структурообразования Π² ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… систСмах Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π²ΠΎΠ΄Π½Ρ‹Ρ… растворов Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈ ΠΠœ ΠŸΠΠ’… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • 1. БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™ И Π£Π‘Π›ΠžΠ’ΠΠ«Π₯ ΠžΠ‘ΠžΠ—ΠΠΠ§Π•ΠΠ˜Π™
  • 2. Π’Π’Π•Π”Π•ΠΠ˜Π•
  • 3. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 3. 1. ΠšΡ€Π°Ρ…ΠΌΠ°Π» ΠΈ ΠΌΠ°Π»ΡŒΡ‚одСкстрины, ΠΊΠ°ΠΊ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… систСм
    • 3. 2. Роль взаимодСйствия ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π° ΠΈ ΠΌΠ°Π»ΡŒΡ‚ΠΎ дСкстринов с Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΌΠΈ повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ вСщСствами (ΠŸΠΠ’) Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… свойствах полисахаридов
    • 3. 3. Роль взаимодСйствия ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π° ΠΈ ΠΌΠ°Π»ΡŒΡ‚ΠΎ дСкстринов с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… свойствах Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²
    • 3. 4. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ² с Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΌΠΈ ΠŸΠΠ’
  • 4. Π¦Π•Π›Π˜ И Π—ΠΠ”ΠΠ§Π˜ Π ΠΠ‘ΠžΠ’Π«
  • 5. Π­ΠšΠ‘ΠŸΠ•Π Π˜ΠœΠ•ΠΠ’ΠΠ›Π¬ΠΠΠ― ЧАБВ
    • 5. 1. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ исслСдования
      • 5. 1. 1. Π›Π΅Π³ΡƒΠΌΠΈΠ½
      • 5. 1. 2. ΠœΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½Ρ‹
      • 5. 1. 3. Амилоза ΠΈ Π°ΠΌΠΈΠ»ΠΎΠΏΠ΅ΠΊΡ‚ΠΈΠ½
      • 5. 1. 4. НизкомолСкулярныС повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ вСщСства (ΠŸΠΠ’)
    • 5. 2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования
      • 5. 2. 1. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ растворов Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ², низкомолСкулярных ΠŸΠΠ’ ΠΈ ΠΈΡ… ΡΠΌΠ΅ΡΠ΅ΠΉ
      • 5. 2. 2. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° выдСлСния Π»Π΅Π³ΡƒΠΌΠΈΠ½Π° («IIS» Π³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ) ΠΈΠ· ΠΊΠΎΡ€ΠΌΠΎΠ²Ρ‹Ρ… Π±ΠΎΠ±ΠΎΠ²
      • 5. 2. 3. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΈ ΠΈΠ½ΠΊΡ€Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ прСломлСния Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π°Ρ… Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈ ΠΈΡ… ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² с 43 низкомолСкулярными ΠŸΠΠ’
      • 5. 2. 4. ΠšΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΡ смСшСния
      • 5. 2. 5. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ калоримСтрия (Π”Π‘Πš)
      • 5. 2. 6. ВСнзиомСтрия
      • 5. 2. 7. ΠœΠ΅Ρ‚ΠΎΠ΄ статичСского Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ свСторассСяния
      • 5. 2. 8. ΠœΠ΅Ρ‚ΠΎΠ΄ динамичСского Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ свСторассСяния
      • 5. 2. 9. ВискозимСтрия
      • 5. 2. 10. ΠžΡ†Π΅Π½ΠΊΠ° ΠΏΡ‘Π½ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΉ способности Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈΡ… 53 комплСксов с Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΌΠΈ ΠŸΠΠ’
  • 6. РЕЗУЛЬВАВЫ И Π˜Π₯ ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
    • 6. 1. ВлияниС ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² Π½Π° Ρ‚СрмодинамичСскиС свойства Π»Π΅Π³ΡƒΠΌΠΈΠ½Π° Π² ΠΎΠ±ΡŠΡ‘ΠΌΠ΅ Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора ΠΈ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ€Π°Π·Π΄Π΅Π»Π° Ρ„Π°Π· Π²ΠΎΠ΄Π°/Π²ΠΎΠ·Π΄ΡƒΡ…
      • 6. 1. 1. ΠŸΡ€ΠΎΡΡ‚Ρ‹Π΅ смСси ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² ΠΈ Π»Π΅Π³ΡƒΠΌΠΈΠ½Π° Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС
      • 6. 1. 2. ΠšΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚Ρ‹ ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² ΠΈ Π»Π΅Π³ΡƒΠΌΠΈΠ½Π° Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС

ВСрмодинамичСский Π°Π½Π°Π»ΠΈΠ· Ρ€ΠΎΠ»ΠΈ мСТмолСкулярных взаимодСйствий Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… свойствах систСмы: ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ β€” Π»Π΅Π³ΡƒΠΌΠΈΠ½ β€” низкомолСкулярноС повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ вСщСство (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π±Π»ΠΈΠΆΠ΅ ΠΏΠΎΠ΄ΠΎΠΉΡ‚ΠΈ ΠΊ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡŽ процСссов структурообразования Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹Ρ… для ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… систСмах Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ являСтся услоТнСниС ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСм ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΎΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… «Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ…» систСм, содСрТащих, Π΄Π²Π° ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° ΠΊ «Ρ‚Ρ€ΠΎΠΉΠ½Ρ‹ΠΌ» систСмам, содСрТащим Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚. Вакая Π·Π°Π΄Π°Ρ‡Π°, Π² Ρ‡Π°ΡΡ‚ности, являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ для ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Ρ… систСм ΠΏΠΈΡ‰Π΅Π²ΠΎΠ³ΠΎ ΠΈ Ρ„армацСвтичСского назначСния, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΌΡƒΠ»ΡŒΠ³Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠ»ΠΈ пСнообразоватСлями Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°ΡŽΡ‚, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, смСси Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Ρ… повСрхностно Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств (Π•Πœ ΠŸΠΠ’), Π° ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ структуры — Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ полисахариды. К ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π½Π°Ρ‡Π°Π»Π° нашСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ влияниС этих ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π½Π° ΠΈΡ… ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ свойства Π² ΠΎΠ±ΡŠΡ‘ΠΌΠ΅ Π²ΠΎΠ΄Π½ΠΎΠΉ срСды ΠΈ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ€Π°Π·Π΄Π΅Π»Π° Ρ„Π°Π· Π² Ρ‚Π°ΠΊΠΈΡ… «Ρ‚Ρ€ΠΎΠΉΠ½Ρ‹Ρ…» систСмах ΠΎΡΡ‚Π°Π²Π°Π»ΠΎΡΡŒ практичСски Π½Π΅ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ослоТняло Π²Ρ‹Π±ΠΎΡ€ ΠΈ Ρ†Π΅Π»Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ использованиС, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… структуру ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Ρ… систСм, ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², Π½ΠΎ ΠΈ ΡΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°Π»ΠΎ выпуск ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ составом, структурой ΠΈ Ρ„изичСской ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ исслСдования Ρ‚Π°ΠΊΠΆΠ΅ обусловлСна Π²Ρ‹Π±ΠΎΡ€ΠΎΠΌ «Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠΉ» систСмы для изучСния, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ, систСмы: Π»Π΅Π³ΡƒΠΌΠΈΠ½ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ — НМ ΠŸΠΠ’, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π»Π΅Π³ΡƒΠΌΠΈΠ½ ΠΈ ΠΌΠ°Π»ΡŒΡ‚одСкстрины ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивных ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠ² для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΏΠΈΡ‰Π΅Π²ΠΎΠ³ΠΎ ΠΈ Ρ„армацСвтичСского назначСния. Π’Π°ΠΊ, Π»Π΅Π³ΡƒΠΌΠΈΠ½ (1 IS Π³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½) — это основной запасной Π±Π΅Π»ΠΎΠΊ ΠΊΠΎΡ€ΠΌΠΎΠ²Ρ‹Ρ… Π±ΠΎΠ±ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ являСтся ΠΏΠΎΠ»Π½ΠΎΡ†Π΅Π½Π½Ρ‹ΠΌ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π±Π΅Π»ΠΊΠΎΠΌ, ΠΈ, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ 1 IS Π³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ² Π΄Ρ€ΡƒΠ³ΠΈΡ… ΡˆΠΈΡ€ΠΎΠΊΠΎ распространённых сСмян Π±ΠΎΠ±ΠΎΠ²Ρ‹Ρ…, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, сои ΠΈΠ»ΠΈ Π³ΠΎΡ€ΠΎΡ…Π°. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ интСрСс ΠΊ ΡΠ²ΠΎΠΉΡΡ‚Π²Π°ΠΌ этих Π±Π΅Π»ΠΊΠΎΠ² Π² Π½Π°ΡΡ‚оящСС врСмя обусловлСн всё Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠΌΠΈ трСбованиями ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΏΠΎ Π·Π°ΠΌΠ΅Π½Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π² Π²Ρ‹ΠΏΡƒΡΠΊΠ°Π΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ… ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°. Π’ ΡΠ²ΠΎΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½Ρ‹, являясь гидролитичСскими ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ Ρ€Π΅Π·Π΅Ρ€Π²Π½ΠΎΠ³ΠΎ полисахарида растСний, ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π°, Π»ΠΈΡˆΠ΅Π½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΈΡ…, присущих Π΅ΠΌΡƒ нСдостатков. Они Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°ΡΡ‚Π²ΠΎΡ€ΡΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ Π² Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΈ Π² Π³ΠΎΡ€ΡΡ‡Π΅ΠΉ Π²ΠΎΠ΄Π΅ ΠΈ ΠΏΡ€ΠΈ этом способны эффСктивно ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²ΡΠ·ΠΊΠΎΡΡ‚ΡŒ ΠΈ Ρ‚Скстуру выпускаСмых ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ²ΠΎΠ½ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ антикристаллизационными свойствами, ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒ большС Π²ΠΎΠ΄Ρ‹, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π°ΠΌΠΈ ΠΈ ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ процСссу синСрСзиса (Ρ‚.Π΅. отдСлСния Π²ΠΎΠ΄Ρ‹) Π² ΠΊΡ€Π°Ρ…ΠΌΠ°Π» содСрТащих ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ…ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΈΡ… Π³Π΅Π»Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высокомолСкулярныС, Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ органолСптичСскими свойствами схоТими со ΡΠ²ΠΎΠΉΡΡ‚Π²Π°ΠΌΠΈ ΠΆΠΈΡ€ΠΎΠ², Ρ‡Ρ‚ΠΎ опрСдСляСт ΠΈΡ… ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠ΅ использованиС Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΆΠΈΡ€ΠΎΠ² Π² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½ΠΈΠ·ΠΊΠΎΠΆΠΈΡ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½Ρ‹ находят всё Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΈ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅, благодаря прСдоставляСмой ΠΈΠΌΠΈ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ возмоТности Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΌ Π·Π°Π΄Π°Ρ‡ΠΈ. Однако, Ρ†Π΅Π»Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ использованиС ΠΊΠ°ΠΊ ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ сдСрТиваСтся нСдостатком Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Π½ΠΈΠΉ ΠΎΠ± ΠΈΡ… ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎ Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… систСмах, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΌΠΎΠΆΠ½ΠΎ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, отнСсти ΠΏΠΈΡ‰Π΅Π²Ρ‹Π΅ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Π΅ систСмы. Π’Π°ΠΊ, Π² Ρ‡Π°ΡΡ‚ности, ΠΊ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π½Π°Ρ‡Π°Π»Π° нашСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎ Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΎ взаимодСйствиС ΠΏΠΈΡ‰Π΅Π²Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ΠΎ ΠΈ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ происхоТдСния с ΠΠœ ΠŸΠΠ’, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ограничСнная ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π±Ρ‹Π»Π° доступна ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠΈ ΠΠœ ΠŸΠΠ’ с ΠΌΠ°Π»ΡŒΡ‚одСкстринами. ΠŸΡ€ΠΈ этом оставался ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ вопрос ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ΅ взаимодСйствия Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² с Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ заряТСнных /нСзаряТСнных ΠΠœ ΠŸΠΠ’ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ отсутствовали Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π΅ взаимодСйствия ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ²Π»ΠΈΡΠ½ΠΈΡ 1 IS Π³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ² ΠΈ ΠΌΠ°Π»ΡŒΡ‚одСкстринов Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… растворах ΠΈ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Ρ… систСмах.

Π’Π«Π’ΠžΠ”Π«.

1. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ свойства Π»Π΅Π³ΡƒΠΌΠΈΠ½Π° Π² ΠΎΠ±ΡŠΠ΅ΠΌΠ΅ ΠΈ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ€Π°Π·Π΄Π΅Π»Π° Ρ„Π°Π· ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Ρ‹ Π·Π° ΡΡ‡Π΅Ρ‚ формирования Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… связСй с ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС.

2. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ установлСно комплСксообразованиС ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½Π°ΠΌΠΈ ΠΈ ΠΠœ ΠŸΠΠ’ Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ сопровоТдаСтся ΠΊΠ°ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ самоассоциации ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ повСрхностной активности ΠΠœ ΠŸΠΠ’ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ€Π°Π·Π΄Π΅Π»Π° Ρ„Π°Π· Π²ΠΎΠ΄Π°/Π²ΠΎΠ·Π΄ΡƒΡ…. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ измСнСния этих свойств зависСл ΠΊΠ°ΠΊ ΠΎΡ‚ ΡΡ‚роСния ΠΠœ ΠŸΠΠ’ (Π΄Π»ΠΈΠ½Ρ‹ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ «Ρ…воста» ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ заряда полярной «Π³ΠΎΠ»ΠΎΠ²Ρ‹»), Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚ ΡΡ‚роСния ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ², Π°, ΠΈΠΌΠ΅Π½Π½ΠΎ, ΠΎΡ‚ ΠΈΡ… ΡΡ‚Π΅ΠΏΠ΅Π½ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ опрСдСляСт ΠΈΡ… ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ ΡΠΏΠΈΡ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ.

3. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° тСрмодинамичСски обоснованная схСма молСкулярного ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° образования комплСксов ΠΌΠ΅ΠΆΠ΄Ρƒ Π°Π½ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΠœ ΠŸΠΠ’ ΠΈ ΠΌΠ°Π»ΡŒΡ‚одСкстринами Π² Π²ΠΎΠ΄Π½ΠΎΠΉ срСдС.

4. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² ΠΊ ΡΠΌΠ΅ΡΡΠΌ глобулярного Π±Π΅Π»ΠΊΠ° — Π»Π΅Π³ΡƒΠΌΠΈΠ½Π° с Π°Π½ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΠœ ΠŸΠΠ’ ΠΌΠΎΠΆΠ΅Ρ‚ сущСствСнно ΠΏΠΎΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ этих ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… систСм, практичСски «ΡΠ²ΠΎΠ΄Ρ ΠΊ Π½ΡƒΠ»ΡŽ» синСргСтичСскоС Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ влияниС Π±Π΅Π»ΠΊΠ° ΠΈ ΠΠœ ΠŸΠΠ’. Π‘Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠΎΡΠ½ΠΎΠ²Π΅ Ρ‚Π°ΠΊΠΎΠ³ΠΎ влияния ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² Π»Π΅ΠΆΠ°Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ процСссы: Π°) — интСнсивноС взаимодСйствиС ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°Π»ΡŒΡ‚ΠΎΠ΄Π΅ΠΊΡΡ‚Ρ€ΠΈΠ½ΠΎΠ² с ΠΠœ ΠŸΠΠ’Π±) — ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ тСрмодинамичСского сродства ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΠœ ΠŸΠΠ’ Π±Π΅Π»ΠΊΠ° ΠΈ ΠΌΠ°Π»ΡŒΡ‚одСкстринов Π² ΠΎΠ±ΡŠΠ΅ΠΌΠ΅ Π²ΠΎΠ΄Π½ΠΎΠΉ срСдыв) — ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ взаимодСйствий с ΠΠœ ΠŸΠΠ’ Π±Π΅Π»ΠΊΠ°.

5. Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ Ρ‚ΠΎΠ½ΠΊΠΎΠ³ΠΎ рСгулирования структурообразования Π² ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹Ρ… систСмах Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π²ΠΎΠ΄Π½Ρ‹Ρ… растворов Π±ΠΈΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈ ΠΠœ ΠŸΠΠ’.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Zobel H.F. Starch Crystal Transformations and Their Industrial Importance. //Starch/Starke. 1988. — 40(1) — PP. 7.
  2. Zobel H.F. Molecules to Granules: A Comprehensive Starch Review.//Starch/Starke. 1988. — 40 — PP. 44−50.
  3. Rope H. Renewable raw materials in Europe Indastrial utilization of starch and sugar .//Starch/Starke. — 2000. — 54 — PP. 89−99.
  4. Swinkels J.J.M Composition and properties of commercial native starches/ Starch/Starke. 1985. — 37 — PP. 1−5.
  5. Duff us C.M., Duff us J. H. Carbohydrate methabolism in plants. // L-N.Y, 1984.
  6. Starch: properties and potential, ed. by T. Galliard // Chichester, 1987.
  7. M., Аугустат 3., Π¨ΠΈΡ€Π±Π°ΡƒΠΌ Π€. Π˜Π·Π±Ρ€Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π°, ΠΏΠ΅Ρ€. Ρ Π½Π΅ΠΌ. // М., 1975.
  8. . Н. Π₯имия ΠΈ Π±ΠΈΠΎΡ…имия ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΠ² (полисахариды) // М., 1978.
  9. Moorthy S. N. Effect of different types of surfactants on cassavastarch properties. //Journal of Agricultural and Food Chemistry. -1985. 33 — P. 1227−1232.
  10. Badenhuizen N. P. The biogenesis of starch granules in higher plants.// New York: Appleton Crofts. 1969
  11. Chiotelli E., Meste M. L. Effect of small and large wheat starch granules on thermomechanical behaviour of starch.//Cereal Chemistry.-2002.-79 P.286−293.
  12. Craig S. A. S., Maningat Π‘. C., Seib P. A., Hoseney R. C. Starch paste clarity. // Cereal Chemistry. 1989. — 66 — P. 173−182.
  13. Eliasson A. C. Starch gelatinization in the presence of emulsifiers: A morphological study. // Starch. 1985. — 37 — P. 411−415.
  14. Galliard Π’., Bowler P. Morphology and composition of starch.// In T. Galliard (Ed.), Starch properties and potential Chichester: Wiley. 1987. — pp. 57−78
  15. Galvez F. C. F., Resurreccion A. V. A. Reliability of the focus group technique in determining the quality characteristics of mung bean noodles. // Journal of Sensory Studies. 1992. — 7 — P. 315−326.
  16. Hopkins S., Gormley R. Rheological properties of pastes and gels made from starch separated from different potato cultivars. // Lebensmittel-Wissenchaft und -Technologie. 2000. — 33 — P. 388−396.
  17. Kaur L., Singh N., Sodhi N. S. Some properties of potatoes and their starches. II. Morphological, thermal and rheological properties of starches. // Food Chemistry. 2002. — 79 — P. 183−192.
  18. KimS. Y., WiesenbomD. P., OrrP. H., Grant L. A. Screening potato starch for novel properties using differential scanning calorimetry. // Journal of Food Science. 1995. — 60 — P. 1060−1065.
  19. Kim Y. S., Wiesenborn D. P. Starch noodle quality as related to potato genotypes. //Journal of Food Science. 1995. — 61 — P. 248−252.
  20. Kim Y. S., Wiesenborn D. P., Lorenzen J. H., Berglund P. Suitability of edible bean and potato starch noodles.// Cereal Chemistry. 1996. — 73 — P. 302−308.
  21. Kim W. S., Seib P.A. Apparent restriction of starch swelling in cooked noodles by lipids in some commercial wheat flours.// Cereal Chemistry. 1993.-70- P. 367.
  22. LaBell F. Potato starch improves oriental noodle texture.// Food Processing. -1990.-P. 118−120.
  23. Leach H. W., McCowen L. D., Schoch T. J. Structure of the starch granule. I. Swelling and solubility patterns of various patterns of various starches. //Cereal Chemistry. 1959. — 36 — P. 534−544.
  24. Lii C.Y., Chang S.-M. Characterization of red bean (Phaseolus radiatus var Aurea) starch and its noodle quality. Journal of Food Science. 1981. — 46 — P. 78−81.
  25. Madsen M. H., Christensen D. H. Changes in viscosity properties of potato starch during growth. // Starch. 1996. — 48 — P. 245−249.
  26. Mestres C., Colonna P., Buleon A. Characteristics of starch networks within rice flour noodles and mung bean starch vermicelli. //Journal of Food Science. 1988. -53-P. 1809−1812.
  27. Peng M., Gao M., Abdel-Aal E.-S.M., Hucl P., Chibbar R. N. Separation and characterization of A- and B-type starch granules in wheat endosperm.// Cereal Chemistry. 1999. — 76 — P. 375−379.
  28. Richardson G., Lnagton M., Bark A., Hermansson A. M. Wheat starch gelatinization—the effects of sucrose, emulsifler and the physical state of the emulsifier.// Starch. 2003. — 55 — P. 150−161.
  29. Singh N., Kaur L. Morphological, thermal, rheological and retrogradation properties of starch fractions varying in granule size. //Journal of the Science of Food and Agriculture. 2004. — 84 — P. 1241−1252.
  30. Singh J., Singh N. Studies on the morphological, thermal andrheological properties of starch from some Indian potato cultivars. // Food Chemistry. -2001. -75-P. 67−77.
  31. Singh J., Singh N. Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. // Food Hydrocolloids. -2003, — 17-P. 63−72.
  32. Singh J., Singh N., Saxena S. K. Effect of fatty acids on the rheological properties of corn and potato starch. //Journal of Food Engineering. 2002. — 52 — P. 9−16.
  33. Singh N., Singh J., Kaur L., Sodhi N. S., Gill B. S. Morphological, thermal and rheological properties of starches from different botanical sources—A review.// Food Chemistry. 2003. — 81 — P. 219−231.
  34. Singh N., Singh, J., Sodhi N. S. Morphological, thermal, rheological and noodle making properties of corn and potato starches. //Journal of the Science of Food and Agriculture. 2002. — 82 — P. 1376−1383.
  35. Singh U., Varaputhaporn W., Rao P. V., Jambunathan R. Physicochemical characteristics of pigeonpea and mung bean starches and their quality. //Journal of Food Science. 1989. — 54 — P. 1293−1297.
  36. Stevens D. J., Elton G. A. H. Thermal properties of starch/water system. I. Measurement of heat of gelatinization by differential scanning calorimetry.// Starch.- 1971.-23-P. 8−11.
  37. K., & Hermansson A. M. Microstructure and rheological properties of composites of potato starch granules and amylose. A comparison of observed and predicted structure.// Food Structure. 1993. — 12-p. 181−193.
  38. Whistler R. L., BeMiller J. N. Starch.// In R. L. Whistler & J. N. BeMiller (Eds.), Carbohydrate chemistry for food scientists St Paul, MN: Eagan Press. -1997.- P. 63−89.
  39. Conde~Petit Π’., Escher F. and Nuessli J. Structural features of starch-flavor complexation in food model systems. // Trends in Food Science and Technology. -2006.-17-PP. 227−235.
  40. Π₯имия ΠΈ Ρ‚Схнология ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π°, ΠΏΠ΅Ρ€. Ρ Π°Π½Π³Π»., 2 ΠΈΠ·Π΄.// М., 1956
  41. Π₯имия ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΠ². // М., 1967-
  42. .Н. Π£Π³Π»Π΅Π²ΠΎΠ΄Ρ‹. УспСхи Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ строСния ΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°// М., 1968.
  43. Lineback D.R. The starch granule organization and properties // Bakers Dig. 58 (2) — pp. 16−21.
  44. J.P., Mercier C., Charbonniere R. & Guilbot A. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch // Cereal Chem. 1974. — 51 — PP. 389−406.
  45. R.E., Holic D.J. & Leach H.W. US Patent, no. 3 922 196, 1975.
  46. E.F. & Walon R.G.P. GB Patent no. 1 470 325,1977.
  47. Armbuster F.C. US Patent no. 3 853 706,1974.
  48. Dalgleish D.G., Srinivasan M., Singh H. Surface Properties of Oil-in-Water Emulsion Droplets Containing Casein and Tween 60 // Journal of Agriculture and Food Chemistry, 1995, 43, PP. 2351−2355.
  49. Fang Y., Dalgleish D.G. Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin. // Colloids and Surfaces B: Biointerfaces. 1 (6) -1993.-PP. 357−364.
  50. Heertje I., Nederlof J., Hendrickx H.A.C.M., Lucassen-Reynders E.H. The observation of the displacement of emulsifiers by confocal scanning laser microscopy // In Food Structure. 1990. — 9 — PP. 305−316.
  51. Heertje I., Van Aalst H., Blonk J.C.G., Don A. Nederlof J., Lucassen-Reynders E.H. Observations on emulsifiers at the interface between oil and water by confocal scanning light microscopy. // LWT Food Science and Technology. — 29(3) — 1996.-PP. 217−226.
  52. Courthaudon J.-L. Dickinson E., Matsumura Y. Competitive adsorption of p-lactoglobulin + Tween 20 at the oil-water interface. // Colloids and Surfaces. -1991. -56 -PP. 293−300.
  53. Matthew J. Mollan Jr. and Celik M., Maltodextrin // The State University of New Jersey, Piscataway, NJ 8 855.
  54. M., Schierbaum F., Augustat S., Knoch K.D. // US Patent no. 3 962 465, 1976.
  55. Harkema Ir. J., Paselli SA-2 and Paselli Excel. In Ingredients Handbook. Fat Substitutes- Dalzell J. M. (Ed.) Surrey: Leatherhead Food RA. — 1998. — PP. 103−115.
  56. Keetels C. J. A. M., van Vliet T., Jurgens A. and Walstra P. Effects of Lipid Surfactants on the Structure and Mechanics of Concentrated Starch Gels and Starch Bread. // Journal of Cereal Science. 1996. — 24 — PP. 33−45.
  57. Krog N. Functions of emulsifiers in food systems // J. of American Oil Chemists' Society.- 1977.- 54-PP. 124−131.
  58. Lagendijk J. and Pennings H.J. Relation between complex formation of starch with monoglycerides and firmness of bread// Cereal Sci. Today. 1970. — 15. -PP.354- 365.
  59. Krog N. Amylose complexing effects of food emulsifiers.//Starch/Starke. -1971. -6-pp. 206−205.
  60. Eliasson A.-C.// in R.D. Hill and L. Munck (Eds.) New Approaches to Research on Cereal Carbohydrates, Elsevier, Amsterdam. 1985. — pp. 93−98.
  61. Gudmundsson M. and Eliasson A.-C. Retrogradation of amylopectin and the effects of amylose and added surfactants/emulsifiers // Carbohydr. Polym. 1990. -13(3)-P. 295−315.
  62. Gudmundsson M. Effects of an added inclusion-amylose complex on the retrogradation of some starches and amylopectin // Carbohydr. Polym. 1992. -17(4)-PP. 299−304.
  63. Chronakis I. S. On the molecular characteristics, compositional properties, and structural-functional mechanisms of maltodextrins: A review// Crit. Rev. Food Sci., Nutr. 1998, 38(7) PP. 599−637.
  64. Reuther F., Plietz P., Damaschun, G., Purschel H.-V., Krober R., Schierbaum F. Structure of maltodextrin gels a small angle X-ray scattering study. //Colloid Polym. Sci. — 1983. — PP. 261 — 271.
  65. Dokic P., Jakovljevic J., Baucal L. D. Molecular characteristics of maltodextrins and theological behaviour of diluted and concentrated solutions // Colloids Surf. -1998. 141 (3)-PP. 435−440.
  66. Biliaderis C. G., Swan R. S., Arvanitoyannis I. Physicochemical properties of commercial starch hydrolyzates in the frozen state // Food Chem. 1999. — 64 (4) -PP. 537−546.
  67. Wang Y. J., Wang L. Structures and Properties of Commercial Maltodextrins from Corn, Potato, and Rice Starches //Starch. 2000. — 52 (7−8) — PP. 296−304.
  68. Creighton, T.E. Proteins, 2nd edition. New York: Freeman W. H. and Co. -1993.
  69. Goddard E.D. Polymer-surfactant interaction: Part I. Uncharged water-soluble polymers and charged surfactants. In Interactions of Surfactants with Polymers and Proteins. CRC Press. 1993. — PP. 123−169.
  70. Wangsakan A., Chinachoti P. and McClements DJ. Effect of Different Dextrose Equivalent of Maltodextrin on the Interactions with Anionic Surfactant in an Isothermal TitrationCalorimetry Study. //7810 J. Agric. Food Chem. 2003. -51 -PP. 7810- 7814.
  71. Wangsakan A., Chinachoti P. and McClements D.J. Effect of Surfactant Type on Surfactant-Maltodextrin Interactions: Isothermal Titration Calorimetry, Surface Tensiometry, and Ultrasonic Velocimetry Study. // Langmuir. 2004. — 20 — PP. 3913−3919.
  72. GoddardE. D., Ananthapadmanabhan K. P. Applications of polymer-surfactant systems. //In Polymer-surfactant systems- Kwak, T. C. J., Ed.- Marcel Dekker: New York. 1998. — Vol. 77 — Chapter 2.
  73. Bahadur P., Dubin P., Rao Y. K. Complex-formation between sodium dodecyl sulfate and poly (4-vinylpyridine N-oxide). //Langmuir. 1995. — 11 — P. 19 511 955.
  74. Bazito R. C., Seoud, O. A. E. Sugar-based surfactants: Adsorption and micelle formation of sodium methyl 2-acylamido-2- deoxy-6-O-sulfo-D-glucopyranosides. //Langmuir. 2002. — 18 — P. 4362−4366.
  75. Biliaderis C. G. Thermal analysis of food carbohydrates.// In V. R. Harwalkar, C. Y. Ma (Eds.), Thermal analysis of foods London: Elsevier. 1990. — P. 168−220.
  76. Evertsson H., Holmberg C. Salt influence in the polymersurfactant interaction in solution. A fluorescence probe investigation of the EHEC/SDS/water system. Colloid Polymer Science. -1997. -275 P. 830−840.
  77. Guillot S., Delsanti M., De’sert S., Langevin D. Surfactantinduced collapse of polymer chains and monodisperse growth of aggregates near the precipitation boundary in carboxymethylcellulose DTAB aqueous solutions. //Langmuir. -2003.- 19-P. 230−237.
  78. Huang Y.X., Tan R. C., Li Y. L., Yang Y. Q., Yu L., He Q. C. Effect of salts on the formation of C8-lecithin micelles in aqueoussolution. //Journal of Colloid and Interface Science. 2001. — 236 — P. 28−34.
  79. Iliopoulos I., Wang T. K., Audebert R. Viscometric evidence of interactions between hydrophobically modified poly (sodium acrylate) and sodium dodecyl sulfate. // Langmuir. 1991. — 7(4) — P. 617−619.
  80. Kennedy J. F., Knill C. L., Taylor D. W. Maltodextrins. In Kearsley M. W. & Dziedzic S. Z. (Eds.)//Handbook of starch hydrolysis products and their derivatives. Cambridge, UK: Blackie Academic and Professional. -1995. Ch. 3.
  81. Kira’ly Z., Deka’ny I. A thermometric titration study on the micelle formation of sodium decyl sulfate in water. //Journal of Colloid and Interface Science. -2001.-242-P. 214−219.
  82. Majhi P. R., Blume A. Thermodynamic characterization of temperature-induced micellization and demicellization of detergents studied by differential scanning calorimetry. // Langmuir. 2001. — 17 — P. 3844−3851.
  83. Merta J., Stenius P. Interactions between cationic starch and anionic surfactants 1. Phase equilibria and surface tensions.// Colloids Polymer Science. 1995. -273-P. 974−983.
  84. Merta J., Stenius P. Interactions between cationic starch and anionic surfactants 2. Viscosity and aggregate size in dilute solutions.// Colloids and Surfaces A. -1997.- 122-P. 243−255.
  85. Mesa C. L. Dependence of critical micelle concentrations on intensive variables: A reduced variables analysis.//Journal of Physical Chemistry. 1990. -94 — P. 323 326.
  86. Ropers M. H., Czichocki G., Brezesinski G. Counterion effecton the thermodynamics of micellization of alkyl sulfates. // Journal of Physical and Chemistry B. -2003.- 107-P. 5281−5288.
  87. Semenova M. G., Belyakova L. E., Antipova A. S., Polikarpov Y. N., Klouda L., Markovic A., et al. Effect of maltodextrins on the surface activity of small molecules surfactants.// Colloids and Surfaces B: Biointerfaces. -2003. 31 — P. 47−54.
  88. Kasapis S., Morris E.R., Norton I.T. and Clark A.H. Phase equilibria and gelation in gelatin/maltodextrin systems Part I: Gelation of individual components .//Carbohydrate Polymers. — 1993. — 21 — PP. 243−248.
  89. Kasapis S., Morris E.R., Norton I.T. and Gidley M.J. Phase equilibria and gelation in gelatin/maltodextrin systems Part II: Polymer incompatibility in solution.//Carbohydrate Polymers. — 1993. — 21 — PP. 249−259.
  90. Kasapis S., Morris E.R., Norton I.T., Brown C. R. T. Phase equilibria and gelation in gelatin/maltodextrin systems Part III: phase separation in mixed gels// Carbohydrate Polymers. — 1993. — 21 — PP. 261−268.
  91. Kasapis S., Morris E.R., Norton I.T., Clark A. H. Phase equilibria and gelation in gelatin/maltodextrin systems Part IV: Composition-dependence of mixed-gel moduli// Carbohydrate Polymers. — 1993. — 21 — PP. 269−276.
  92. Dickinson E. Hydrocolloids at interfaces and influence on the properties of dispersed systems. // Food Hydrocolloids. 2003. — 17 — PP. 25−39.
  93. McClements D.J. // Food emulsions: Principles, practice and techniques. -1999.-PP. 124−147
  94. Godet M.C., Bizot H., Buleon A. Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths // Carbohydr. Polym. -1995.-27- P. 47−52.
  95. Biliaderis C. G., Page C. M./Slade L., Sirett R. R. Thermal behavior of amylose-lipid complexes. // Carbohydr. Polym. 1985. — 5(5) — P. 367−389.
  96. Eliasson A.-C., Krog N. J. Physical properties of amylose-monoglyceride complexes // Cereal Sci. 1985. — 3 -P. 239−248.
  97. Godet M. C., Buleon A., Tran V., Colonna P. Structural features of fatty acid-amylose complexes //Carbohydr. Polym. 1993. — 21(2−3) — P. 91−95.
  98. Godet M. C., Tran V., Delage M. M., Buleon A. Molecular modelling of the specific interactions involved in the amylose complexation by fatty acids // Int.J. Biol. Macromol. 1993. — 15 — P. 11−16.
  99. Tufvesson F., Eliasson A.-C. Formation and crystallization of amylose-monoglyceride complex in a starch matrix // Carbohydr. Polym. 2000. — 43 (4) -P.359−365.
  100. Wangsakan A., Chinachoti P. and McClements D.J. Maltodextrin. Anionic Surfactant Interactions: Isothermal Titration Calorimetry and Surface Tension Study. // J. Agric. Food Chem. 2001. — 49 — PP. 5039−5045.
  101. E., Autio K., & Eliasson A-Ch. The Effect of sodium dodecylsulfate on gelatinization and gelation properties of wheat and potato starches//Food Hydrocolloids. 1998. — 12 — PP. 151−158.
  102. Eliasson A.-C. On effects of surface active agents on the gelatinization of starch a calorimetric investigation.//Carbohydr. Polym. — 1986. — 6 — P. 463−476.
  103. Eliasson A.-C. Interactions between starch and lipids studied by DSC.// Thermochem. Acta. 1994. — 246 — PP. 343−356.
  104. Eerlingen R. C., Cillen, G., Delcour J. A. Enzyme-resistant starch. IV. Effect of endogenous lipids and added sodium dodecyl sulfate on formation of resistant starch // Cereal Chem. 1994. — 71 (2) -PP. 170−177.
  105. Eliasson A.-C. Lipid-Carbohydrate Interactions.// Inlnteractions: The Keys to Cereal Quality- Hamer R. J., Hoseney R. C., Eds.- American Association of Cereal Chemists: St. Paul, MN. 1998. — p. 47−79.
  106. Baines Z. V., Morris E. R. Suppression of Perceived Flavor and Taste by Hydrocolloids.// In Food Colloids- Bee R. D., Richmond P., Mingins J., Eds.- Royal Society of Chemistry: Cambridge, UK. 1989. — p. 184.
  107. Bakker J. Flavor Interactions with the Food Matrix and their Effects on Perception. //In Ingredient Interactions: Effects on Food Quality- Gaonkar A. G., Ed.- Marcel Dekker: New York. 1995.
  108. Gaonkar A. G. Ingredient Interactions: Effects on FoodQuality// Marcel Dekker: New York. 1995.
  109. Soini H., Stefansson M., Riekkola M., Novotny M. V. Maltooligosaccharides as chiral selectors for the separation of pharmaceuticals by capillary electrophoresis //Anal. Chem. 1994. — 66 (20) — PP. 3477−3484.
  110. B., Lindman B., Holmberg K., Kronberg B. //Surfactants and Polymers in Aqueous Solution- John Wiley and Sons: Chichester, U.K. 1998.
  111. Shirahama K., Nagao S. Binding of tetradecylpyridinium bromide to polyvinyl alcohol) with various degrees of acetylation //Colloids Surf. 1992. -66 (4)-PP. 275−279.
  112. Laughlin R. G. The characteristic features of surfactant phase behavior // In The aqueous phase behavior of surfactants- Ottewill R. H., Rowell R. L., Eds.- Academic Press: San Diego CA. 1994. — PP. 106−116.
  113. Shirahama K. The nature of polymer-surfactant interactions // In Polymer-Surfactant Systems. -1998. Vol. 77 — Chapter 4. — PP.143−191.
  114. Goddard E. D. Polymer-surfactant interactions //In Interactions of Surfactants with Polymers and Proteins. -1993. Chapter 4. — PP. 123−169.
  115. Palepu R.- Reinsboraugh V. C. Surfactant-cyclodextrin interactions by conductance measurements // Can. J. Chem. 1988. — 66 (2) — PP. 325−328.
  116. Sundari C. S.- Balsubramanian D. Hydrophobic surfaces in oligosaccharides: Linear dextrins are amphiphilic chains// Biochim. Biophys. Acta. 1991. — 1065 -PP. 35−41.
  117. Biswas S. C.- Chattoraj D. K. Polysaccharide-surfactant interaction. 2. Binding of cationic surfactants to carboxymethyl cellulose and dextrin //Langmuir.1997.- 13 (17)-PP. 4512−4519.
  118. Wang G.- Olofsson G. J. Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution // Phys. Chem. B.1998.- 102(46)-PP. 9276−9283.
  119. Goddard E. D. Polymer-surfactant interaction part II. Polymer and surfactant of opposite charge//Colloids Surf. 1986. — 19 (2−3) — PP. 301−329.
  120. Breuer M. M.- Robb, I. D. Interactions between macromolecules and detergents // Chem. Ind. 1972. — 13 — PP. 530−535.
  121. Schwuger M. J. J. Mechanism of interaction between ionic surfactants and polyglycol ethers in water// Journal of Colloid And Interface Science. 1973. — 43 (2)-pp. 491−498.
  122. Moroi Y.- Akisada H.- Saito M.- Matuura R. J. Interaction between ionic surfactants and polyethylene oxide in relation to mixed micelle formation in aqueous solution // Colloid Interface Sci. 1977. — 61 (2) — PP. 233−238.
  123. Kresheck G. C.- HargravessW.A. Enthalpy titration studies of the binding of surfactants to polyvinylpyrrolidonel//J. Colloid Interface Sci. 1981. — 83(1) — PP. 1−10.
  124. Saito S.- Yukawa M. J. Interactions of polymers and cationic surfactants with thiocyanate as counterions // Colloid Interface Sci. 1969. — 30 — P. 211.
  125. Goddard, E. D. Polymer-surfactant interaction Part I. uncharged water-soluble polymers and charged surfactants//Colloids Surf. 1986. — 19 (2−3) — P. 255−300.
  126. Svensson E., Autio K., Eliasson A-C. The effect of sodium dodecylsulfate on gelatinization and gelation properties of wheat and potato starches. // Food Hydrocolloids. 1998. — 12-PP. 151−158.
  127. M. G. & Gauthier-Jaques A. Effect of amylose on ovalbumin surface activity at the air/water interface in the ternary system: amylase + ovalbumin + sodium caprate// Food Hydrocolloids. 1997. — 11 — P. 79−86.
  128. Lundqvist H., Eliasson A-C., Olofsson G. Binding of hexadecyltrimethilammonium to starch polysaccharides. Part I. Surface tension measurements. // Carbohydrate Polymers. 2002. — 49 — PP. 43−55.
  129. Franch A.D. and Murphy V.G. Computer modelling in the study of starch// Cereal Foods World. 1977. — 22 — PP. 61−70
  130. Svensson E., Gudmundsson M., Eliasson A-C. Binding of sodium dodecylsulphate to starch polysaccharides quantified by surface tension measurements. // Colloids and Surfaces B: Biointerfaces 6. 1996. — PP. 227−233.
  131. Krog, N., Olesen, S.K., T0rna3s, H. and Jonsson. T. starch gels.// Journal of Agricultural Food Chemistry. -1991. 39
  132. Biliaderis, C.G. and Tonogai, J.R. Influence of lipids on the thermal and mechanical properties of concentrated // Journal of Agricultural and Food Chemistry. 1991.- 39 (5) — pp. 833−840.
  133. Brates L.V. and White P.J. Interactions of amylopectin with monoglycerides in model systems.// Journal of the American Oil Chemistry Society. 1986. — 63 — P. 1537−1540.
  134. Eliasson A.-C. and Ljunger G. Interactions between amylopectin and lipid additives during retrogradation in a model system// Journal of the Science of Food and Agriculture. 1988. — 44 — P. 353−361.
  135. Kugimiya M., Donovan J.W. and Wong R.Y. Phase transitions of amylose-lipid complexes in starches: a colorimetric study. // Starch/Sta'rke. 1980. — 32 -P. 265−270.
  136. Differences in amylose aggregation and starch gel formation with emulsifiers Richardson G., Kidman S., Langton M., Hermansson A-M. // Carbohydrate Polymers. 2004. — 58 — PP. 7−13.
  137. Mira I., Persson K., Claesson P.M., Varga I. Interactions between surfactants and starch: from starch granules to amylose solutions. Doctoral thesis. — 2006
  138. Krog N., Olesen S.K., T0rn? es H. and Jonsson T. Retrogradation of the starch fraction in wheat bread. 833−840.
  139. Lagendijk J. and Pennings H.J. Relation between complex formation of starch with monoglycerides and the firmness of bread.// Cereal Science Today 1970. -15-P. 354−356
  140. Russell P.L. A kinetic study of bread staling studied by differential scanning calorimetry and compressibility measurements. The effect of added monoglycerides.// Journal of Cereal Science. 1983. — 1 — P. 297−303.
  141. Dokic P.P., Dokic L.P., Sovilj V.J. and Katona J.M. Influence of maltodextrins dextrose equivalent value on rheological and dispersion properties of sunflower oil water emulsions. // APTEFF. 2004. — 35 — PP. 1−280.
  142. Wangsakan A., Chinachoti P., McClements D.J. Isothermal titration calorimetry study of the influence of temperature, pH and salt on maltodextrin -anionic surfactant interactions.//Food Hydrocolloids. 2006. — 20(4) — PP. 461- 467.
  143. Tolstoguzov V. Functional properties of food proteins and role of protein polysaccharide interaction. // Food Hydrocolloids. -1991. 4 — PP. 429−468.
  144. Dickinson, E. Protein-polysaccharide interactions. In Food Colloids and Polymers: stability and mechanical properties- Dickinson E., & Walstra P., (Eds.). Cambridge: The Royal Society of Chemistry. — 1993. — PP. 77−93
  145. E. & McClements, D.J. Advances in Food Colloids. Glasgow: Blackie. — 1995.-PP. 81−101.
  146. Ledward D.A. Protein-Polysaccharide Interactions. In Protein Functionality in Food Systems- Hettiarachchy N.S. and Ziegler G.R., (Eds.). New York: Marcel Dekker. — 1994. — PP. 225−259.
  147. Tolstoguzov V. Structure property relationships in Foods. In Macromolecular Interactions in Food Technology- Parris N., Kato A., Creamer L. K. and Pearce J.,(Eds.). — Washington DC: American Chemical Society. — 1996. — PP. 2−14.
  148. Dickinson E. Stability and rheological implications of electrostatic milk-protein-polysaccharide interactions// Trends in Food Science and Technology. -1998. 9-PP. 347−354.
  149. M. & Savilova L. The role of biopolymer structure in interactions between unlike biopolymers in aqueous medium // Food Hydrocolloids. 1998. -12-PP. 65−75.
  150. V.Ya., & Tolstoguzov V.B. Thermodynamic incompatibility of proteins and polysaccharides in solutions//Food Hydrocolloids. 1997. — 11 — PP. 145−158.
  151. V.l., Grinberg V.Ya., & Tolstoguzov V.B. Application of phase diagram of water-casein-soybean globulin system// Polymer Bulletin. 1980. — 2 -P. 757−760.
  152. L., Semenova M., & Tsapkina, E. Thermodynamic properties of the IIS globulin of Vicia faba-ovalbumin-aqueous solvent system: phase behaviour and light scattering//Food Hydrocolloids. 1997.- 11 — P. 327−337.
  153. M., Pavlovskaya G., & Tolstoguzov V. Light scattering and thermodynamic phase behaviour of the system IIS globulin- k-carrageenan-water// Food Hydrocolloids. 1991. — 4 — PP. 469−479.
  154. Dickinson E. Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions// The Royal Society of Chemistry. -2008. 4- P. 932−942.
  155. Tolstoguzov V. Thermodynamic considerations of starch functionality in foods// Carbohydrate Polymer. 2003. — 51 — P. 99−111.
  156. Beijerinck M. W. Ueber eine eigentu’mlichkeit der lo’slichen starke. Centraiblatt fu’r Bakteriologie// Parasitenkunde und Infektionskrankheiten. -1896.-2-P. 697−699.
  157. Ostwald Wo., Hertel R. H. Kolloidchemische reaktionen zwischen solen von eiweissko’rpern und polymeren kohlehydraten.// Kolloid Zeitschrift. 1929. — 47- P. 258−268. See also pp. 357−370.
  158. L.I., Lashek N.A., Ptitchkina N.M. & Morri E.R. Temperature-composition phase diagram and gelproperties of the gelatin-starch-water system//Carbohydrate Polymers 2E. 1995. — P. 341−345.
  159. Alevisopoulos S., Kasapis S., Abeysekera R., Formation of kinetically trapped gels in the maltodextrin-gelatin system. // Carbohydrate Research. 1996. — 293 -PP. 79−99.
  160. Noisuwana A., Bronlimdb J., Wilkinsona B., Hemarc Y. Effect of milk protein products on the rheological and thermal (DSC) properties of normal rice starch and waxy rice starch//Food Hydrocolloids. 2008. — 22 — P. 174−183.
  161. Oha H.E., Anema S.G., Pinder D.N., Wonga M. Rapid Communication Effects of different components in skim milk on high-pressure-induced gelatinisation of waxy rice starch and normal rice starch//Food Chemistry. 2008. — xxx-xxx.
  162. Fitzsimons S.M., Mulvihill D.M., Morris E.R. Co-gels of whey protein isolate with crosslinked waxy maize starch: Analysis of solvent partition and phase structure by polymer blending laws//Food Hydrocolloids. 2008. — 22 — P. 468.
  163. Ravindra P., Genovese D.B., Foegeding E.A., Rao M.A. Rheology of heated mixed whey protein isolate/cross-linked waxy maize starch dispersions//Food Hydrocolloids. 2004. — 18 — P. 775−781.
  164. Manoj P., Kasapis S., Chronakis Gelation and phase separation in maltodexstrin Caseinate systems.//food Hydroccoloids. — 1996. — 10(4) — PP. 407−420.
  165. Nunes M.C., Raymundo A., Sousa I. Rheological behaviour and microstructure of pea protein/k-carrageenan/starch gels with different setting conditions//Food Hydrocolloids. 2006. — 20 — P. 106−113.
  166. Nunes M. C., Raymundo A., Sousa I. Gelled vegetable desserts containing pea protein, k-carrageenan and starch //Eur Food Res Technol. 2006. — 222 — P. 622−628.
  167. Zhang G., Hamaker B.R. A Three Component Interaction among Starch, Protein, and Free Fatty Acids Revealed by Pasting Profiles // J. Agric. Food Chem. 2003. — 51 — PP. 2797- 2800.
  168. Zhang G., Maladen M.D., Hamaker B.R. Detection of a Novel Three Component Complex Consisting of Starch, Protein, and Free Fatty Acids // J. Agric. Food Chem. 2003.- 51-PP. 2801−2805.
  169. Jie Liu, Lingchun Fei and Genyi Zhang. Iodine Binding Property of a Ternary Complex Consisting of Starch, Protein, and Free Fatty Acids // Carbohydrate Polymers. 2008. — xxx-xxx.
  170. G., Semenova M., Tsapkina E., & Tolstoguzov V. The influence of dextran on the interfacial pressure of adsorbing layers of 1 IS globulin vicia faba at the planar n-decane/aqueous solution interface// Food Hydrocolloids. -1993.-7-PP. 1−10.
  171. A.S., & Semenova M.G. Effect of neutral carbohydrate structure in the set glucose/sucrose/maltodextrin/dextran on protein surface activity at the air/water interface. // Food Hydrocolloids. 1997. — 11 — PP. 71−77.
  172. A.S. & Semenova M.G. Effect of neutral carbohydrate structure in the set glucose/sucrose/maltodextrin/dextran on protein surface activity at the air/water interface// Food Hydrocolloids. 1997 — 11 — PP. 71−77.
  173. A.S., & Semenova M.G. Effect of sucrose on the thermodynamic incompatibility of different biopolymers//Carbohydrate Polymers. 1995.- 28 -PP. 359−365.
  174. E. & Pawlowsky K. Effect of i-carrageenan on flocculation, creaming, and rheology of a protein-stabilized emulsion// Journal of Agricultural and Food Chemistry. 1997. — 45- PP. 3799−3806.
  175. E. & Semenova M.G. Emulsifying behaviour of protein in the presence of polysaccharide under conditions of thermodynamic incompatibility// Journal of the Chemical Society, Faraday Transactions. 1992. — 88 — PP. 849−854.
  176. E., Semenova M.G., Antipova A.S., & Pelan E. Effect of high-methoxy pectin on properties of casein-stabilized emulsions//Food Hydrocolloids. 1998.- 12-PP. 425−432.
  177. Dickinson, E. Proteins at interfaces and in emulsions. Stability, rheology and interactions//Journal of the Chemical Society, Faraday Transactions. 1998. — 94 -PP. 1657−1669.
  178. Shepherda R., Robertsonb F., Ofmanb D. Dairy glycoconjugate emulsifiers: casein-maltodextrins// Food Hydrocolloids. 2000. — 14 — PP. 281−286.
  179. Akhtar M., Dickinson E. Whey protein-maltodextrin conjugates as emulsifying agents: An alternative to gum Arabic. // Food Hydrocolloids. 2007. — 21 — PP. 607−616.
  180. Morris G.A., Sims I.M., Robertson 1 A.J., Furneaux R.H. Investigation into the physical and chemical properties of sodiumcaseinate-maltodextrin glyco-conjugates// Food Hydrocolloids. 2004. — 18 — PP. 1007−1014.
  181. Wooster T.J., Augustin M.A. The emulsion flocculation stability of protein-carbohydrate diblock copolymers. // Journal of Colloid and Interface Science. -2007.- 313-PP. 665−675.
  182. Dickinson E. An Introduction to Food Colloids. Oxford: Oxford University Press, 1992, ch. 2.
  183. Darling D. F., R.J. Birkett R.J. // in: E. Dickinson (Ed.), Food Emulsions and Foams, Royal Society of Chemistry, London. 1986. — P.l.
  184. N., Barfod N.M. // Interfacial properties of emulsifier/protein films related to food emulsions, AiChE, San Francisco. 86. — 1990. — P. 1.
  185. Dalgleish D. G. Adsorption of protein and the stability of emulsions// Trends in Food Science and Technology. 1997. — 8 — PP. 1−6.
  186. Semenova M. G. Proteins as functional components in colloidal foods// Current Opinion in Colloid and Interface Science. 1998. -3 (6) — PP. 627−632.
  187. Dickinson E. Enzymic crosslinking as a tool for food colloid rheology control and interfacial stabilization. // J. Dairy Sci. 80 — 1997. — PP. 2607−2619.
  188. E., Semenova M.G., & Antipova A.S. Salt stability of casein emulsions// Food Hydrocolloids 1998. — 12 — PP. 227−235.
  189. Dickinson E. Structure, stability and rheology of flocculated emulsions// Current Opinion in Colloid and Interface Science. 1998. — 3 (6). — pp. 633−638.
  190. Vasilescu M., Angelescu D., Almgren M., Valstar A. Interactions of globular proteins with surfactants studied with fluorescence probe methods. // Langmuir. -15 1999.-PP. 2635−2643.
  191. Dickinson E., Woskett C. Competitive adsorbtion between proteins and small-molecule surfactants in food emulsions // In «Food Colloids» Ed. R.D. Bee, P. Richmond and J. Mingins, R. Soc. Chem., London, UK. 1989 — PP. 74−96.
  192. Jones M.N., Manley P. Binding of n-alkyl sulphates to lysozyme in aqueous solution. // J. Chem. Soc. Faraday Trans. 1. 1979. — 75 — PP. 1736−1744.
  193. Jones M.N., Manley P. Interaction between lysozyme and n-alkyl sulphates in aqueous solution. // J. Chem. Soc., Faraday Trans. 1. 1980. — 76. — PP. 654−664.
  194. Jones M.N., Manley P. Relationship between proton and surfactant binding to lysozyme in aqueous solution. // J. Chem. Soc., Faraday Trans. 1. 1981. — 77. -PP. 827−835.
  195. Fukushima K., Murata Y., Nishikido N., Sugihara G., Tanaka M. The Binding of Sodium Dodecyl Sulfate to Lysozyme in Aqueous Solutions // Bull. Chem. Soc. Jpn., 1981, 54, PP. 3122−1327.
  196. Fukushima K., Murata Y., Sugihara G., Tanaka M. The Binding of Sodium Dodecyl Sulfate to Lysozyme in Aqueous Solutions. II. The Effect of Added NaCl // Bull. Chem. Soc. Jpn., 1982, 55, PP. 1376−1378.
  197. Mattice W.L., Riser J.M., Clark D.S. Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate // Biochemistry. -1976. 15(19) — PP. 4264−4272.
  198. Imoto T. Sumi S., Tsuru M., Yagishita K.// Agric. Biol. Chem. 1979, 43, P. 1809.
  199. Jones, M.N., Manley, P., Midgley, P.J.W. Adsorption maxima in a protein surfactant solution. // J. Colloid Sci. 1981. — 82(1) — PP. 257−259.
  200. Jones, M.N., Midgley, P.J. Light-scattering from detergent-complexed biological macromolecules. // Biochem. J. 1984. — 219 — PP. 875−881.
  201. M.N., Brass A. // In Food Polymers, Gels and Colloids- Dickinson E., Ed.- Royal Society of Chemistry: London, 1991- PP. 65−80.
  202. Y., Okawauchi M., Kawamura H., Sugihara G., Tanaka M. // In Surfactant in Solution- Mittal K.L., Bothorel P., Eds.- Plenum Press: London. -1986.-5-p. 861.
  203. Tsuji E., Maeda H. Interaction of unfolded lysozyme with hexa (oxyethylene) dodecylether // Colloid Polym. Sci. 1992. — 270(9). — PP. 894−900.
  204. Sadhukhan B.K., Chattoraj D.K. Binding of cationic & anionic detergents to casein in presence and absence of milk fat. // Indian J. Biochem. Biophys. 1983. -20-PP. 66−73.
  205. D. & McClements D.J. Interactions of bovine serum albumin with ionic surfacatants in aqueous solutions// Food Hydrocolloids 2003. — 17- PP. 73−85.
  206. Oakes J. Protein-surfactant interactions. Nuclear magnetic resonance and binding isotherm studies of interactions between bovine serum albumin and sodium dodecyl sulphate // J. Chem. Soc. Faraday Trans. 1974. — 1 (70). — PP. 2200−2209.
  207. Gelamo E.L., Silva C.H.T.P., Imasato H., Tabak M. Interaction of bovine (BSA) and Human (HAS) serum albumins with ionic surfactants: spectroscopy and modeling. // Biochem. et Biophys. Acta. 1594 — 2002. — PP. 84−99.
  208. Sen M., Mitra, S.P., Chattoraj, D.K. Thermodynamics of binding cationic & anionic detergents to gelatin & gelatin-BSA mixture. // Indian J. Biochem. Biophys. 1980. -17. — PP. 405−413.
  209. Markovic-Housley Z., Garavito R.M. Effect of temperature and low pH on structure and stability of matrix porin in micellar detergent solutions // Biochim. Biophys. Acta. 1986. — 869 (2) — P. 158.
  210. Arora J.P.S., Singh S.P., Singhal V.K. pH-METRIC AND EQUILIBRIUM DIALYSIS STUDIES ON THE INTERACTION OF SURFACTANT CATIONS WITH TRANSFUSION GELATIN. // Tenside Detergents. 1984. — 21 — P. 197−199.
  211. Nishikido N., Takahara T., Kobayashi H., Tanaka M. INTERACTION BETWEEN HYDROPHILIC PROTEINS AND NONIONIC DETERGENTS STUDIED BY SURFACE TENSION MEASUREMENTS. //Bull. Chem. Soc. Jpn. 1982. — 55 — PP. 3085−3088.
  212. Sukow W.W.Binding of the triton X series of nonionic surfactants to bovine serum albumin //Biochemistry. -1980. 19 — PP. 912−917.
  213. Pappert G., Schubert D. The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents // Biochim. Biophys. Acta. 1983. — 730 — PP. 32−40.
  214. J.S. & Dickinson E. Viscoelastic Properties of Protein-Stabilized Emulsions: Effect of Protein-Surfactant Interactions//Journal of Agricultural and Food Chemistry. 1998.-46-PP. 91−97.
  215. S., Vinetsky Ye. & Relkin P. Formation and structural heat-stability of P- lactoglobulin/surfactant complexes// Colloids and Surfaces B: Biointerfaces. 1996.-6-PP. 353 -362.
  216. Jones M.N., Wilkinson A. The interaction between |3 lactoglobulin and sodium n dodecyl sulphate // Biochem. J. 1976. — 153 — PP. 713−718.
  217. Hegg P.O. Thermal stability of p-lactoglobulin as a function of pH and the relative concentration of sodium dodecylsulphate // Acta Agric. Scand. -1980. -30-PP. 401−404.
  218. Andreu J.M., De La Torre J., Carrascosa J.L. Interaction of tubulin with octyl glucoside and deoxycholate. 2. Protein conformation, binding of colchicine ligands, and microtubule assembly // Biochemistry. 1986. — 25 — PP. 5230.
  219. Sureshchandra B.R., Appu Rao A.G., Narasinga Rao M.S. // J. Agric. Food Chem., 1987, 35, P. 244−247.
  220. Donovan M., Mulvihill D.M. Effect of chemical modifications and sodium dedecyl sulphate binding on the thermostablity of whey proteins // Ir. J. Food Sci. Technol. 1987. — 11 — PP. 77−85.
  221. Yuno-Ohta N., Higasa T., Tatsumi E., Sakurai H., Asano R. Hirose M. Formation of Fatty Acid Salt-Induced Gel of Ovalbumin and the Mechanism for Gelation // J. Agric. Food Chem., 1998,46(11), PP. 4518−4523.
  222. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure // Proteins: Struct., Funct., Genet. -1989.-6(2)-PP. 87−103.
  223. Wasserman L.A., Semenova M.G. Effect of decane or sodium decanoate on the thermodynamics of globular protein solutions. // Food Hydrocolloids, 1997, Vol. 11, no. 3, PP. 319−326.
  224. Van Dulm P. and Norde W. The adsorption of human plasma albumin on solid surfaces, with special attention to the kinetic aspects // J. Colloid Interface Sci., 1983, 91, PP. 248−255.
  225. E., Stainsby G. // Colloids in Food. Applied Science. -1982.
  226. MacRitchie F., Owens N.F. Interfacial coagulation of proteins// J. Colloid Interface Sci. 1969. — 29(1) — PP. 66−71.
  227. Dickinson E. Proteins in solution and at interfaces // In Interactions of Surfactants with Polymers and Proteins. 1993. — PP. 295−317.
  228. Dickinson E., Matsumura Y. Proteins at liquid interfaces: Role of the molten globule state // Colloids Surf. B. 1994. — 3(1−2) — PP. 1−17.
  229. Hirose M. Molten globule state of food proteins // Trends Food Sci. Technol. 1993.-4(2)-PP. 48−51.
  230. Atkinson P J., Dickinson E., Home D.S., Richardson R.M. Neutron reflectivity of adsorbed f3-casein and f3-lactoglobulin at the air/water interface // J. Chem. Soc, Faraday Trans. 1995. — 91 (17) — PP. 2847−2854.
  231. D.S., Atkinson P.J., Dickinson E., Pinfield V.J., Richardson R.M. // In Proceedings of 5th Conference of Food Engineering. 1997 — P. 111.
  232. E. // An Introdaction to Food Colloids, Oxford Science Publications, Oxford 1992, ch. 6 — PP. 140−155.
  233. J.E., Whitehead D.M. // Proteins at Interfaces. American Chemical Society, 1987, ch. 2.
  234. Kato K., Sato Watanabe Y. Conformational Stability of Ovalbumin Reacted with Glucose in a Maillard Reaction. // Agricultural Biological Chemistry. 1983. -47-PP. 1925−1926.
  235. S., Siis W., Tuchtenhagen J. & Blume, A. Thermodynamics of Micelle formation as a function of temperature: a high sensitivity titration calorimetry study. // Journal of Physical Chemistry. -1995. 99 — PP. 11 742 -11 751.
  236. W.P. // Catalysis and Chemistry in Enzymology, McGraw-Hill New York, 1969.
  237. Dickinson E. Mixed proteinaceous emulsifiers: review of competitive protein adsorption and relationship to food colloids stabilization. // Food Hydrocolloids, vol.1,no. 1.- 1986.-PP. 3−23.
  238. Leaver J., Home D.S., Law A.J.R. Interactions of proteins and surfactants at oil-water interfaces: influence of a variety of physical parameters on the behavior of milk proteins. // International Dairy Journal. 1999. — 9 — PP. 319−322.
  239. Dickinson E. at al. // Progress in Colloid and Polymer Science. 1990. — 82 -PP. 65−72.
  240. Dickinson E. Murray B.S., Stainsby G. Coalescence kinetics of protein stabilized emulsion droplets // Gums and stabilizers for the food industry. 1988. — 4 — PP. 463−472.
  241. Courthaudon J-L., Dickinson E., Christie W.W. Competitive adsorption of lecithin and (3-casein in oil in water emulsions // Journal of Agriculture and Food Chemistry. 1991. — 39 — PP. 1365−1368.
  242. Goff H.D., Liboff M., Jordan W.K., Kinsella J. E The effects of polysorbate 80 on the fat emulsion in ice cream mix: Evidence from transmission electron microscopy studies // Food Microstructure. 1987. — 6 — P. 193.
  243. Goff H.D., Jordan W.K. Action of emulsifiers in promoting fat destabilization during the manufacture of ice cream // J. Dairy Sci. 1989. — 72, (1) — PP. 18−29.
  244. Barfod N.M., Krog N., Larsen G., Buchheim W. Effects of emulsifiers on protein-fat interaction in ice cream mix during aging I: Quantitative analyses // Fat Sci. Technol. 1991. — 93 (1) — PP. 24−29.
  245. Gelin J-L., Poyen L., Courthaudon J.L., Le Meste M., Lorient D. Structural changes in oil-in-water emulsions during the manufacture of ice cream // Food Hydrocolloids. 1994. — 8 — PP. 299−308.
  246. Goff H.D. Instability and Partial Coalescence in Whipable Dairy Emulsions. // J. Dairy Sci. 80 (10) — 1997. — PP. 2620−2630.
  247. Pelan B.M.C., Watts K.M., Campbell I.J., Lips A. The Stability of Aerated Milk Protein Emulsions in the Presence of Small Molecule Surfactants. // J. Dairy Sci. 80 (10) — 1997. — PP. 2631−2638.
  248. Murray B.S., Cros L. Adsorption of p-lactoglobulin and P-casein to metal surfaces and their removal by a non-ionic surfactant, as monitored via a quartz crystal microbalance// Colloids and Surfaces B: Biointerfaces 1998 10 (4), pp. 227−241.
  249. Murray B.S., Dickinson E. Interfacial rheology and the dynamic properties of adsorbed films of food proteins and surfactants // Food Sci. Technol. Int. 1996. -2(3)-PP. 131−145.
  250. Roth S., Murray B.S., Dickinson E. Interfacial Shear Rheology of Aged and Heat-Treated p-Lactoglobulin Films: Displacement by Nonionic Surfactant // J. Agric. Food Chem. 2000, 48, PP. 1491−1497.
  251. E. & McClements, D.J. // Advances in Food Colloids. Glasgow: Blackie.- 1995.-PP. 81−101.
  252. Goff H. Colloidal aspects of ice cream -a review//International Dairy Journal. 1997.-7-PP. 363−373.
  253. Dickinson E., Tanai S. Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants. // Food Hydrocolloids. 1992. — 6 -PP. 163−17.
  254. Courthaudon J-L., Dickinson E., Dalgleish D. G. Competitive adsorption of p-lactoglobulin + tween 20 at the oil-water interface. // Colloids and Surfaces. 56 -1991.-PP. 293−300.
  255. Euston S.R., Fiimigan S.R., Hirst R.L. Aggregation kinetics of heated whey protein-stabilised emulsions: effect of low-molecular weight emulsifiers. // Food Hydrocolloids. 2001. — 15 — PP. 253−262.
  256. Dickinson E., Iveson G., Tanai S. Competitive adsorption in protein-stabilized emulsions containing oil-soluble and water-soluble surfactants // Food Colloids and Polymers: Stability and Mechanical Properties. 1993. — pp. 312−322.
  257. Euston S.R. Emulsifiers in dairy products and dairy substitutes// In G.L. Hasenheuttl & R.W. Hartel, Food emulsifiers and their applications. 1997. — PP. 173−210.
  258. Krog N. Thermodynamics of interfacial films in food emulsions// In Microemulsions and Emlsions in Foods- El Nokaly, M., Cornell, D.G., Eds.- ACS Symposium Series 448- American Chemical Society: Washington, DC, 1991- PP. 138−145.
  259. Turro N.J., Lei X.-G., Ananthapadmanabhan K.P., Aronson M. Spectroscopic probe analysis of protein-surfactant interactions: The BSA/SDS system // Langmuir. 1995. — 11 — PP. 2525−2533.
  260. D.G. // In J. Sjoblom (Ed.), Emulsions and emulsion stability. New York: Marcel Dekker, 1996.
  261. Monahan F.J. McClements D.J., German J.B. Disulfide-mediated polymerization reactions and physical properties of heated WPI-stabilized emulsions // Journal of Food Science. 1996. — 61 — PP. 504−510.
  262. Dickinson E., Ritzoltus C. Creaming and rheology of oil-in-water emulsions containing sodium dodecyl sulfate and sodium caseinate // Journal of Colloid and Interface Science. 2000. — 224 — PP. 148−154.
  263. Lefebvre-Cases E. Gastaldi E., Tarodo De La Fuente B. Influence of chemical agents on interactions in dairy products: Effect of SDS on casein micelles // Colloids Surf. B 11, 1998, PP. 281−285.
  264. J., Nino R. & Gomez J. Interfacial and foaming characteristics of protein-lipid systems// Food Hydrocolloids. 1997. — 11 — PP. 49−58.
  265. S., Schorsch C., Valentini C. & Vaslin S. Foam stability and interfacial properties of milk protein-surfactant systems//Food Hydrocolloids. -2005. -19 -PP. 467−478.
  266. Patino J.M.R. & Nino M. R.R. Interfacial characteristics of food emulsifiers (proteins and lipids) at the air-water interface//Colloids and Surfaces: B. 1999. -15-PP. 235−252.
  267. Sarker D.K. Wilde P.J., Clark D.C. Competitive adsorption of L-a-lysophosphatidylcholine/?-lactoglobulin mixtures at the interfaces of foams and foam lamellae // Colloids Surf. B, 1995a, 3, PP. 349−356.
  268. Sarker D.K., Wilde P.J., Clark D.C. Control of Surfactant-Induced Destabilization of Foams through Polyphenol-Mediated Protein-Protein Interactions // J. Agric. Food Chem., 1995,43(2), P. 295−300.
  269. Prins A. Principles of foam stability// Advances in Food Emulsions and Foams.- 1988. -P. 91−122.
  270. Clark D.C. Wilde P.J., Bergink-Martens D.J.M., Kokelaar A.J.J., Prins A. Surface dilational behaviour of aqueous solutions of ?-lactoglobulin and Tween 20 // In Food Colloids and Polymers: Stability and Mechanical Properties. 1993. — PP. 354−364.
  271. Papiz M.Z. Sawyer L., Eliopoulos E.E. The structure of ?-lactoglubulin and its similarity to plasma retinol-binding protein// Nature. 1986. — 324(6095) — P. 383.
  272. Sarker D.K., Wildw P.J., Clark D.C. Competitive adsorption of L-a-lysophosphatidylcholine/?-lactoglobulin mixture at the interfaces of foams and foam lamellae. // Colloids Surf. B. 1995. — 3 — P. 349.
  273. A.S., Semenova M.G., Belyakova L.E. & Il’in M.M. On relationships between molecular structure, interaction and surface behavior in mixture: small -molecule surfactant + protein // Colloids and Surfaces B: Biointerfaces.- 2001.-21-PP. 217−230.
  274. F. & Salahuddin A. Reversible unfolding of the major fraction of ovalbumin by guanidine hydrochloride//Biochemistry. 1976. — 15 — PP. 51 685 175.
  275. E., Wrigh D. J., & Boulter D. Legumin and vicilin, storage proteins of legume seeds. A review// Phitochemistry. 1976.- 15- PP. 3−24.
  276. JI.A. ΠžΠ²ΠΎΡ‰Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ ΠΈ ΠΈΡ… Π±ΠΈΠΎΡΠΈΠ½Ρ‚Π΅Π·. Под Ρ€Π΅Π΄. ΠšΡ€Π΅Ρ‚ΠΎΠ²ΠΈΡ‡Π° Π’. JI. -Москва: Наука. 1975. — Π‘. 142−152.
  277. Schwenke K.D. Reflections about the functional potential of legume proteins. A review. A review // Nahrung. 2001. — 45(6) — P. 377−381.
  278. H.D. & Grosch W. Legumin. In Food Chemistry Berlin: SpringerVerlag. — 1987. — ch. 4 — PP. 245−546.
  279. S. & Kinsella J.E. Interaction of carbonyls with soy protein: thermodynamic effects. // Journal of Agricultural and Food Chemistry. 1981. -29-PP. 1249−1253.
  280. J.P. & Land D.G. Binding of diacetil by pea proteins// Journal of Agricultural and Food Chemistry. 1986. — 34. — PP. 1041−1045.
  281. Semenova M.G., Antipova A.S., Misharina T.A., Golovnya R.V. Binding of an aroma compounds with legumin. I. Binding of hexyl acetate with IIS globulin in an aqueous medium depending on the protein structure//Food Hydrocolloids.-2002.- 16-PP. 557−564.
  282. M.H. 11 United States Department of Commerce, Natioal Bureau of Standards, University of Wisconsin School of Pharmacy, Madison, WI 53 706 and Karol J. Mysels, R.J. Reynold Tobacco Co. // Winston-Salem, NC 27 102, Part 6, PP. 170.
  283. Krog N. Food emulsifiers and their chemical and physical properties. In Food Emulsions- Friberg S.E. and Larsson K. (Eds.). New York: Marcel Dekker. -1997.-ch. 4-PP. 141−187.
  284. M., Gilles K.M., Hamilton J.K., Rebers P.A. & Smith F. Colorimetric method for determination of sugars and related substances// Analytical Chemistry. 1956.-28-PP. 350−356.
  285. P.L. & Khechinashvili N.N. A Thermodynamic Approach to the Problem of Stabilization of Globular Protein Structure: A Calorimetric Study. // Journal of Molecular Biology. 1974. — 86 — PP. 665 -684.
  286. Gaines G. L. Insoluble Monolayers at Liquid Gas Interfaces. — New York: Intersince, 1996.
  287. , Π§. Π₯имия ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Москва: «Π₯имия» — 1965.
  288. Burchard, W. Light scattering. In Physical Techniques for the Study of Food Biopolymers- S. B. Ross-Murphy (Ed.) Glasgow: Blackie. — 1994. -PP. 151 214.
  289. Evans J.M. Manipulation of light scattering data. In Light scattering from polymer solutions- Huglin M. B. (Ed.) London: Academic Press, 1972. — ch. 5 -PP. 89−164.
  290. P., & Sudelof L.O. Interactions in polymer solutions// Acta Pharmaceutica Suecica. 1986. -23 — P. 31−46.
  291. Home D.S. Light scattering studies of colloidal stability and gelation. In New Physico-Chemical Techniques for the Characterization of Complex Food Systems- Dickinson E. (Ed). Glasgow: Blackie. — 1995. — PP. 240−267.
  292. Rha C. & Pradipasena P. Viscosity of proteins. In Functional properties of food macromolecules- Mitchell J. R. and Ledward D. A. (Eds.) London-New-York: Elsevier applied science publishers. — 1985. — Ch. 2 — PP.79−120.
  293. , M., & Takahashi, A. Light scattering from polyelectrolyte solutions. In Light scattering from polymer solutions- Huglin M. B. (Ed.) -London: Academic press. 1972. — PP. 671−723.
  294. E. & Ogston A. An approach to the study of phase separation in ternary aqueous systems // Biochemistry Journal.- 1968.- 109 P. 569−576.
  295. Yang P.H., Rupley A. Protein-water interactions. Heat capacity of the lysozyme-water system. // Biochemistry. 1979. — 18(12) — PP. 2654−2661.
  296. Suurkuusk J. Specific heat measurements of lysozyme, chymotrypsinogen, and ovalbumin in aqueous solution and in solid state // Acta Chemica Scandinavica. -1974. B28 — PP. 409−417.
  297. I. & Debet M. Starch-biopolymer interactions a Review. // Food Review International. — 1997. — 13 — PP. 163−224.
  298. Nuessli J., Sigg B., Conde-Petit B. & Escher F. Characterization of amylose-flavour complexes by DSC and X-ray diffraction. // Food Hydrocolloids. -1997. -11-PP. 27−34.
  299. E., Kozlov M. M., Pinchuk I. & Lichtenberg D. Heat Evolution of Micelle Formation, Dependence of Enthalpy, and Heat Capacity on the Surfactant Chain Length and Head Group//Journal of Colloid and Interface Science. 2002. -246(2)-PP. 380−386.
  300. , Z. & Dekany, I. A thermometric titration study on the micelle formation of sodium decyl sulfate in water//Journal of Colloid and Interface Science. 2001. — 242 — PP. 214−219.
  301. Wang Y., Han B., Yan H. & Kwak, J.C.T. Microcalorimetry study of interaction between ionic surfactants and hydrophobically modified polymers in aqueous solutions// Langmuir. 1997. — 13 — PP. 3119−3123.
  302. Tolstoguzov V.B. Thermodynamic aspects of biopolymer functionality in biological systems, foods, and beverages//Critical Reviews in Biotechnology. -2002.-22-PP. 89−174.
  303. Privalov P.L. Stability of Proteins: Small Globular Proteins//Advances in Protein Chemistry. 1979. — 33 — PP. 167−241.
  304. W. & Privalov P.L. In Biochemical Thermodynamics- Jones M.N. (Ed.). Elsevier Scientific Publishing Co — 1979. — Ch.3 — PP. 75−115.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ