Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Изучение спектра мутаций в гене рецептора липопротеинов низкой плотности у больных семейной гиперхолестеринемией в Санкт-Петербурге

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Graadt van Roggen F., van der Westhuyzen D.R., Marais A.D. et al. Low density lipoprotein receptor founder mutations in Afrikaner familial hypercholesterolaemic patients: a comparison of two geographical areas. Hum. Genet.1991) V.88(2), p. 204−208. Goldstein J.L., Schrott H.G., Hazzard W.R. Hyperlipidemia in coronary heart disease. Genetic analysis of lipid levels in 176 families and delineation… Читать ещё >

Содержание

  • 6. ВЫВОДЫ

1. Методами гетеродуплексного анализа и анализа конформационного полиморфизма одноцепочечных фрагментов ДНК с последующим секвенированием по методу Сэнджера впервые обнаружены пять ранее неизвестных мутаций в гене рецептора ЛНП: 347delGCC, Cl88Y, C146R, А130Р и молчащая мутация G128G. Разработаны методы быстрой детекции всех обнаруженных мутаций путем рестрикционного анализа.

2. Показано, что миссенс-мутация C139G является повторно встречающейся в популяции Санкт-Петербурга, то есть обнаружена в нескольких семьях.

3. Методом анализа конформационного полиморфизма одноцепочечных фрагментов ДНК с последующим секвенированием показано наличие в Санкт-Петербургской популяции полиморфизмов гена рецептора ЛНП 1545 С/Т и 1413 G/A, аналогичных встречающимся в зарубежных популяциях.

4. Клонированием в плазмидном векторе PCR®2.1. фрагмента 4-го экзона гена рецептора ЛНП с последующей амплификацией методом ПЦР и рестрикционным анализом показано, что мутация А130Р сцеплена с молчащей мутацией G128G.

5. В рамках изученной выборки показано, что для пациентов с СГ Санкт-Петербурга не свойственно наличие мутаций гена рецептора ЛНП в промоторной области, экзонах 16, 17 и 18.

6. Все мутации обнаружены в группе из 42 пациентов с семейной гиперхолестеринемией. В группе из 60 пациентов с изолированными случаями гиперлипидемии не выявлено ни одной мутации, что указывает на невысокую вероятность обнаружения мутаций у этой категории пациентов.

Изучение спектра мутаций в гене рецептора липопротеинов низкой плотности у больных семейной гиперхолестеринемией в Санкт-Петербурге (реферат, курсовая, диплом, контрольная)

1. Горбунова В. Н., Баранов B.C.

Введение

в молекулярную диагностику и генотерапию наследственных заболеваний. Специальная Литература (1997) с.100−122.

2. Климов А. Н., Никульчева Н. Г. Липиды, липопротеиды и атеросклероз. Санкт-Петербург «Питер» (1995), с. 94−118.

3. Крапивнер С. Р., Малышев П. П., Полтараус А. Б. и др. Случай семейной гиперхолестеринемии, вызванной новой мутацией D461Y в гене рецептора липопротеинов низкой плотности. Кардиология (2001), т.41, с.92−94.

4. Липовецкий Б. М. Клиническая липидология Санкт-Петербург -«Наука» (2000), с. 16−46.

5. Мандельштам М. Ю., Голубков В. И., Шур Ю. А., Гайцхоки B.C. Новая мутация 347delGCC в гене рецептора липопротеинов низкой плотности человека. Биоорганическая химия (1998) т. 24(10), с. 798−800.

6. Мандельштам М. Ю., Липовецкий Б. М., Шварцман А. Л., Гайцхоки B.C. Молекулярная гетерогенность семейной гиперхолестеринемии в популяции жителей Санкт-Петербурга. Генетика (1995) т.31(4), с. 521 527.

7. Остерман Л. А Методы исследования белков и нуклеиновых кислот. Электрофорез и ультрацентрифугирование. Москва «Наука» (1981), с. 131−135.

8. Area M., Jokinen E. Low density lipoprotein receptor mutations in a selected population of individuals with moderate hyperholesterolemia. Atherosclerosis (1998) V.136, p. 187−194.

9. Atkins A.R., Brereton I.M., Kroon P.A. et al. Calcium is essential for the structural integrity of the cysteine-rich, ligand-binding repeat of the low-density lipoprotein receptor. Biochemistry (1998) V.37(6), p. 1662−70.

10. Bell G.I., Karam J.H., Rutter W.J. Polymorphic DNA region adjacent to the 5'-end of the human insulin gene. Proc. Natl. Acad. Sci. USA (1981) Vol.78, p. 57 595 763.

11. Bertolini S.- Cassanelli R., Garuti M. et al. Analysis of LDL receptor gene mutations in Italian patients with homozygous familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology (1999) V. 19, p. 408−418.

12. Bieri S., Atkins A.R., Lee H.T. et al. Folding, calcium binding, and structural characterization of a concatemer of the first and second ligand-binding modules of the low-density lipoprotein receptor. Biochemistry (1998) V.37(31), p. 10 994−1002.

13. Bieri S., Djordjevic J.T., Daly N.L. et al. Disulfide bridges of a cysteine-rich repeat of the LDL receptor ligand-binding domain. Biochemistry (1995) V, 34(40), p, 13 059−65.

14. Blacklow S.C., Kim P. S. Protein folding and calcium binding defects arising from familial hyperholesterolemia mutations of the LDL receptor. Nature Structural Biology (1996) V.3(9), p. 758−762.

15. Brown M. S, Goldstein J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell (1997) Vol.4, p. 331−340.

16. Brown M.S., Goldstein J.L. A receptor-mediated pathway for cholesterol homeostasis. Science. (1986) Vol. 232, p. 34−47.

17. Cantafora A., Bertolini S., Calandra S. Familial hypercholesterolemia and mutations of the gene for low-density lipoproteins in Italy. Ann. 1st. Super. Sanita (1999) V. 35(2), p. 177−84.

18. Chakir Kh., Mandelshtam M.Ju., Shevtsov S.P. et al. Two novel low density lipoprotein receptor gene mutations (E397X and 347delGCC) in St. Petersburg familial hypercholesterolemia. Mol Gen. Metabol. (1998) Vol.65, p.311−314.

19. Chakir Kh., Skobeleva N.A., Shevtsov S.P. et al. Two novel Slavic point mutations in the low-density lipoprotein receptor gene in patients with familial hyperholesterolemia from St. Petersburg. Mol Gen. Metabol. (1997) V. 63, p.31−34.

20. Chen W.-J., Goldstein J.L., Brown M.S. NPXY, a sequence often found in cytoplasmic tails is required for coated pit-mediated internalisation of the LDL receptor. Biochemistry (1990) Vol. 265, p. 3116−3123.

21. Davis C.G., Goldstein Y.L., Sudhof T.C. et al. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature (1987) Vol. 326, p. 760−765.

22. Dirlam-Schatz K.A., Attie D.A. Calcium induces a conformational change in the ligand binding domain of the low density lipoprotein receptor. J. Lipid Res. (1998) Vol. 39, p.402−411.

23. Duncan E.A., Brown M.S., Goldstein J.L., Sakai J. Cleavage site for sterol-regulated protease localized to Leu-Ser bond in lumenal loop of sterol regulatory element binding protein-2. J. Biol Chem. (1997) V.272, p. 12 778−12 785.

24. Ellsworth J.L., Erickson S.K., Cooper A.D. Very low density lipoprotein syntesis and secretion by human hepatoma cell line Hep-G-2: effect of free fatty acids. J. Lipid Res, (1986) V.27, p. 858−874.

25. Ericsson J., Jackson S.M., Lee B.C., Edwards P.A. Sterol regulatory element binding protein binds to a cis element in the promoter of the farnesyl dpfeipiate synthase gefte. Proc. Natl Acad. Sci. USA (1996) V.93, p.945−950.

26. Esser V., Limbird L.E., Brown M.S. et al. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol. Chem. (1988) V.263(26), p. 13 282−90.

27. Ginsberg H., Davidson N., Ngos-Anh Le et al. Marked overproduction of low density lipoprotein apolipoprotein B in subjects with heterozygous familial hypercholesterolemia. Biohim. Biophis. Acta. (1982) V. 712, p. 250−257.

28. Goldstein J.L., Brown M.S. The low-density lipoprotein pathway and its relation to atherosclerosis. Ann. Rev. Biochem. (1977) V.46, p.897−930.

29. Goldstein J.L., Brown M.S. Familial hypercholesterolemia. The Metabolic Basis of Inherited Diseases. Eds. Scriver S.R., Beaudet A.L., Sly W.S., Valle D. 6th. Edn. N.Y. McGrawHill (1989) p.1215−1250.

30. Goldstein J.L., Brown M.S. Regulation of the mevalonate pathway. Nature1990) Vol.343, p.425−430,.

31. Goldstein J.L., Schrott H.G., Hazzard W.R. Hyperlipidemia in coronary heart disease. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia, J. Clin. Invest. (1973) Vol.52, pl544−1568.

32. Graadt van Roggen F., van der Westhuyzen D.R., Marais A.D. et al. Low density lipoprotein receptor founder mutations in Afrikaner familial hypercholesterolaemic patients: a comparison of two geographical areas. Hum. Genet.1991) V.88(2), p. 204−208.

33. Havel R, J, The formation of LDL: mechanisms and regulation. J. Lipid Res. (1984) V.25, p. 1570−1576.

34. Havel R.J., Yamada N., Shames D.M. Role of apolipoprotein E in lipoprotein metabolism. Am. Heart J. (1987) V, 113, p. 470−474.

35. Heath K.E., Gahan M., Whittall R.A., Humphries S.E. Low-density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis. Atherosclerosis (2001) V. 154(1), p.243−246.

36. Hobbs H.H., Brown M.S., Goldstein J.L. Molecular Genetics of the LDL Receptor Gene in Familial Hypercholesterolemia. Human Mutation. (1992) Vol.1, p.445−466.

37. Hobbs H.H., Brown M.S., Russel D. W, et al. Deletion in the gene for the low density lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia. N. Engl J. Med. (1987) Vol.317, p. 734−737.

38. Hobbs H.H., Leitrsdorf E., Goldstein Y.L. et al. Multiple crm-mutations in familial hypercholesterolemia: Evidence for 13 alleles, including four deletions. J. Clin. Invest (1988) Vol.81, p. 909−917.

39. Hua X., Nohturffi A., Goldstein J.L., Brown M.S. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage activating protein (SCAP). Cell (1996) V.87, p.415−426.

40. Innerarity T, L., Pitas R.E., Mahley R.W. Lipoprotein-receptor interactions. Meth. Enzymol. Eds. Albers J.J. et al. Acad. Press (1986) V. 129, p. 542−565.

41. Jensen H.K., Jensen L.G., Meinertz H. et al. Spectrum of LDL receptor gene mutations in Denmark: implications for molecular diagnostic strategy in heterozygous familial hypercholesterolemia. Atherosclerosis (1999) V. 146(2), p.337−344.

42. Jones L.A., Teramoto T., Juhn D.J. et al. Characterization of lipoprotein produced by perfused rhesus monkey liver. J. Lipid Res. (1984) V.25, p. 319−325.

43. Klimov A.N., Denisenko A.D., Popov A.V. et al. Lipoprotein-antibody immune complexes, their catabolism and role in foam cell formation. Atherosclerosis (1985) V.58,p. 1−15.

44. Kotze M.J., Langenhoven E., Theart L. et al. Report on a molecular diagnostic service for familial hypercholesterolemia in Afrikaners. Genet. Couns. (1994) V.5(l), p. 15−21.

45. Kunkel L.M., Smith K.D., Boyer S.H. et. al. Analyses of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc. Natl. Acad. Sci. USA (1977) Vol.74, p. 1245−1249.

46. Lehrman M.A., Goldstein J.L., Brown M.S. et. al. Internalisation-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell (1985) Vol. 41, p.735−743.

47. Leitersdorf E., Tobin E.J., Davignon J., Hobbs H.H. Common low-density lipoprotein receptor mutations in the French Canadian population. J. Clin. Invest. (1990) V. 85(4), p. 1014−1023.

48. Lombardi M.P., Redeker E.J., Defesche J.C. et al. Molecular genetic testing for familial hypercholesterolemia: spectrum of LDL receptor gene mutations in the Netherlands. J Clin Genet (2000) V.57(2), p. l 16−124.

49. Mahley R.W., Innerarity T.L., Rail S.C., Weisgraber K.H. Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. (1984) V.25, p. 12 771 294.

50. Mandelshtam M.Ju., Chakir Kh., Shevtsov S.P. et. al. Prevalence of Lithuanian mutation among St. Petersburg Jews with familial hypercholesterolemia. Human Mutation (1998) Vol.12, p. 255−258.

51. Mandelshtam M.Ju., Lipovetskyi B.M., Schwartzman A.L., Gaitskhoki V.S. A novel deletion in the low density lipoprotein receptor gene in a patient with familial hypercholesterolemia from Petersburg. Human Mutation (1993) Vol.2(4), p. 256- 260.

52. Markoff A., Savov A., Vladimirov V. et. al. Ortimization of single-strand conformational polymorphism analysis in the presence of polyethylene glycol. Clin. Chem. (1997) Vol.43, p. 30−33.

53. Maruyama T., Miyake Y., Tajima S. et al Common mutations in the low-density-lipoprotein-receptor gene causing familial hypercholesterolemia in the Japanese population. Arterioscler. Thromb. Vase. Biol. (1995) V. 15(10), p. 1713−1718.

54. Mehta K.D., Chen W.J., Goldstein Y.L., Brown M.S. The low density lipoprotein receptor in Xenopus laevis: I. Five domains that resemble the human receptor. J. Biol Chem. (1991) Vol. 266, p. 10 406−10 414.

55. Muller C. Xantomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. (1938) V.89, p. 75−84.

56. Mutt V, The Nobel Prize for physiology or medicine. In: «The Nobel Prize 1985», Stockholm, Almqvist & Wiksell Int. The Nobel Foundation (1986) p.23−24.

57. North C.L., Blacklow S.C. Evidence that familial hypercholesterolemia mutations of the LDL receptor cause limited local misfolding in an LDL-A module pair. Biochemistry (2000) V.39(43), p. 13 127−35.

58. Orita M., Iiwahana H., Sekiya T. et. al. Detection of polymorphism of human DNA by gel electrophoresis as single cell conformational polymorphism. Proc. Natl. Acad. Sei. U.S.A. (1990) Vol. 86, p. 2766−2770.

59. PCR Technology. Principles and Applications for DNA Amplification. / Ed. H.A. Erlich. Stocktons New York andMcMilan London (1989) p. 7−16.

60. Regnstrom J., Nilsson J. Lipid oxidation and inflammation-induced intimal fibrosis. J. Lab. Clin. Med. (1994) V.116, p. 162−168.

61. Reshef A., Nissen H., Triger L. et al. Molecular genetics of familial hypercholesterolemia in Israel. Hum. Genet. (1996) V.98(5), p.581−586.

62. Russel D.W., Goldstein J.L., Brown M.S. Different combinations of cystein-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J. Biol. Chem. (1989) Vol. 264, p. 21 682−21 688.

63. Russell D.W., Yamamoto T., Schneider W.J. et. al. cDNA cloning of the bovine LDL receptor: feedback regulation of a receptor mRNA. Proceed. Nat. Acad. Sci. USA (1983) V.80(24), p. 7501−7505.

64. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning, laboratory manual. CSH laboratory press (1989), p. 1.8−2.9.

65. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. (1977) Vol. 74, p. 5463−5467.

66. Shimano H., Horton J.D., Shimomura I. et. al. Isoform lc of sterol regulatory element binding protein is less active than isoform la in liver of transgenic mice and in cultured cells, J. Clin. Invest. (1997) V. 99, p.846−854.

67. Sudhof T.C., Goldstein J.L., Brown M.S., Russell D.W. The LDL receptor gene: a mosaic of exone shared with different proteins. Science (1985) V. 228, p.815−822.

68. Slack J. Inheritance of familial hypercholesterolemia. Atherosclerosis (1979) Vol. 5, p. 35−66.

69. Smith J.R., Osborne T, F., Goldstein J.L., Brown M.S. Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low-density lipoprotein receptor gene. Biol Chem. (1990) Vol.265, p. 2306−2310.

70. Varret M., Rabes J.-P., Collod-Beroud G. et. al. Software and database for the analysis of mutations in the human LDL receptor gene. Nucleic Acids Research (1997) Vol.25, p. 172−180.

71. Varret M., Rabes J.P., Thiart R,. et al. LDLR database (second edition): new additions to the database and the software, and results of the first molecular analysis. NAR (1998) Vol. 26, p.248−252.

72. Warnich L., Kotze M.J., Langenhoven E., Retief A.E. Detection of a frequent polymorphism in exon 10 of the low-density lipoprotein receptor gene. Human Genetics (1992) Vol. 89(3), p.362.

73. White M.B., Carvalho M., Derse D. et. al. Detecting single base substitutions as heteroduplex polymorphisms. Genomics (1992) Vol. 12, p. 301−306.

74. Willnow T, E, The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J. Mol Med. (1999) Vol.77, p. 306−315.

75. Yamamoto T., Bishop R.W., Brown M.S. et. al. Deletion in cysteine-rich region of LDL receptor impairs transport to cell surface in WHHL rabbit. Science (1986) Vol. 232, p. 1230−1237.

76. Yamamoto T., Davis C.G., Brown M.S. et. al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell (1984) Vol.39, p.27−38.

77. Yokoyama C., Wang X., Briggs M.R. et al. SREBP 1, a basic helix-loop-helix leucine zipper protein that controls transcription of the LDL receptor gene. Cell (1993) V.75, p. 187−197.

Показать весь текст
Заполнить форму текущей работой