Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Структурно-функциональный анализ среднего (М) домена фактора терминации трансляции eRF1 человека

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В данной работе впервые определена структура высокого разрешения в растворе М-домена eR. Fl человека и изучены его динамические свойства. С помощью методов ЯМР нами было исследовано взаимодействие М-домена eR. Fl с большой бОБ субъединицей рибосомы эукариот, установлена его специфичность и идентифицированы аминокислотные остатки М-домена, образующие возможный интерфейс такого взаимодействия… Читать ещё >

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • ВВЕДЕНИЕ
  • Глава 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Общая схема терминации трансляции
    • 1. 2. Факторы терминации трансляции первого класса
    • 1. 3. Факторы терминации трансляции первого класса
    • 1. 4. Декодирование стоп-кодона факторами терминации трансляции первого класса
    • 1. 5. Гидролиз пептидил-тРНК в пептидилтрансферазном центре
      • 1. 5. 1. Молекулярная анатомия пептидил-трансферазного центра
      • 1. 5. 2. Роль рРНК в реакции гидролиза пептидил-тРНК
      • 1. 5. 2. Роль факторов терминации трансляции первого класса в реакции гидролиза пептидил-тРНК
  • Глава 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ
    • 2. 1. Материалы
      • 2. 1. 1. Штаммы бактерий и плазмиды
      • 2. 1. 2. Среды
      • 2. 1. 3. Реактивы
      • 2. 1. 4. Ферменты
      • 2. 1. 5. Олигонуклеотиды
    • 2. 2. Методы исследований
      • 2. 2. 1. Выделение илазмидной ДНК из E. col
      • 2. 2. 2. Электрофорез ДНК в агарозном геле
      • 2. 2. 3. Расщепление ДНК эндонуклеазами рестрикции и реакция лигирования ДНК
      • 2. 2. 4. Трансформация Е. coli плазмидной ДНК
      • 2. 2. 5. Полимеразная цепная реакция (ПЦР)
      • 2. 2. 6. Сайт-направленный мутагенез методом «мегапраймера»
      • 2. 2. 7. Очистка фрагментов ДНК в легкоплавкой агарозе
      • 2. 2. 8. Сверхэкспрессия в Е. coli и выделение мутантных форм eRFl человека
      • 2. 2. 9. Сверхэкспрессия в Е. coli н выделение изолированного М- домена eRFl человека и его мутантной формы Gl83А, меченных стабильными изотопами bN и ПС
      • 2. 2. 10. Электрофорез белков в денатурирующем 12% ПААГ
      • 2. 2. 11. Измерение спектров ЯМР и их анализ
      • 2. 2. 12. Расчет структуры
      • 2. 2. 13. Анализ динамических свойств
      • 2. 2. 14. ЯМР-титрование субчастицами рибосом
      • 2. 2. 15. Определение активности eRFl
  • Глава 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Определение структуры М-домена eRF’l человека в растворе
      • 3. 1. 1. Отнесение сигналов атомов основной белковой цепи и боковых цепей аминокислотных остатков М-домена
      • 3. 1. 2. Определение вторичной и третичной структуры 58 М-домена eRF 1 человека
      • 3. 1. 3. Анализ структуры М-домена eRF 1 человека
      • 3. 1. 4. Влияние замены G183A в М-домене eRFl
      • 3. 1. 5. Геометрия петли GGQ
      • 3. 1. 6. Динамика основной цепи М-домена eRF
    • 3. 2. Изучение взаимодействия между М-доменом eRFl человека и рибосомами эукариот
      • 3. 2. 1. Определение способности М-домена eRFl человека специфично связываться с 60S субчастицами рибосом
      • 3. 2. 2. Аминокислотные остатки М-домена eRFl, формирующие интерфейс взаимодействия белка с 60S субъединицами рибосомы
      • 3. 2. 3. Влияние замены Gl83А на связывание М-домена eRFl человека с 60S субчастицами рибосом
    • 3. 3. Функциональная роль аминокислотных остатков минидомена
      • 3. 3. 1. Анализ первичной структуры минидомена ООС2 факторов терминации трансляции 1-го класса
      • 3. 3. 2. Связывание мутантных форм еШ^ с предтерминационным комплексом и их способность вызывать конформационные перестройки
      • 3. 3. 3. Анализ КБ-активности мутантных форм еШ7!
      • 3. 3. 4. Возможный механизм гидролиза пептидил-тРНК в 95 пептидилтрансферазном центре рибосомы эукариот
      • 3. 4. 3. аключение
  • ВЫВОДЫ БЛАГОДАРНОСТИ

Структурно-функциональный анализ среднего (М) домена фактора терминации трансляции eRF1 человека (реферат, курсовая, диплом, контрольная)

Механизм терминации трансляции, заключительной стадии биосинтеза полипептпдной цепи у эукариот, до настоящего времени остается во многом неизученным. Ключевую роль в узнавании стоп-кодона в А-участке малой субчастицы рибосомы эукариот, передаче сигнала в большую субчастицу, а также последующем гидролизе сложноэфирной связи в пептидил-тРНК играет белковый фактор терминации трансляции первого класса еКР1. Ранее методом рентгеновской кристаллографии было показано, что молекула еКР1 состоит из трех доменов: Ы-концевого, или Ы-домена, среднего, или М-домена, и С-концевого, или С-домена. И-домен ответственен за узнавание стоп-кодонов матричной РНК. С-домен взаимодействует с фактором терминации второго класса еИРЗ, за счет чего последний стимулирует активность еКБЧ. М-домен содержит высококонсервативный трипептидный фрагмент ОвС), необходимый для гидролиза пептидил-тРНК как в эукариотах, так и в прокариотах. Результаты структурных и биохимических исследований указывают на то, чго минидомен ввС) располагается в пептидилтрансферазном центре большой субчастицы рибосомы. Абсолютная консервативность ОвС)-мотива в факторах терминации первого класса всех живых организмов указывает на его исключительную роль в процессе терминации трансляции.

Полученная ранее структура eR. Fl в кристалле имеет относительно низкое разрешение, особенно в подвижных функционально важных участках, таких, как, например, петля, содержащая трипептид ОвС), или ОСС)-петля. Несмотря на интенсивные исследования в области терминации белкового синтеза, проведенные в последнее десятилетие, многие вопросы остаются невыясненными: каким образом происходит передача терминационного сигнала от малой субчастицы рибосомы к большой, как происходит гидролиз пептидил-тРНК и какую роль в нем играет М-домен еЯР 1? Для понимания механизма реакции терминации трансляции у эукариот необходимы дальнейшие углубленные исследования структуры, динамических свойств и функциональных особенностей отдельных доменов еИРЬ Поэтому исследования в данном направлении представляются актуальными.

Целями данной работы являлись определение структуры высокого разрешения М-домена eR. Fl человека в растворе, изучение его динамических свойств, связывания М-домена eR. Fl с рибосомой эукариот и определение функциональной роли минидомена СС (~) в механизме терминации трансляции. Для определения структуры М-домена eR. Fl нами был выбран метод спектроскопии ядерного магнитного резонанса (ЯМР), который в последние годы широко используется для определения структуры различных белковых молекул в растворе. Методы ЯМР позволяют также определить динамические свойства белка и исследовать его взаимодействие с другими биомолекулами. В задачи работы входило: 1) получение высокоочищенных препаратов М-домена еКР1 человека, меченных стабильными изотопами 13С и 2) получение меченого препарата мутантной формы М-домена еКР1 01у183А1а, неактивного в функциональных тестах- 3) измерение и последующий анализ гетероядерных 2Б и ЗЭ спектров ЯМР для расчета структуры М-домена и определения его динамических свойств- 4) изучение взаимодействия М-домена eR. Fl с рибосомами эукариот- 5) выполнение точечных замен аминокислотных остатков в ООС)-петле М-домена еИР1 методом сайт-направленного мутагенеза- 6) выделение, очистка и исследование функциональной активности полученных мутантных форм еИР1 человека.

В данной работе впервые определена структура высокого разрешения в растворе М-домена eR. Fl человека и изучены его динамические свойства. С помощью методов ЯМР нами было исследовано взаимодействие М-домена eR. Fl с большой бОБ субъединицей рибосомы эукариот, установлена его специфичность и идентифицированы аминокислотные остатки М-домена, образующие возможный интерфейс такого взаимодействия. В работе также было проведено изучение функционального вклада каждого из инвариантных и полуконсервативных аминокислотных остатков в составе минидомена ОвС). Полученные структурные и функциональные данные позволили впервые предложить модель механизма реакции гидролиза пептидил-тРНК в пептидил-трансферазном центре рибосомы, в которой еКР1 служит непосредственным катализатором.

Результаты представленной работы существенно углубляют понимание молекулярного механизма терминации белкового синтеза трансляции у эукариот, что имеет важное значение для детального изучения процесса синтеза белка в эукариотической клетке в целом.

ВЫВОДЫ.

1. Определена структура высокого разрешения изолированного среднего (М, middle) домена фактора терминации трансляции первого класса eRFl человека в растворе. Структура депонирована в Protein Databank под кодом 2HST. Структура М-домена в растворе имеет достоверные отличия от его кристаллической структуры в полноразмерном eRFl.

2. Обнаружена высокая скорость обмена амидных протонов с водой в петле 177−187 М-домена eRFl, содержащей GGQ-мотив. Мутация G183A не вызывает значительного изменения коиформации белка в целом, но приводит к существенному замедлению обмена амидных протонов в минидомене GGQ.

3. Петля 177−187 М-домена eRFl претерпевает быстрые движения в шкале времени от пс до не и медленные конформационные перегруппировки, протекающие в шкале времени от мс и выше. Петля 215−223 также характеризуется как быстрыми (не), так и относительно медленными (мс) движениями.

4. Установлено, что М-домен eRFl человека специфично связывается с 60S субъединицей рибосомы эукариот. Аминокислотные остатки белка, формирующие интерфейс взаимодействия с рибосомой, расположены преимущественно вдоль длинной спирали al М-домена. Два других кластера таких аминокислотных остатков располагаются в районе короткой спирали а2 (остатки 233−235) и на стыке спирали аЗ и листа [35 (остатки 250 и 251). Взаимодействие функционально неактивного мутанта G183A с 60S субчастицей рибосомы оказывается существенно более слабым по сравнению с белком дикого типа и интерфейс такого взаимодействия отличается от М-домена дикого типа.

5. Аминокислотные остатки Hisl80, Glnl85 и Serl86 в составе минидомена GGQ играют существенную роль в сохранении активности eRFl человека. Кроме того, подтверждены более ранние данные о критической роли остатков Gly 183 и Glyl84 в RF-активности. На связывание фактора с предтерминационным комплексом замены в перечисленных положениях не влияют.

6. Для связывания и способности eRFl вызывать конформационные перестройки необходимо сохранение положительного заряда в положениях Lysl78, Lysl79 и Argl89. Замены в данных положениях на нейтральные или отрицательно заряженные аминокислотные остатки вызывают значительное снижение компетентного связывания и, как следствие, нарушение функциональной активности eRFl.

7. Анализ полученных в работе данных позволил предложить модель механизма реакции гидролиза пептидил-тРНК в пептидилтрансферазном центре рибосомы эукариот, в которой eRF 1 функционирует как гидролаза.

БЛАГОДАРНОСТИ.

Я испытываю глубокую благодарность и искреннюю признательность моему учителю Льву Львовичу Киселеву за постоянное внимание к работе, неоценимую помощь в планировании и подготовке экспериментов, конструктивную критику, плодотворное обсуждение полученных результатов и моральную поддержку.

Я выражаю глубокую благодарность Владимиру Ивановичу Полыпакову, за постоянное внимание к работе и интеллектуальную поддержку.

Отдельная благодарность в адрес Елены Алкалаевой и Петра Колосова1 за неоценимую помощь в проведении экспериментальной работы, конструктивную критику и плодотворное обсуждение полученных результатов.

Я благодарю Полину Крючкову и Бориса Елисеева за конструктивную критику и дружескую поддержку.

Я благодарю всех сотрудников лаборатории, словом и делом помогавших проведению работы: Фролову Людмилу Юрьевну, Зиновьеву Ольгу Леонидовну, Сенченко Веру Николаевну, Дубовую Веру Ивановну, Машкову Тамару Дмитриевну, Нину Опарину, Екатерину Анедченко, Артема Кононенко, Елену Узлову, Анну Кудрявцеву, Юрия Мазура, Алексея Дмитриева и Григория Краснова.

Я благодарю Андрея Борисовича Полтарауса, Софью Малахо и Татьяну Родионову за проведение секвенирования всех образцов ДНК.

Я благодарна Анналпзе Пасторе и за поддержку и возможность эффективно работать в Национальном институте медицинских исследований (Лондон), Берри Бирдсалл за неоценимую помощь в записи спектров ЯМР, а также всему коллективу Molecular structure division за дружественную атмосферу, внимание к моей работе и плодотворное обсуждение полученных результатов.

3.4.3аключение.

Рассматривая в совокупности все полученные данные, можно придти к некоторым общим заключениям, касающимся взаимоотношений структуры и функции факторов терминации трансляции 1-го класса.

Полученная в данной работе структура высокого разрешения изолированного М-домена еЯР1 человека в растворе имеет ряд отличий от определенной ранее кристаллической структуры в составе полноразмериого еЯР1. Эти различия могут быть обусловлены как эффектами кристаллической упаковки и влияниехм на конформацию соседних доменов, так неточностью определения структуры в кристалле из-за ее недостаточного разрешения. Вне зависимости от причины такого различия, определение структуры М-домена еКР1 в растворе является важным этапом на пути к пониманию молекулярного механизма гидролиза пептидил-тРНК в рибосоме.

Обнаруженная высокая скорость обмена амидных протонов с водой в функционально важной вОС^-петле указывает на наличие координированной молекулы воды в этом участке. Конформация минидомена вОС) допускает возможность такой координации двумя глицинами мотива Свр. Замена в 183А, которая в функциональных исследованиях приводила к потере способности фактора вызывать гидролиз пептидил-тРНК, не нарушает конформацию М-домена, но приводит к значительному снижению скорости обмена амидных протонов с водой в СвС^-петле. Возможно, инактивация еКР1 при введении данной мутации объясняется именно потерей способности фактора координировать молекулу воды.

Сложное динамическое поведение СвС^-петли и находящейся на другой стороне длинной спирали а1 петли 215−223, которые претерпевают как быстрые (в пс-нс шкале времени), так и медленные (в мс шкале времени) движения, говорит об их возможном участии в передаче терминационного сигнала из А-сайта малой субчастицы в пептидилтрансферазный центр большой субчастицы рибосомы. В этом случае длинная спираль а1 играет роль медиатора, передающего сигнал с одной петли на другую.

Кроме того, аминокислотные остатки длинной спирали al, как было установлено в данной работе, формируют возможный интерфейс специфического связывания с 60S субчастицей рибосомы. Интересно, что при введении замены G183A, этот интерфейс меняется и связывание становится менее прочным.

Помимо двух глицинов в мотиве GGQ для сохранения активности eRFl необходимы входящие в состав GGQ-петли консервативные аминокислотные остатки His 180, Serl86 и Glnl85. Так как на связывание фактора с терминационным комплексом замены в перечисленных положениях не влияют, логично предположить, что функциональные группы этих аминокислотных остатков каким-то образом вовлечены в гидролиз пептидил-тРНК.

Полученные в данной работе структурные и функциональные данные позволили нам предложить модель молекулярного механизма гидролиза пептидил-тРНК в рибосоме, в которой аминокислотные остатки eRFl непосредственно вовлечены в катализ данной реакции. Безусловно, данная модель является гипотетической и для окончательного выяснения механизма гидролиза пептидил-тРНК необходимы дальнейшие исследования. Решающий прорыв в данной области буде г достигнут с получением структуры высокого разрешения комплексов эукариотических рибосом с eRFl имРНК.

Показать весь текст

Список литературы

  1. Alkalaeva, Е. Z., Pisarev, А. V., Frolova, L. Y., Kisselev, L. L., and Pestova, Т. V. (2006). In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRFl and eRF3. Cell 125, 1 125−1 136.
  2. Amort, M., Wotzel, В., Bakowska-Zywicka, K., Erlacher, M. D., Micura, R., and Polacek, N. (2007). An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Res 35, 5130−5 140.
  3. Arkov, A. L., and Murgola, J. (1999). Ribosomal RNAs in translation termination: facts and hypotheses. Biochemistry (Moscow) 64, 1354−1359.
  4. Baleja, J. D., Marmorstein, R., Harrison, S. C., and Wagner, G. (1992). Solution Structure Of The DNA-Binding Domain Of Cd2-Gal4 From Saccharomyces-Cerevisiae. Nature 356, 450−453.
  5. Ban, N., Nissen, P., Hansen, J., Moore, P. В., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905−920.
  6. Bax, A., and Grzesiek, S. (1993). Methodological Advances In Protein NMR. Acc Chem Res 26, 131−138.
  7. Bertram, G., Bell, H. A., Ritchie, D. W., Fullerton, G., and Stansfield, I. (2000). Terminating eukaryote translation: domain 1 of release factor eRFl functions in stop codon recognition. RNA 6, 1236−1247.
  8. Bertram, G., Bell, H.A., Ritchie, D.W., Fullerton, G. and Stansfield, I. (2000). Terminating eukaryote translation: domain 1 of release factor eRFl functions in stop-codon recognition. RNA 6, 1236−1247.
  9. Bieling, P., Beringer, M., Adio, S., and Rodnina, M. V. (2006). Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat Struct Mol Biol 13, 423−428.
  10. , H. C. (1983). A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100, 243−255.
  11. Bodenhausen, G., and Ruben, D. (1980). Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69, 185 189.
  12. Brinkmann, U., Mattes, R. E., and Buckel, P. (1989). High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85, 109−114.
  13. Brunelle, J. L., Youngman, E. M., Sharma, D., and Green, R. (2006). The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. Rna 12, 33−39.
  14. Caron, F., and Meyer, E. (1985). Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature 314, 185−188.
  15. Caskey, C. T., Beaudet, A. L., Scolnick, E. M., and Rosman, M. (1971). Hydrolysis of IMet-tRNA by peptidyl transferase. Proc Natl Acad Sci U S A 68, 3163−3167.
  16. Chapman, В., and Brown, С. (2004). Translation termination in Arabidopsis thaliana: characterisation of three versions of release factor 1. Gene 341,219−225.
  17. Chavatte, L., Frolova, L., Kisselev, L., and Favre, A. (2001). The polypeptide chain release factor eRFl specifically contacts the s (4)UGA stop codon located in the A site of eukaryotic ribosomes. Eur J Biochem 268, 2896−2904.
  18. Chavatte, L., Frolova, L., Laugaa, P., Kisselev, L., and Favre, A. (2003). Stop codons and UGG promote efficient binding of the polypeptide release factor eRFl to the ribosomal A site. J Mol Biol 331, 745−758.
  19. Chavatte, L., Seit-Nebi, A., Dubovaya, V., and Favre, A. (2002). The invariant uridine of stop codons contacts the conserved N1KSR loop of human eRFl in the ribosome. EMBO J 21, 5302−5311.
  20. Clore, G. M., Driscoll, P. C., Wingfield, P. Т., and Gronenborn, A. M. (1990a). Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 7387−7401.
  21. , M. L. (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709−713.
  22. Cornilescu, G., Delaglio, F., and Bax, A. (1999). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13, 289−302.
  23. Czaplinski, K., Majlesi, N., Banerjee, Т., and Peltz, S. W. (2000). Mttl is a Upfl-like helicase that interacts with the translation termination factors and whose overexpression can modulate termination efficiency. RNA 6, 730−743.
  24. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277−293.
  25. Dincbas-Renqvist, V., Engstrom, A., Mora, L., Heurgue-Hamard, V., Buckingham, R., and Ehrenberg, M. (2000). A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J 19, 6900−6907.
  26. Dodson, G., and Wlodawer, A. (1998). Catalytic triads and their relatives. Trends Biochem Sci 23, 347−352.
  27. Dosset, P., Hus, J. C., Blackledge, M., and Marion, D. (2000). Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16, 23−28.
  28. Eurwilaichitr, L., Graves, F. M., Stansfield, I., and Tuite, M. F. (1999). The C-terminus of eRFl defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 32, 485−496.
  29. Feinberg, J. S., and Joseph, S. (2006). A conserved base-pair between tRNA and 23 S rRNA in the peptidyl transferase center is important for peptide release. J Mol Biol 364, 1010−1020.
  30. Frcistroffer, D. V., Pavlov, M. Y., MacDougall, J., Buckingham, R. H., and Ehrenberg, M. (1997). Release factor RF3 in E. coli accelerates thedissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependant manner. EMBO J 16, 4126−4133.
  31. Frolova, L., Le Goff, X., Zhouravleva, G., Davydova, E., Philippe, M., and Kisselev, L. (1996). Eukaryotic polypeptide chain release factor eRF3 is an eRFl- and ribosome-dependenl guanosine triphosphatase. RNA 2, 334 341.
  32. Frolova, L., Seit-Nebi, A., and Kisselev, L. (2002). Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRFl. RNA 8, 129−136.
  33. Frolova, L. Y., Merkulova, T. I., and Kisselev, L. L. (2000). Translation termination in eukaryotes: polypeptide release factor eRFl is composed of functionally and structurally distinct domains. RNA 6, 381−390.
  34. Gao, H., Zhou, Z., Rawat, U., Huang, C., Bouakaz, L., Wang, C., Cheng, Z., Liu, Y., Zavialov, A., Gursky, R., et al. (2007). RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129, 929−941.
  35. Frolova, L., Le Goff, X., Zhouravleva, G., Davydova, E., Philippe, M., and Kisselev, L. (1996). Eukaryotic polypeptide chain release factor eRF3 is an eRFl- and ribosome-dependent guanosine triphosphatase. RNA 2, 334 341.
  36. Frolova, L., Seit-Nebi, A., and Kisselev, L. (2002). Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRFl. RNA 8, 129−136.
  37. Frolova, L. Y., Merkulova, T. I., and Kisselev, L. L. (2000). Translation termination in eukaryotes: polypeptide release factor eRFl is composed of functionally and structurally distinct domains. RNA 6, 381−390.
  38. Gao, H., Zhou, Z., Rawat, U., Huang, C., Boualcaz, L., Wang, C., Cheng, Z., Liu, Y., Zavialov, A., Gurslcy, R., et al. (2007). RF3 induces ribosomal conformational changes responsible for dissociation of class 1 release factors. Cell 129, 929−941.
  39. Goodall, J. J., Chen, G. J., and Page, M. G. (2004). Essential role of histidine 20 in the catalytic mechanism of Escherichia coli peptidyl-tRNA hydrolase. Biochemistry 43, 4583−4591.
  40. Graille, M., Chaillet, M., and van Tilbeurgh, H. (2008). Structure of yeast Dom34: a protein related to translation termination factor eRFl and involved in No-Go decay. J Biol Chem 283, 7145−7154.
  41. Green, R., and Noller, H. F. (1997). Ribosomes and translation. Annu Rev Biochem 66, 679−716.
  42. Grentzmann, G., Brechemier-Bacy, D., Heurgue, V., Mora, L., and Buckingham, R. H. (1994). Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci «USA 91, 5848−5852.
  43. Hansen, J. L., Ippolito, J. A., Ban, N., Nissen, P., Moore, P. B., and Steitz, T. A. (2002a). The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10, 117−128.
  44. Iiansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002b). Structural insights into peptide bond formation. Proc Natl Acad Sci USA 99, 11 670−11 675.
  45. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, PL, Franceschi, F., and Yonath, A. (2001). High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679−688.
  46. Hauryliuk, V., Zavialov, A., Kisselev, L., and Ehrenberg, M. (2006). Class-1 release factor eRFl promotes GTP binding by class-2 release factor eRF3. Biochimie 8S, 747−757.
  47. Heurgue-Hamard, V., Champ, S., Engstrom, A., Ehrenberg, M., and Buckingham, R. H. (2002). The hemK gene in Escherichia coli encodes the
  48. N (5)-glutamine methyltransferase that modifies peptide release factors. EMBO J 21, 769−778.
  49. Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J Mol Graph 14, 27−38.
  50. Inagaki, Y., Blouin, C., Doolittle, W. F., and Roger, A. J. (2002). Convergence and constraint in eulcaryotic release factor 1 (eRFl) domain 1: the evolution of stop codon specificity. Nucl Acids Res 30, 532−544.
  51. Inagaki, Y., and Doolittle, W. F. (2001). Class I release factors in ciliates with variant genetic codes. Nucl Acids Res 29, 921−927.
  52. Ito, K., Ebihara, IC, Uno, M., and Nakamura, Y. (1996). Conserved motifs in prokaryotic and eulcaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. ProcNatl Acad Sci USA 93, 5443−5448.
  53. Ito, K., Uno, M., and Nakamura, Y. (2000). A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature 403, 680−684.
  54. Ivanov, V., Beniaminov, A., Mikheev, A., and Minyat, E. (2001). A mechanism for stop eodon recognition by the ribosome: a bioinformatics approach. RNA 7, 1683−1692.
  55. , G. A. (1997). An introduction to hydrogen bonding (New York, Oxford, Oxford University Press).
  56. Karimi, R., Pavlov, M. Y., Buckingham, R. H., and Ehrenberg, M. (1999). Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3, 601−609.
  57. Kay, L. E., Torchia, D. A., and Bax, A. (1989). Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972−8979.
  58. Kim, D. F., and Green, R. (1999). Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell 4, 859−864.
  59. , L. (2002). Polypeptide release factors in prokaryotes and eulcaryotes: same function, different structure. Structure (Camb) 10, 8−9.
  60. Kisselev, L., Ehrenberg, M., and Frolova, L. (2003). Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J 22, 175−182.
  61. Kisselev, L. L., and Buckingham, R. H. (2000). Translational termination comes of age. Trends Biochem Sci 25, 561−566.
  62. Klaholz, B. P., Pape, T., Zavialov, A. V., Myasnikov, A. G., Orlova, E. V., Vestergaard, B., Ehrenberg, M., and van Heel, M. (2003). Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90−94.
  63. Kong, C., Ito, K., Walsh, M. A., Wada, M., Liu, Y., Kumar, S., Barford, D., Nakamura, Y., and Song, H. (2004). Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol Cell 14, 233−245.
  64. Koradi, R., Billeter, M., and Wuthrich, IC. (1996). MOLMOL: A program for display and analysis of macromolecular structures. J Mol Graph 14, 5155.
  65. Kushnirov, V. V., Ter-Avanesyan, M. D., Didichenko, S. A., Smirnov, V.
  66. N., Chernoff, Y. O., Derkach, I. L., Novikova, O. N., Inge-Vechtomov, S. G., Neistat, M. A., and Tolstorukov, II (1990). Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae. Yeast 6, 461−472.
  67. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477−486.
  68. Laurberg, M., Asahara, H., Korostelev, A., Zhu, J., Trakhanov, S., and Noller, H. F. (2008). Structural basis for translation termination on the 70S ribosome. Nature 454, 852−857.
  69. Le Goff, X., Philippe, M., and Jean-Jean, O. (1997). Overexpression of human release factor 1 alone has an antisuppressor effect in human cells. Mol Cell Biol 17, 3164−3172.
  70. Lekomtsev, S., Kolosov, P., Bidou, L., Frolova, L., Rousset, J. P., and Kisselev, L. (2007). Different modes of stop codon restriction by the Stylonychia and Paramecium eRFl translation termination factors. Proc Natl AcadSciUS A 104, 10 824−10 829.
  71. Lhoest, J., and Colson, C. (1977). Genetics of ribosomal protein methylation in Escherichia coli. 11. A mutant lacking a new type of methylated amino acid, N5-methylglutamine, in protein L3. Mol Gen Genet 154, 175−180.
  72. Liang, A., Brunen-Nieweler, C., Muramatsu, T., Kuchino, Y., Beier, H., and Heckmann, K. (2001). The ciliate Euplotes octocarinatus expresses two polypeptide release factors of the type eRFl. Gene 262, 161−168.
  73. Liang, H., Cavalcanti, A. R., and Landweber, L. F. (2005). Conservation of tandem stop codons in yeasts. Genome Biol 6, R31.
  74. Linge, J. P., Habcck, M., Rieping, W., and Nilges, M. (2003). ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315−316.
  75. Lipari, G., and Szabo, A. (1982). Model-Free Approach To The Interpretation Of Nuclear Magnetic-Resonance Relaxation In Macromolecules. 1. Theory And Range Of Validity. J Am Chem Soc 104, 4546−4559.
  76. Lozupone, C. A., Knight, R. D., and Landweber, L. F. (2001). The molecular basis of nuclear genetic code change in ciliates. Curr Biol 11, 65−74.
  77. Luginbuhl, P., and Wuthrich, K. (2002). Semi-classical nuclear spin relaxation theory revisited for use with biological macromolecules. Prog NMR Specroscop 40, 199−247.
  78. Ma, B., and Nussinov, R. (2004). Release factors eRFl and RF2: a universal mechanism controls the large conformational changes. J Biol Chem 279, 53 875−53 885.
  79. Mandel, M., and Higa, A. (1970). Calcium-dependent bacteriophage DNA infection. J Mol Biol 53, 159−162.
  80. Merkulova, T. I., Frolova, L. Y., Lazar, M., Camonis, J., and Kisselev, L. L. (1999). C-terminal domains of human translation termination factors eRFl and eRF3 mediate their in vivo interaction. FEBS Lett 443, 41−47.
  81. Meyer, F., Schmidt, H. J., Plumper, E., Hasilik, A., Mersmann, G., Meyer, H. E., Engstrom, A., and Heckmann, K. (1991). UGA is translated as cysteine in pheromone 3 of Euplotes octocarinalus. Proc Natl Acad Sci U S A 88, 3758−3761.
  82. Milcuni, O., Ito, K., Moffat, J., Matsumura, K., McCaughan, K., Nobukuni, T., Tate, W., and Nakamura, Y. (1994). Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A 91, 5798−5802.
  83. Moffat, J. G., and Tate, W. P. (1994). A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. J Biol Chem 269, 18 899−18 903.
  84. Molday, R. S., Englande.S.W., and Kallen R.G. (1972). Primary Structure Effects On Peptide Group Hydrogen-Exchange. Biochemistry 11, 150−158.
  85. Mora, L., Zavialov, A., Ehrenberg, M., and Buckingham, R. H. (2003b). Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli. Mol Microbiol 50, 1467−1476.
  86. Mortensen, K. K., Hansen, H. F., Grentzmann, G., Buckingham, R. H., and Sperling-Petersen, H. U. (1995). Osmo-expression and fast two-step purification of Escherichia coli translation termination factor RF-3. Eur J Biochem 234, 732−736.
  87. Muramatsu, T., Heckmann, K., Kitanaka, C., and Kuchino, Y. (2001). Molecular mechanism of stop codon recognition by eRFl: a wobble hypothesis for peptide anticodons. FEBS Lett 488, 105−109.
  88. Nakamura, Y., and Ito, K. (1998). How protein reads the stop codon and terminates translation. Genes Cells 3, 265−278.
  89. Nakamura, Y., Ito, K., and Ehrenberg, M. (2000). Mimicry grasps reality in translation termination. Cell 101, 349−352.
  90. Nakamura, Y., Ito, K., and Isaksson, L. A. (1996). Emerging understanding of translation termination. Cell 87, 147−150.
  91. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000a). The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920−930.
  92. Nissen, P., Kjeldgaard, M., and Nyborg, J. (2000b). Macromolecular mimicry. EMBO J 19, 489−495.107.0sawa, S., and Jukes, T. H. (1995). On codon reassignment. J Mol Evol 41, 247−249.
  93. Ottiger, M., Delaglio, F., and Bax, A. (1998). Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131, 373−378.
  94. Paci, M., Pon, C., and Gualerzi, C. (1985). The interaction between initiation factor 3 and 30 S ribosomal subunits studied by high-resolution 1H NMR spectroscopy. J Biol Chem 260, 887−892.
  95. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (1996). Propagation of the yeast prion-like psi+. determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. Embo J 15, 3127−3 134.
  96. Peske, F., Rodnina, M. V., and Wintermeyer, W. (2005). Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18, 403−412.
  97. Petry, S., Weixlbaumer, A., and Ramakrishnan, V. (2008). The termination of translation. Curr Opin Struct Biol 18, 70−77.
  98. Pisarev, A. V., Hellen, C. U., and Pestova, T. V. (2007). Recycling of eukaryotic posttermination ribosomal complexes. Cell 131, 286−299.
  99. Pisareva, V. P., Pisarev, A. V., Hellen, C. U., Rodnina, M. V., and Pestova, T. V. (2006). Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides. J Biol Chem 281, 40 224−40 235.
  100. Polacek, N., Gomez, M. J., Ito, K., Xiong, L., Nakamura, Y., and Mankin, A. (2003). The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol Cell 77, 103−1 12.
  101. Polacek, N., and Mankin, A. S. (2005). The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 40, 285−311.
  102. Polevoda, B., Span, L., and Sherman, F. (2006). The yeast translation release factors Mrflp and Sup45p (eRFl) are methylated, respectively, by the methyltransferases Mtqlp and Mtq2p. J Biol Chem 281, 2562−2571.
  103. , L. (2005). The catalytic triad of serine peptidases. Cell Mol Life Sci 62, 2161−2172.
  104. Polshakov, V. I., Frenkiel, T. A., Birdsall, B., Soteriou, A., and Feeney, J. (1995). Determination of stereospecific assignments, torsion-angle constraints, and rotamer populations in proteins using the program AngleSearch. J Magn Reson B 108, 31−43.
  105. Poole, E., and Tate, W. (2000). Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. Biochim Biophys Acta 1493, 1−11.
  106. Preer, J. R., Jr., Preer, L. B., Rudman, B. M., and Barnett, A. J. (1985). Deviation from the universal code shown by the gene for surface protein 51A in Paramecium. Nature 314, 188−190.
  107. Privalov, P. L., Jelesarov, I., Read, C. M., Dragan, A. I., and Crane-Robinson, C. (1999). The energetics of HMG box interactions with DNA: Thermodynamics of the DNA binding of the HMG box from mouse Sox-5. J Mol Biol 294, 997−1013.
  108. Rawat, U., Gao, H., Zavialov, A., Gursky, R., Ehrenberg, M., and Frank, J. (2006). Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 357, 1144−1153.
  109. Rawat, U. B., Zavialov, A. V., Sengupta, J., Valle, M., Grassucci, R. A., Linde, J., Vestergaard, B., Ehrenberg, M., and Frank, J. (2003). A cryo-electron microscopic study of ribosomc-bound termination factor RF2. Nature 421, 87−90.
  110. Rodnina, M. V., Beringer, M., and Wintermeyer, W. (2007). How ribosomes make peptide bonds. Trends Biochem Sci 32, 20−26.
  111. Ruclcert, M., and Otting, G. (2000). Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc /22, 7793−7797.
  112. Salas-Marco, J., and Bedwell, D. M. (2004). GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 24, 7769−7778.
  113. Salas-Marco, J., Fan-Minogue, H., Kallmeyer, A. K., Klobutcher, L. A., Farabaugh, P. J., and Bedwell, D. M. (2006). Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes. Mol Cell Biol 2d, 438−447.
  114. Samaha, R. R., Green, R., and Noller, H. F. (1995). A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 577, 309−314.
  115. Sambroolc, J., Fritsch. E. F., and Maniatis, T. (1989). Molecular cloning. A laboratory manual., 2 edn (N.Y., Cold Spring Harbor).
  116. Sarlcar, G., and Sommer, S. S. (1990). The „megaprimer“ method of site-directed mutagenesis. Biotechniques 8, 404−407.
  117. Schmeing, T. M., Huang, K. S., Strobel, S. A., and Steitz, T. A. (2005). An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438, 520−524.
  118. Schmitt, E., Mechulam, Y., Fromant, M., Plateau, P., and Blanquet, S. (1997). Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. Embo J 16, 4760−4769.
  119. Schmitt, E., Panvert, M., Blanquet, S., and Mechulam, Y. (1998). Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. Embo J 17, 6819−6826.
  120. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003). The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160, 65−73.
  121. Seit-Nebi, A., Frolova, L., and Kisselev, L. (2002). Conversion of omnipotent translation termination factor eRFl into ciliate-like UGA-only unipotent eRFl. EMBO Rep 3, 881−886.
  122. Sette, M., Spurio, R., van Tilborg, P., Gualerzi, C. O., and Boclens, R. (1999). Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA 5, 82−92.
  123. Sette, M., van Tilborg, P., Spurio, R., ICaptein, R., Paci, M., Gualerzi, C. O., and Boelens, R. (1997). The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif. Embo J 16, 1436−1443.
  124. Shaw, J. J., and Green, R. (2007). Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol Cell 25, 458−467.
  125. , T. A. (2005). On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit. FEBS Lett 579, 955−958.
  126. Studier, F. W., and Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113−130.
  127. Tate, W. P., and Brown, C. M. (1992). Translational termination: „stop“ for protein synthesis or „pause“ for regulation of gene expression. Biochemistry 31, 2443−2450.
  128. Trobro, S., and Aqvist, J. (2007). A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol Cell 27, 758−766.
  129. Uno, M., Ito, IC, and Nakamura, Y. (2002). Polypeptide release at sense and noncognate stop codons by localized charge-exchange alterations in translational release factors. Proc Natl Acad Sei U S A 99, 1819−1824.
  130. Velichutina, I. V., Hong, J. Y» Mesecar, A. D., Chernoff, Y. O., and Liebman, S. W. (2001). Genetic interaction between yeast Saccharomyces ccrevisiae release factors and the decoding region of 18 S rRNA. J Mol Biol 305,1X5−121.
  131. Vestergaard, B., Van, L. B., Andersen, G. R., Nyborg, J., Buckingham, R. H., and Kjeldgaard, M. (2001). Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRFl. Mol Cell 8, 1375−1382.
  132. Wang, W., Czaplinski, K., Rao, Y., and Peltz, S. W. (2001). The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 20, 880−890.
  133. Weinger, J. S., Parnell, K. M., Dorner, S., Green, R., and Strobel, S. A. (2004). Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol //, 1101−1106.
  134. Weixlbaumer, A., Petry, S., Dunham, C. M., Selmer, M., Kelley, A. C., and Ramakrishnan, V. (2007). Crystal structure of the ribosome recycling factor bound to the ribosome. Nal Struct Mol Biol 14, 733−737.
  135. Wilson, D. N., Guevremont, D., and Tate, W. P. (2000). The ribosomal binding and peptidyl-tRNA hydrolysis functions of Escherichia coli release factor 2 are linked through residue 246. Rna 6, 1704−1713.
  136. Youngman, E. M., Brunelle, J. L., Kochaniak, А. В., and Green, R. (2004). The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589−599.
  137. Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H., and Noller, H. F. (2001). Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883−896.
  138. Zavialov, A. V., Buckingham, R. H., and Ehrenberg, M. (2001). A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell J07, 115−124.
  139. Zavialov, A. V., Mora, L., Buckingham, R. H., and Ehrenberg, M. (2002). Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol Cell 10, 789−798.
  140. , В. И., Колосов, П. iM., Алкалаева, Е. 3., Фролова, JI. Ю., and Киселев, JL JI. (2006). Влияние изолированных доменов фактора терминации трансляции eRFl на ГТФазпую активность фактора терми нации трансляции eRF3. Мол Б иол 40, 310−316.
  141. , Е. Н., Зайцева, Е. М., Бахланова, И. В., Горелов, В. И., Кузьмин, Н. П., Крюков, В. М., and Ланцов, В. А. (1986). Клонирование и характеристика гена гесА из Pseudomonas aeruginosa. Генетика 22, 2721−2727.
Заполнить форму текущей работой