Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Генетическая система популяции во времени и пространстве

РефератПомощь в написанииУзнать стоимостьмоей работы

На примере колебания частоты меланизма в двух популяциях хомяков Украины хорошо заметно постепенное, неуклонное снижение частоты меланистов в одной из популяций на фоне сравнительно мелких флуктуации частот по сезонам. Интересно, что в другой популяции такого снижения не наблюдается. Аналогичная тенденция постепенного, длящегося десятки поколений, общего снижения частоты аллеля наблюдалась… Читать ещё >

Генетическая система популяции во времени и пространстве (реферат, курсовая, диплом, контрольная)

Можно выделить три главных типа колебаний частот генотипов (аллелей) в природных популяциях: 1) стабильность частот — отсутствие колебаний частоты аллелей во времени; 2) флуктуации частот — периодические или апериодические изменения частот вокруг среднего значения; 3) направленные изменения частот, которые, в свою очередь, могут быть постепенными (происходящими на протяжении десятков поколений) и резкими (происходящими либо на протяжении одного, либо нескольких поколений).

Известно несколько случаев сохранения стабильными частот генотипов на протяжении огромного промежутка времени нескольких десятков тысяч лет.

Именно такой масштаб сохранения стабильности по частотам полосатости раковин наземного моллюска Cepaea nemoralis был обнаружен в Южной Англии при сравнении ископаемой плейстоценовой и современной популяции. Сохранялось стабильным соотношение частот морф (олигогенный признак) строения жевательной поверхности коренных зубов степной пеструшки Lagurus lagurus в Зауралье на протяжении также, по-видимому, нескольких десятков тысяч поколений.

Известны примеры сохранения отдельными популяциями характерных частот признаков на протяжении десятков поколений. Так, например, обнаружено сохранение частот ряда особенностей рисунка на спине у прыткой ящерицы Lacerta agilis в одной из популяций на Северном Кавказе на протяжении 70 лет или 20 поколений. Сохранение характерных частот по ряду инверсий в хромосомах у D. pseudoobscura на протяжении более 70 поколений было обнаружено для некоторых популяций в Калифорнии Добржанским. Общая картина хромосомного полиморфизма в одной из природных популяций D. pseudoobscura не изменилась за 1939—1957 гг. — т. е. на протяжении более 200 поколений (Dobzhansky, 1957).

Гораздо чаще, чем стабильное состояние, наблюдается некоторая флуктуация частот разных аллелей.

Прекрасным примером такой флуктуации является случай с динамикой черной и красной морф двуточечной божьей коровки Adalia bipunctata. Аналогичную флуктуацию, связанную с сезонностью условий, показывает концентрация некоторых хромосомных инверсий в D. pseudoobscura в Калифорнии. Известны флуктуации частот мутаций и значительно большего масштаба — происходящие в разных популяциях дрозофилы с периодичностью в несколько лет.

По-видимому, такого рода флуктуации аллельных частот, достигающие порой статистически значимых величин, характерны для популяций всех видов.

Последний тип изменения частот генотипов в популяции—направленное изменение.

На примере колебания частоты меланизма в двух популяциях хомяков Украины хорошо заметно постепенное, неуклонное снижение частоты меланистов в одной из популяций на фоне сравнительно мелких флуктуации частот по сезонам. Интересно, что в другой популяции такого снижения не наблюдается. Аналогичная тенденция постепенного, длящегося десятки поколений, общего снижения частоты аллеля наблюдалась в популяции алой тигровой моли Panaxia dominula. И здесь общее несомненное изменение частоты аллеля происходит на фоне мелких флуктуации частот, наблюдаемых от одного поколения к другому.

Ф.Г. Добржанский (1943, 1948) в США, Дубинин и Тиняков (1946) в СССР обнаружили резкие сезонные изменения концентраций разных хромосомных инверсий в популяциях дрозофил: концентрация одних инверсий увеличивалась к осени, других — уменьшалась. Эти изменения происходили быстро — на протяжении жизни 1—2 поколений. Такие резкие изменения частот генотипов характерны не только для дрозофил.

Все примеры подобного рода позволяют сделать общий вывод: в любой природной популяции можно столкнуться с резкими или постепенными, многократными или едва заметными изменениями частот аллелей и генотипов, связанными с разными признаками фенотипа (морфологическими, физиологическими, поведенческими) как в пределах жизни одного или нескольких поколений, так и при сравнении очень многих поколений. При этом динамика генотипов может оказаться различной, а размах изменчивости генетического состава популяций год от года может быть не меньше, чем изменчивость разных популяций.

Возникает вопрос, в чем причина таких изменений? Во всех случаях, когда были проведены тщательные исследования, такие изменения генетической структуры популяции совпадали с каким-то изменением во внешней среде.

Изменение частот красной и черной форм божьей коровки было связано с разнонаправленным в разные сезоны естественным отбором, изменение частоты полосатых раковин Cepaea nemoralis в Сомерсете за 33 года совпало с заметным изменением растительности в тех популяциях, где такие изменения обнаружены. Адаптивной оказалась и сезонная динамика хромосомных инверсий у дрозофилы: носители разных инверсий обладали разной относительной жизнеспособностью при разной влажности и температуре и относительной частоте их в популяции.

Эксперименты в природе также подтверждают общие заключения о связи изменения частот аллелей с действием естественного отбора. В природную популяцию D. funebris на протяжении двух лет выпускались мухи с инверсиями во второй хромосоме. Концентрация инверсий в природной популяции до эксперимента составляла около 1% (0,70—0,92%) и не показывала направленных изменений по сезонам. Число инверсий в природной популяции после выпусков по 100 000 мух при этом резко изменялось. Несмотря на резкое искусственное увеличение частоты чуждого популяции генотипа, на протяжении трех поколений ее состав практически вернулся к исходному. Это произошло в результате жесткого естественного отбора, направленного против особей — носителей инверсий, менее жизнеспособных в данных условиях.

Теоретические расчеты и прямые эксперименты в лаборатории показывают, что при постоянном давлении отбора его эффективность (т.е. приращение частоты аллеля за поколение) — зависит также и от самой частоты аллеля; при очень малой и очень высокой частотах изменение аллеля в чреде поколений идет медленнее, чем при средних начальных частотах.

Несомненно, постоянно меняющихся условий существования как в крупном (на протяжении десятков, сотен и тысяч поколений), так и в более мелком масштабе (на протяжении жизни одного или нескольких поколений) достаточно, чтобы объяснить все наблюдаемые изменения в генетическом состоянии популяций во времени. Добавим к этому присущие каждой особи специфические особенности поведения (активного у животных, пассивного у растений), позволяющие использовать в пределах ареала популяции подходящие именно для данного генотипа микроусловия обитания.

По результатам сопоставления отдельных популяций можно сформулировать три «правила», касающиеся пространственной структуры популяций.

Правило 1. Все популяции различны по генетическому составу Это положение вытекает из уникальности аллелофонда каждой популяции.

Например, общеизвестны примеры генетических различий отдельных этнических групп человека, касающиеся частоты вариации состава крови, строения кожного покрова и зубов, многих сотен наследственных заболеваний и тому подобных комбинаций нескольких тысяч известных к настоящему времени для человека генетических признаков-маркёров генотипического состава популяции.

Правило 2. Уровень различий между популяциями по сравниваемым генам (локусам) не всегда прямо связан с пространственной удаленностью (хотя обычно близко расположенные популяции более сходны). Причин для несходства близко расположенных популяций может быть несколько: изоляция, резкое изменение условий существования (и, соответственно, векторов естественного отбора), наконец, история популяции.

Пример с особенностями частот аллелей окраски и структуры шерсти кошек Fells catus, распространение которых связано на многих островах Северной Атлантики, по-видимому, с деятельностью викингов, в Северной Америке — с франко-английским (в центре континента) и испанским (на юге) завоеваниями, в Азии — с Великим шелковым путем хорошо подтверждает последнее.

Подобные примеры все же являются исключениями. Они связаны обычно с прорывом естественных изоляционных барьеров с помощью (вольной или невольной) человека. В общем, географически удаленные популяции, будучи адаптированными к неизбежно очень различной среде, должны более существенно различаться друг от друга. Это было многократно подтверждено экспериментально на дрозофилах: географически удаленные популяции различались по наборам аллелей, меняющих экспрессию основных признаков {генам-модификаторам}, и эти различия увеличивались с увеличением расстояния между сравниваемыми популяциями.

В примере с кошками популяции оказываются связанными друг c другом потоками аллелей. При взаимном контакте рядом расположенных популяций происходит диффузия аллелей. Диффузия поддерживает целостность вида как генетической системы, обычно состоящей из множества популяций.

Правило 3. Аллелофонд системы популяций стабильнее аллелофондов отдельных популяций. Эта особенность крупных популяционных систем (естественного объединения многих близких популяций) известна в общей биологии еще со времен Хайнке (1898).

Возможно, что это правило можно сформулировать иначе: чем крупнее популяционная генетическая система, тем она устойчивее. Максимально устойчивой популяционной системой будет вид в целом.

Кроме перечисленных трех правил надо упомянуть об интересном вопросе различия в генетическом строении популяций в центре и на периферии ареала вида. Начиная с работ Н. И. Вавилова (1926), предполагается, что в периферических популяциях, расположенных на границе ареала вида, по-видимому, должна чаще наблюдаться гомозиготизация в основном в результате их сравнительно меньшей величины и большего размаха колебаний численности. Однако оказалось, что у одних видов дрозофил периферические популяции менее полиморфны, а у других — более полиморфны по инверсиям, чем центральные. Надо сказать, что меньшая полиморфность по хромосомным инверсиям означает обычно большую изменчивость, поскольку действие инверсий ограничивает кроссинговер и как бы «запирает» изменчивость определенных участков хромосом. Это подтверждается и прямыми экспериментами с мухами из периферийных популяций.

У ряда видов растений наибольший полиморфизм по числу хромосом (и, в частности, возникновение полиплоидных форм) часто оказывается связанным именно с периферией вида. В ряде работ показано, что дополнительные В-хромосомы у ряда видов сложноцветных {Hypocherua maculata, Trillium ovatum. Ranunculus ficaria) встречаются исключительно в наиболее благоприятных условиях произрастания, обычно в центре ареала, тогда как для других видов (Аllium schoenotasum, R. polyanthemus) такого же типа дополнительные хромосомы встречаются как раз в периферийных популяциях и крайне неблагоприятных условиях.

Вероятно, не всегда существует четкая связь генетических особенностей строения популяции с географией ареала: для генетической конституции вида важна не сама по себе географическая периферия ареала, а периферия в экологическом смысле — существование «на границе возможного». В таких экологически краевых популяциях должны быть нестабильные условия существования, сильное и резко меняющееся давление отбора.

Правило 4. Близкие признаки могут обнаруживать как сходную, так и различную картину распределения в пространстве. Это положение хорошо иллюстрируется географическим анализом инверсионного полиморфизма у дрозофил. Некоторые инверсии в одной и той же хромосоме могут формировать клинальную изменчивость в одном направлении, другие — в другом, а третьи — не обнаруживать каких-либо закономерностей в географическом распространении вообще.

Говоря от особенностях распространения отдельных аллелей и генотипов в пространстве, уместно упомянуть об интересном явлении «моды на мутации»: в далеко друг от друга находящихся популяциях дрозофил, изредка обнаруживается одновременное повышение частот обычно редких до того аллелей. В 30-е годы XX в. в ряде популяций Drosophila melanogaster в десятки и сотни раз возрастала концентрация мутаций аллелей «white» и «yellow». В 1968 г. обнаружилась «мода» на наследственные аномалии сегментов брюшка, а в 1973 г. началась вспышка мутабильности одного из аллелей сцепленного с полом локуса singed. Природа этого явления не ясна: высказанные предположения о влиянии какой-то инфекции (вируса?) или мутагенного действия контрастных колебаний внешних факторов, например температуры и влажности (Глотов, 1981), требуют проверки.

Правило 5. Все различия в генетическом составе популяций определяются в конце концов действием естественного отбора.

Это доказывается прямыми экспериментами. Например, описанными выше экспериментами по перемещению значительной части особей пенницы Philaenus spumarius из одной популяции в другую и быстром (на протяжении трех поколений) восстановлении исходных частот аллелей в каждой популяции. Или опытом с выпуском в природную популяцию многочисленных особей дрозофил с хромосомной инверсией. Генетический состав популяции и в этом случае быстро восстановился.

Показать весь текст
Заполнить форму текущей работой