Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹Π΅ систСмы ΠΎΠ±ΠΌΠ΅Π½Π° Π³Π»ΡƒΡ‚Π°ΠΌΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΈ яблочной кислот сухих сСмян ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠšΠ°Ρ€Π°ΡΠ΅Π² Π’. А., Π‘Ρ‚Π΅Ρ„Π°Π½ΠΎΠ² Π’. Π•., ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И. НадмолСкулярныС биоструктуры: организация, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, происхоТдСниС,. Π˜Ρ‚ΠΎΠ³ΠΈ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. М: 1989. Π‘. 199. Π›ΡŽΠ±Π°Ρ€Π΅Π² А. Π•., ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°. УспСхи соврСмСнной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. 1989. Π’.108. № 1(4). Π‘.19βˆ’35. ЕвстигнССва Π—. Π“., БоловьСва H.A. РСгуляция ГлутаминсинтСтазы… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π’Π«Π’ΠžΠ”Π«
  • 1. Π˜Π·ΡƒΡ‡Π΅Π½ ΠΈΠ·ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ состав ΠœΠ”Π“ ΠΈ ΠΠΠ’ сухих сСмян ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ сорта Баратовская 29. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ сСмь ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌ ААВ ΠΈ ΠΏΡΡ‚ΡŒ ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌ ΠœΠ”Π“
  • 2. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€ΠΈ ΠΈΠ·ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ААВ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π² ΡΠΎΡΡ‚Π°Π²Π΅ комплСксов с ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌΠΎΠΉ ΠœΠ”Π“
  • 3. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° схСма частичной очистки комплСксов ΠΈ ΠΈΡ… Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹
  • 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ молСкулярныС массы комплСксов ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· Π½ΠΈΡ… ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌ ΠœΠ”Π“ ΠΈ ΠΠΠ’. Π˜Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ оказались Ρ€Π°Π²Π½Ρ‹ 110, 60 ΠΈ 90 ΠΊΠ”Π° соотвСтствСнно
  • 5. ΠŸΡ€ΠΈ диссоциации ΠœΠ”Π“ ΠΈΠ· ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² каТущаяся константа ΠœΠΈΡ…Π°ΡΠ»ΠΈΡΠ° для НАД+ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»Π°ΡΡŒ Π² 10 Ρ€Π°Π·
  • 6. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ·ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ состава ΠœΠ”Π“ ΠΈ ΠΠΠ’ Π΄Π²ΡƒΡ… сортов ΠΏΡˆΠ΅Π½ΠΈΡ†, Ρ€ΠΆΠΈ ΠΈ Ρ‚Ρ€ΠΈΡ‚ΠΈΠΊΠ°Π»Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈΡ… ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌΡ‹ способны ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Π΅ комплСксы

Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹Π΅ систСмы ΠΎΠ±ΠΌΠ΅Π½Π° Π³Π»ΡƒΡ‚Π°ΠΌΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΈ яблочной кислот сухих сСмян ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

1. Π‘Π°Π±Π°Π΄ΠΆΠ°Π½ΠΎΠ²Π° М. П. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ надмолСкулярной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ†ΠΈΠΊΠ»Π° Кальвина Π² Ρ…лоропластах Π²Ρ‹ΡΡˆΠΈΡ… растСний. АвторСф. Π½Π° ΡΠΎΠΈΡΠΊ. ΡƒΡ‡. стСп. ΠΊΠ°Π½Π΄. Π±ΠΈΠΎΠ». Π½Π°ΡƒΠΊ. Π”ΡƒΡˆΠ°Π½Π±Π΅. 1995. Π‘. 25.

2. Π“ΡƒΠ΄Π²ΠΈΠ½ Π’., ΠœΠ΅Ρ€ΡΠ΅Ρ€ Π­.

Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅

Π² Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΡŽ растСний. М: ΠœΠΈΡ€. 1986. Π‘. 393.

3. Π”Π΅Ρ‚Π΅Ρ€ΠΌΠ°Π½ Π“., Π“Π΅Π»ΡŒ-фроматография. 1970. М.:ΠœΠΈΡ€. Π‘. 132.

4. Π”ΠΈΠ»ΡŒΠ±Π°Ρ€ΠΊΠ°Π½ΠΎΠ²Π° Π ., Π“ΠΈΠ»ΡŒΠΌΠ°Π½ΠΎΠ² М. К. Π‘Ρ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сфСросом Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. Алматы, Π“Ρ‹Π»Ρ‹ΠΌ. 1997. Π‘. 164.

5. ЕвстигнССва Π—. Π“. Энзимология биосинтСза аспарагина Π² Ρ€Π°ΡΡ‚Сниях. ΠŸΡ€ΠΈΠΊΠ». Π‘ΠΈΠΎΡ…. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ». 1991. Π’.27. № 5. Π‘.628−638.

6. ЕвстигнССва Π—. Π“., БоловьСва H.A. РСгуляция ГлутаминсинтСтазы ΠΈ Π³Π»ΡƒΡ‚аматсинтазы Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². ΠŸΡ€ΠΈΠΊΠ». Π‘ΠΈΠΎΡ…. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ». 1994. Π’.30. № 4−5. Π‘.501−526.

7. Π•Ρ€ΠΌΠ°ΠΊΠΎΠ² Π“. Π›. НадмолСкулярная организация Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹Ρ… систСм. Биохимия. 1993. Π’.58. № 5. Π‘.659−674.

8. ΠšΠ°ΠΏΡ€Π΅Π»ΡŒΡΠ½Ρ† A.C. ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΠΎ-динамичСская организация Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°. БиологичСскиС Π½Π°ΡƒΠΊΠΈ. 1988. № 6. Π‘.5−13.

9. ΠšΠ°Ρ€Π°ΡΠ΅Π² Π’. А., Π‘Ρ‚Π΅Ρ„Π°Π½ΠΎΠ² Π’. Π•., ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И. НадмолСкулярныС биоструктуры: организация, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, происхоТдСниС,. Π˜Ρ‚ΠΎΠ³ΠΈ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. М: 1989. Π‘. 199.

10. ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И. АллостСричСскиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹. М: Наука. 1978. Π‘.117−175.

11. ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И., Π‘ΡƒΠ³Ρ€ΠΎΠ±ΠΎΠ²Π° Н. П., Мильман Π›. Π‘. НадмолСкулярная организация Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π°. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология. 1980. Π’.20. № 1. Π‘.41−52.

12. ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И., Π›ΡŽΠ±Π°Ρ€Π΅Π² А. Π•. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ биохимичСской ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ. Биохимия. 1991. Π’.56. № 1. Π‘.19−31.

13. Π›ΡŽΠ±Π°Ρ€Π΅Π² А. Π•., ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И. НадмолСкулярная организация Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ†ΠΈΠΊΠ»Π° Ρ‚Ρ€ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология. 1987. Π’.21. № 5. Π‘. 1286−1296.

14. Π›ΡŽΠ±Π°Ρ€Π΅Π² А. Π•., ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°. УспСхи соврСмСнной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. 1989. Π’.108. № 1(4). Π‘.19−35.

15. Π›ΡŽΠ±Π°Ρ€Π΅Π² А. Π•., ΠšΡƒΡ€Π³Π°Π½ΠΎΠ² Π‘. И. БиохимичСская ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡ Π² ΡΠ²Π΅Ρ‚Π΅ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ биохимичСской ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π–ΡƒΡ€Π½Π°Π» ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ ΠΈ Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. 1994. Π’.30. № 1. Π‘.126−133.

16. ΠœΠ°ΡƒΡ€Π΅Ρ€ Π“. Диск-элСктрофорСз. 1971. М.:ΠœΠΈΡ€.Π‘.57−87.

17. Наград ΠΎΠ²Π° Н.К., ΠœΡƒΡ€ΠΎΠ½Π΅Ρ† Π’. И. ΠœΡƒΠ»ΡŒΡ‚ΠΈΠ΄ΠΎΠΌΠ΅Π½Π½Π°Ρ организация Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π˜Ρ‚ΠΎΠ³ΠΈ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. 1991. Π’.38. Π‘. 165.

18. ΠžΠ±Ρ€ΡƒΡ‡Π΅Π²Π° Н. Π’. Ѐизиология растСний. 1997. Π’.44. № 2. Π‘.287−302.22.0стСрман Π›. А. Π₯роматография Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот. М.: Наука. 1985. Π‘.176−188.

19. ΠŸΠ°Π²Π»ΠΎΠ²Π΅Ρ† Π’. Π’. Ассоциация НАДЀ-ΠΌΠ°Π»Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·1>1 (Π΄Π΅ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ) ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ„Π°Π·Ρ‹ карбоксилирования ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹. АвторСф. Π½Π° ΡΠΎΠΈΡΠΊ. ΡƒΡ‡. стСп. ΠΊΠ°Π½Π΄. Π±ΠΈΠΎΠ». Π½Π°ΡƒΠΊ. М: 1996. Π‘. 18.

20. ΠŸΠ°Π²Π»ΠΎΠ²Π΅Ρ† Π’. Π’., Π ΠΎΠΌΠ°Π½ΠΎΠ²Π° А. К. ΠœΠ΅ΠΆΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ взаимодСйствия НАДЀ-ΠΌΠ°Π»ΠΈΠΊ-энзима ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ„Π°Π·Ρ‹ карбоксилирования Π² ΡΠΊΡΡ‚Ρ€Π°ΠΊΡ‚Π°Ρ… ΠΈΠ· Π»ΠΈΡΡ‚ΡŒΠ΅Π² ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹. Ѐизиология растСний. 1997. Π’.44. № 3. Π‘.325−330.

21. ΠŸΠΈΠ½Π΅ΠΉΡ€Ρƒ Π΄Π΅ ΠšΠ°Ρ€Π²Π°Π»ΡŒΡŽ М.А.А., ЗСмлянухин А. А., Π•ΠΏΡ€ΠΈΠ½Ρ†Π΅Π² А. Π’. ΠœΠ°Π»Π°Ρ‚Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Π° Π²Ρ‹ΡΡˆΠΈΡ… растСний. Π’ΠΎΡ€ΠΎΠ½Π΅ΠΆ. Изд-Π²ΠΎ Π’Π“Π£. 1991. Π‘. 216.

22. Π ΠΈΠ³Π΅Ρ‚Ρ‚ΠΈ П. Π“. Π˜Π·ΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ фокусированиС: тСория, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅. М.:ΠœΠΈΡ€. 1986. Π‘. 1−398.

23. Рязанов А. Π“., Π‘ΠΏΠΈΡ€ΠΈΠ½ А. Π‘. ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π½Π° Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… структурах: эстафСта Ρƒ ΠΏΠΎΠ²Π΅Ρ€Ρ…ности. Биохимия. 1989. Π’. 54. № 5. Π‘.709−715.

24. Π₯Π°ΠΊΠΈΠΌΠΎΠ²Π° А. Π₯. ВзаимодСйствиС гликогСнфосфорилазы ΠΈ ΠΊΡ€Π΅Π°Ρ‚ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ ΠΈΠ· ΡΠΊΠ΅Π»Π΅Ρ‚Π½Ρ‹Ρ… ΠΌΡ‹ΡˆΡ† ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°. АвторСф. Π½Π° ΡΠΎΠΈΡΠΊ. ΡƒΡ‡. стСп. ΠΊΠ°Π½Π΄. Π±ΠΈΠΎΠ». Π½Π°ΡƒΠΊ. М: 1994. Π‘. 23.

25. Π¨Π°Ρ‚ΠΈΠ»ΠΎΠ² Π’. Π ., Π“ΠΈΠ»ΡŒΠΌΠ°Π½ΠΎΠ² М. К., Колдасова А. Π‘., Π¨Π°Π»Π°Ρ…ΠΌΠ΅Ρ‚ΠΎΠ²Π° ГА., ΠšΡ€Π΅Ρ‚ΠΎΠ²ΠΈΡ‡ B.JI. Новая фСрмСнтная систСма Π·Π΅Ρ€Π½Π° ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΠΎΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π΅Π·Π°ΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π“-Π³Π»ΡƒΡ‚Π°ΠΌΠΈΠ½ΠΎΠ²ΠΎΠΉ кислоты. Биохимия. 1988. Π’.Π—ΠžΠ—. № 5. Π‘.1268−1272.

26. Ashmarina 1.1., Pshezhetsky A.V., Spievy Н.О., Potier M. Demonstration of enzyme association by countermigration electrophoresis in agarose gel Anal. Biochem. 1994. V.219. NΒ°2. P.349−355.

27. Babson, A.L., Shapiro, P.O., Wilhams, P.A., Phillips, G.E. Use the diazonium salt for the determination of glutamic-oxalacetic transaminase in serum. Clin. Chim. Acta. 1962. V.7.P. 199−205.

28. Backman L., Johansson G. Enzyme-enzyme complexes between aspartate aminotransferase and malate dehydrogenase from pig heart muscle. FEBS Lett. 1976. V.65. № 1. P.39−43.

29. Batke J. Channelling by loose enzyme complexes in situ is likely, though physiological significance is open for speculation. 1991. V.152. P.41−46.

30. Batke J., Asboth G., Lakatos S., Schmitt Π’., Cohen R. Substrateinduced dissociation of glycerol-3-phosphate dehydrogenase and its complex formation with fructose-bisphosphate aldolase. Eur. J. Biochem. 1980. V.107. P.389−394.

31. Beeckmans S., Khan S., Van Driessche E., Kanarek L. A specific association between the glyoxylic acid cycle enzymes isocitrate lyase and malate synthase. Eur. J. Biochem. 1994. V. 224. P. 197−201.

32. Benveniste K., Munkres K.D. Cytoplasmic and mitochondrial malate dehydrogenases of Neurospora. BBA. 1970. V.220. № 2. P.161−177.

33. Bewley J.D., Black M. Seeds: physiology of development and germination. N.Y., London: Plenum Press, 1994. P.445.

34. Bryce C.F.A., Williams D.C., John R.A. The anomalous kinetics of coupled aspartate aminotransferase and malate dehydrogenase. Evidence for compartmentation of oxaloacetate. Biochem. J. 1976. V. 153. № 3. P.571−577.

35. Dalling M.J., Bhulla H.L. Seed Physiology./Ed. Murrey D.R. Orlando ect.: Acad. Press, 1984. V.2. P. 163−169.

36. Davies D.D. The central role of phosphoenolpyruvate in plant metabolism. Ann.Rev.Plant Physiol. 1979. V.30. P. 131−189.

37. Drozdowicz Y.M., Jones R.L. Hormonal regulation of organic and phosphoric acid release by barley aleurone layers and scutella. Plant Physiol. 1995. V. 108. № 3. P.769−776.

38. Easterby J.S. Coupled enzyme assays: a general expression for the transient. Biochim. Biophys. Acta. 1973. V.293. P.552−558.

39. Easterby J.S. A generalized theory of the transition time for sequential enzyme reactions. Biochem. J. 1981. V.199. P. 155−161.

40. Easterby J.S. The analysis of metabolite channelling in multienzyme complexes and multifunctional proteins. Biochem. J. 1989. V.264. P.605−607.

41. Ewart J.A.D. J. Sci. Food Agric. 1967. V.18. № 3. P. lll-116.

42. Fahien L.A., Kmiotek E.H., MacDonald M.J., Fibich B., Mandic M. Regulation of malate dehydrogenase by glutamate, citrate, ketoglutarate, and multienzyme interaction. J.Biol.Chem. 1988. V.263. № 22. P. 1 068 710 697.

43. Fahien L.A., Davis J.W., Laboy J. Interaction between pyruvate carboxylase and other mitochondrial enzymes. J. Biol. Chem. 1993. V. 268. № 24. P. 17 935−17 942.

44. Fasella P., Bossa F., Turano C., Fanelli R.A. Multiple forms of aspartate oxoglutarate transaminase and malate dehydrogenase in resting cottonseeds. Enzymologia. 1966. V.30. № 3. P. 198−205.

45. Forest J.C., Whightman F. Aminoacid metabolism in plant. III. Purification and some properties of a multispecific aminotransferases isolated from bushbean seedlings (Phaseolus vulgaris L.). Can. J. Biochem. 1972. V.50. № 7. P.813−829.

46. Forest J.C., Wightman F. Amino acid metabolism in plants. IV. Kinetic studies with a multispecific aminotransferase purified from bushbean seedlings (Phaseolus vulgaris L.). Can. J. Biochem. 1972. V.51. № 3. P.332−356.

47. Friedrich P. Organized multienzyme systems: catalitic properties. (Ed. Welch G.R.). Orlando: Acad. Press. P. 141−176.

48. Gaertner F.H., Cole K.W. The protease problem in Neurospora. Structural modification of the arom multienzyme system during its extraction and isolation. Arch. Biochem. Biophys. 1976. V. 177. P.566−573.

49. Givan C.Y. Aminotransferases in higher plant. In Biochemistry of plants. 1980. V.5. P.329−357.

50. Gontero B., Cardenas M.L., Ricard J. A functional five-enzyme complex of chloroplast involved in the Calvin Cycle. Eur. J. Biochem. 1988. V. 173. PP. 437−443.

51. Gorbunoff M.J. The interaction of proteins with hydroxyapatite. I. Role of protein charge and structure. Analyt. Biochem. 1984. V.136. P.425−432.

52. Gorbunoff M.J. The interaction of proteins with hydroxyapatite. II. Role of acidic and basic groups. Analyt. Biochem. 1984. V.136. P.433−439.

53. Gorbunoff M.J. The interaction of proteins with hydroxyapatite. III. Mechanism. 1984. V.136. P.440−445.

54. Guex N., Henry H., Flach J., Richter H., Widmer F. Glyoxysomal malate dehydrogenase and malate syntase from soybean cotyledons (Glycine max L.) enzyme association, antibody production and cDNA cloning. Planta. 1995. V.197. № 2. P.369−375.

55. Gumilevskaya N.F., Skazhennik M.A., Akhmatova A.T., Chumikina L.V., Kuvaeva E.V., Kretovich W.L. Distinctive characteristics of RNA and protein synthesis in pea cotyledons at early stages of germination. Biologia Plantarum. 1982. V. 24. № 5. P.363−373.

56. Haglund H. Isoelectric focusing in pH gradients a technique for fractionation and characterization of ampholytes. Methods of Biochem. Anal. 1980. V.19. P. l-104.

57. Hamabata A. Garcia-Vaya Romero T. Bernal-Lugo I. Kinetics of the acidification capacity of the aleurone layer and its effect upon solubilization of reserve substances from starchy endosperm of wheat. Plant Physiol. 1988. V. 86. № 3. P.643−644.

58. Hart G.E., Langston P.J. Theor. Appl. Genet. 1977. V.50. P.47−51.

59. Hatch M.D. Separation and properties of leaf aspartate aminotransferase and alanine aminotransferase isoenzymes operative in the C4 pathway of photosynthesis. Arch.Biochem. Biophys. 1973. V. 156. P.207.

60. Hayes, M.K., Luethy, M.H., Elthon T.E. Mitochondrial malate dehydrogenase from corn. Plant Physiol. 1991. V.97. P.1381−1387.

61. Hrazdina G., Jensen R.A. Spatial organization of enzymes in plant metabolic pathways. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 1992. V.43. P.241−267.

62. Hyde C.C., Ahmed S.A., Padlan E.A., Miles E.W., Davies D R. Three dimensional structure of the tryptophan synthase a2b2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 1988. V. 263. P. 17 857−17 871.

63. Jaaska V. Aspartate aminotransferase isozymes in the polyploid wheals and their diploid relatives. On the origin of tetraploid wheats. Biochem. Physiol. Pflansen 1976. V.170. P. 159−171.

64. Kirschner K., Bisswangen H. Multifunctional proteins. Ann. Rev. Biochem. 1976. V.45. PP. 143−166.

65. Kispal G., Evans C.T., Malloy C., Srere P.A. Metabolic studies on citrate synthase mutants of yeast. J. Biol. Chem. 1989. V.264. P. 1 120 411 210.

66. Lance C., Rustin P. The central role of malate in plant metabolism. Phisiol.Veg. V.22. № 5. P.625−641.

67. Legris A.J., Tsai C.S. Characterization of malate dehydrogenase isozymes in wheat germ. 1975. Can. J. Biochem. V.53. P.527−535.

68. Lowe C.R., Pearson J.C. Affinity chromatography on immobilized dyes. 1984. V.104. PP.97−113.

69. Lyubarev A.E., Kurganov B.I. The concept of biochemical organization and problems of biochemical evolution. In: Evolutionary biochemistry and related areas of physicochemical biology (Ed. Poglazov B.F.). Moscow. 1995. P.127−150.

70. Macnicol P.K., Jacobsen J.V. Endosperm acidification and related metabolic changes in the developing barley grain. Plant Physiol. 1992. V.98. № 4. P.1098−1104.

71. ManIey E.R., Webster T.A., Spivey H.O. Kinetics of the coupled aspartate aminotransferase malate dehydrogenase reactions and instability of oxaloacetate on anion-exchange resin. Arch. Biochem. Biophys. 1980. V.205. № 2. P.380−387.

72. Matchett W.H., De Moss J.A. The subunit structure of tryptophan synthase from Neurospora crassa. J. Biol. Chem. 1972. V.250. P.2941−2946.

73. Matchett W.H. Indole channeling by tryptophan synthase of Neurospora crassa. J. Biol. Chem. 1974. V.249. P.4041−4049.

74. Mendes P., Douglas K. On the role of enzyme kinetic parameters in determining the effectiveness with which channeling can decrease the size of A metabolite pool. Acta Biotheoretica. 1993. V. 41. P.63−73.

75. Micola J., Virtanen M. Secretion of L-malic acid by barley aleurone layers. Plant Physiol. 1980.V.66. S-142.

76. Mitchell C.G. Identification of multienzyme complex of the tricarboxylic acid cycle enzymes containing citrate synthase isoenzymes from Pseudomonas aeruginosa. Biochem. J. 1996. V.313. P.769−774.

77. Moen L.K., Howell M.L., Lasser G.W., Mathews C.K. J. MoL. Recognition 1988. V.I., P. 48.

78. Mowbray J., Moses V. The tentative identification in Escherichia coli of a multienzyme complex with glycolytic activity. Eur. J. Biochem. 1976. V. 66. P.25−36.

79. Munkres K.D. Structure of Neurospora malate dehydrogenase. I. Reconstitution from acid and urea. Biochemistry. 1965. V.4. № 10. P.2180−2185.

80. Munkres K.D. Structure of Neurospora malate dehydrogenase. II. Isolation and partial characterization of polypeptide subunits. Biochemistry. 1965. 1965. V.4. № 10. P.2186−2196.

81. Naik M.S., Nicholas D.J. Malate metabolism and its relation to nitrate assimilation in plants. Phytochem. 1986. V.25. № 3. P.571−576.

82. Ovadi J. Kinetic evidence for interaction between aldolase and D-glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem. 1978. V.85. P.157−161.

83. Ovadi J. Physiological significance of metabolic channelling. J. Theor. Biol. 1991. V.152. P.1−22.

84. Palmer J.M. The mechanism and regulation of malate oxidation in isolated plant mitochondria. Phisiol.Veg. 1984. V.22. № 5. P.665−673.

85. Perham R.N., Duckworth H.W., Roberts G.C., Mobility of polypeptide chain in the pyruvate dehydrohenase complex revealed by proton NMR. Nature. 1981. V. 292. P.474−477.

86. Peterson, L. Determination of total protein. Methods in enzymologv.1983. Y.91. P.95−110.

87. Queirozclaret C., Queiroz O. Malate dehydrogenase forms a complex with and activates phosphoenolpyruvate carboxylase from Crassulacean acid metabolism plants. J. Plant Physiol. 1992. V.139. № 4. P.385−389.

88. Reed L.J., Willms C.R. Purification and resolution of the pyruvate dehydrogenase complex (Escherichia coli). Meth. Enzym. 1966. V.9. P.247−265.

89. Reed L.J., Mukheijee B.B. Ketoglutarate dehydrogenase complex from Escherichia coli. Meth. Enzym. 1969. V.13. P.55−62.

90. Salerno K., Ovadi J., Keleti T., Fasella P. Kinetics of coupled reactions catalyzed by aspartate aminotransferase and glutamate dehydrogenase. Eur. J. Biochem. 1982. V.121. P.511−517.

91. Sommerville R.L., Zeilstra-Ryalls J.H., Shieh T.L. Structural and organizational aspects of metabolic regulation (Eds: Srere P.A., Jones M.E., Mathews C.K.). P.181−197.

92. Srere P.A. Protein crystals as a model for mitochondrial matrix proteins. Trends Biochem. Sci. 1981. V.6. P.4−7.

93. Srere P.A. Complexes of sequential metabolic enzymes. Ann. Rev. Biochem. 1987. V.56. P.89−124.

94. Srere P.A., Mathews C.K. Purification of multienzyme complexes. Meth. Enzymol. 1990. V.182. P.539−551.

95. Srivastava D.K., Bernhard S.A. Metabolite transfer via enzyme-enzyme complex. Science. 1986. V.234. P.1081−1086.

96. Srivastava D.K., Bernhard S.A. Mechanism of transfer of reduced nicotinamide adenine dinucleotide among dehydrogenases. Transfer rates and equilibria with enzymeenzyme complex. Biochemistry. 1987. V.26. P.1240−1246.

97. Stellwagen E. Chromatography on immobilized reactive dyes. Methods in enzymology. 1990. V.182. P.343−357.

98. Stewart G.R., Mann A.F., Fentem P.A. Enzymes of glutamate formation: glutamate dehydogenase, glutamine synthetase, and glutamate synthase.//In. The biochemistry of plants./Ed. Stumpf P.K.and Conn E.E.: Acad. Press, 1980. V.5. P.271−327.

99. Sumegi B., Porpaczy Z., McCammon M.T., Sherry A.D., Malloy C. R, Srere P.A. Regulatory consequences of organization of citric acid cycle enzymes. Current Topics in Cellular Regulation. 1992. V. 33. P.249−259.

100. Vikman Per-Ake, Huss-Dannell K.//J. Exp. Bot. 1991. Y.42. № 235. P.221−228.

101. Weber J.P., Bernhard S.A. Transfer of 1,3-diphosphoglycerate between glyseraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase via an enzyme-substrate-enzyme complex. Biochemistry. 1982. V.21. P.4189−4194.

102. Weimberg R. An electroforesis analysis of the isozymes of malate dehydrogenase in several different plants. 1968. Plant Physiol. V.43. P.622−628.

103. Weitzman P.D. Behaviour of enzymes at high concentration. Use of permeabilised cells in the study of enzyme activity and its regulation. FEBS Lett. 1973. V.36. P.227−231.

104. Whightman F., Forest J.C. Properties of plant aminotransferases. Phytochemistry. 1978. V.17. P.1455−1471.

105. Yagi, T., Kagamiyama, H., Nozaki, M., Soda, K. Glutamate aspartate transaminase from microorganisms. Methods in enzymology. 1985. V.113. P.83−90.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ