Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

ΠœΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ Π°Ρ€Ρ…Π΅ΠΈ Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… отлоТСниях

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ ТизнСспособных ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Π² ΡΠΈΠ½ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… осадках, Π½Π΅ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π½, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡ€ΠΈΡΡ‚Π½Ρ‹Ρ… условиях для сохранСния ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… Π°Ρ€Ρ…Π΅ΠΉ Π² Π΄Π°Π½Π½Ρ‹Ρ… отлоТСниях. ОбъСм ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° диссСртации. ДиссСртация состоит ΠΈΠ· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, пяти Π³Π»Π°Π², Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΏΠΈΡΠΊΠ° Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Она ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π° Π½Π° 103 страницах тСкста, сопровоТдаСтся 27 ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡΠΌΠΈ ΠΈ 12 Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌΠΈ. Π’Ρ‹ΡΠ²ΠΈΡ‚ΡŒ присутствиС… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ГЛАВА 1. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 1. 1. ΠœΠ΅Ρ‚Π°Π½ ΠΈ Π΅Π³ΠΎ Ρ€ΠΎΠ»ΡŒ Π² Π±ΠΈΠΎΡΡ„Π΅Ρ€Π΅
    • 1. 2. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ источники ΠΌΠ΅Ρ‚Π°Π½Π°
    • 1. 3. ΠœΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ Π°Ρ€Ρ…Π΅ΠΈ
    • 1. 4. *. ВаксономияфилогСния ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ²
    • 1. 5. Бубстраты для ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Π΅Π·Π°^
    • 1. 6. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-биологичСскиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹, ΠΊ Ρ…арактСристикС сообщСств ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ†ΠΈΠΊΠ»Π° ΠΌΠ΅Ρ‚Π°Π½Π°
    • 1. 7. ΠœΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Ρ‹ Ρ…ΠΎΠ»ΠΎΠ΄Π½Ρ‹Ρ… экотопов
    • 1. 8. ВрофичСскиС связи Π² ΡΠΎΠΎΠ±Ρ‰Π΅ΡΡ‚Π²Π΅ ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Π² Ρ…ΠΎΠ»ΠΎΠ΄Π½Ρ‹Ρ… экотопах
    • 1. 9. ΠœΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Π΅Π·Π² условиях Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€
  • ГЛАВА 2. ΠžΠ‘ΠͺΠ•ΠšΠ’Π« Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π―
    • 2. 1. ΠšΠΎΠ»Ρ‹ΠΌΡΠΊΠ°Ρ Π½ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ
    • 2. 2. Π‘ΡƒΡ…ΠΈΠ΅ Π΄ΠΎΠ»ΠΈΠ½Ρ‹ Антарктиды
  • ГЛАВА 3. ΠœΠ•Π’ΠžΠ”Π« Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π―
    • 3. 1. ΠžΡ‚Π±ΠΎΡ€ ΠΈ Π΄Π°Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ²
    • 3. 2. Π‘Ρ…Π΅ΠΌΠ° экспСримСнтов
    • 3. 3. ΠŸΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΈ Π°Π½Π°Π»ΠΈΡ‚ичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.38'
    • 3. 4. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 3. 5. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 3. 5. 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π”ΠΠš
      • 3. 5. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³Π΅Π½Π° 16Π­ Ρ€Π ΠΠš чистых ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€
      • 3. 5. 3. ЀилогСнСтичСский Π°Π½Π°Π»ΠΈΠ·
      • 3. 5. 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π“Π¦ состава. Π”ΠΠš
      • 3. 5. 5. Π”ΠΠš-Π”ΠΠš гибридизация
      • 3. 5. 6. ΠŸΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌ Π΄Π»ΠΈΠ½ ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ… рСстрикционных Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² (Π’-РРИР)
      • 3. 5. 7. ΠžΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌ (Π²Π²Π‘Π )
      • 3. 3. 8. ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ ΠΊΠ»ΠΎΠ½ΠΎΠ² Π³Π΅Π½ΠΎΠ² 168″ Ρ€Π ΠΠš
  • ГЛАВА 4. РЕЗУЛЬВАВЫ
    • 4. 1. ИсслСдованиС структуры сообщСства ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ Арктики
    • 4. 2. ΠœΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ Π°Ρ€Ρ…Π΅ΠΈ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ ΠšΠΎΠ»Ρ‹ΠΌΡΠΊΠΎΠΉ низмСнности
      • 4. 2. 1. Π¨Ρ‚Π°ΠΌΠΌ ΠœΠ΅Π˜ΠΏΠ°ΠΏΠΎΠ‘Π°Π³Ρ’Ρ‚Π° эр. Π›
      • 4. 2. 2. Π¨Ρ‚Π°ΠΌΠΌΡ‹ МС^Π°ΠΏΠΎΠ¬Π°^Π΅ΠΏΠΈΡ‚ ΡΡ€. ΠœΠšΠ— ΠΈ ΠœΠ΅Π˜1Π°ΠΏΠΎΠ¬Π°&Π΅ΠΏΠΈΡ‚ ΡΡ€. МК
    • 4. 3. ΠœΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Ρ‹ Π² Π²Π΅Ρ‡Π½ΠΎΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… отлоТСниях*Антарктиды
  • ГЛАВА 5. ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
  • Π’Π«Π’ΠžΠ”Π«

ΠœΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ Π°Ρ€Ρ…Π΅ΠΈ Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… отлоТСниях (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ‚Π΅ΠΌΡ‹

ИсслСдованиям послСдних Π΄Π΅ΡΡΡ‚ΠΈΠ»Π΅Ρ‚ΠΈΡŽ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈΡ‡Ρ‚ΠΎ Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ экосистСмы ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ? ΠΊΠ»ΠΈΠΌΠ°Ρ‚Π° Π—Π΅ΠΌΠ»ΠΈ ΠΈ Π±Π°Π»Π°Π½ΡΠ΅ ΠΏΠ°Ρ€Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… Π³Π°Π·ΠΎΠ². Π² Π°Ρ‚мосфСрС [Corradi et al., 2005], Π° Ρ‚ундровая: зонаявляСтся Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ источником: Π±ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π½Π°: Π’ Π½Π°Ρ‡Π°Π»Π΅ дСвяностых Π³ΠΎΠ΄ΠΎΠ²: Π±Ρ‹Π»ΠΎ: ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΎΡ‡Ρ‚ΠΎΡˆΠΎΠΌΠΈΠΌΠΎ сСзонно-Ρ‚Π°Π»ΠΎΠ³ΠΎ слоя" Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ количСство мСтананаходитсяв Π²Π΅Ρ‡Π½ΠΎΠΉ ΠΌΠ΅Ρ€Π·Π»ΠΎΡ‚Π΅ ΠΈ Π²Ρ‹Π²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ· ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ — биогСохимичСского ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° [Π ΠΈΠ²ΠΊΠΈΠ½Π° ΠΈ? Π΄Ρ€., 1992; Rivkina et.

ΠœΠ΅Ρ‚Π°Π½ Π² Π²Π΅Ρ€Ρ…Π½ΠΈΡ… — Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Ρ… криолитосфСры, Π²: ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠ³ΠΎΡΠΏΠΎΡΠΎΠ±Π΅Π½ Π»Π΅Π³ΠΊΠΎ: Π²Ρ‹ΡΠ²ΠΎΠ±ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ: Π² Π°Ρ‚мосфСру ΠΏΡ€ΠΈ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ€Π·Π»ΠΎΡ‚Ρ‹, Ρ‡Ρ‚ΠΎ сСгодня Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡΠ½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΏΡ€ΠΈ Ρ‚Π΅Ρ€ΠΌΠΎΠ°Π±Ρ€Π°Π·ΠΈΠΈ ΠΡ€ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎΠΏΠΎΠ±Π΅Ρ€Π΅ΠΆΡŒΡ: ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ, ΠΎΠΆΠΈΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ. Π² ΡΠ»ΡƒΡ‡Π°Π΅ оттаивания ΠΌΠ΅Ρ€Π·Π»ΠΎΡ‚Ρ‹ ΠΏΠ°Π»Π΅ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ΅-сообщСство Π±ΡƒΠ΄Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π²ΠΎΠ²Π»Π΅ΠΊΠ°Ρ‚ΡŒΡΡ Π² Π±ΠΈΠΎΠ³Π΅ΠΎΡ…имичСскиС процСссы, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… Π³Π°Π·ΠΎΠ² Π·Π° ΡΡ‡Π΅Ρ‚ ΡΡ‚Π°Π²ΡˆΠ΅Π³ΠΎ доступным органичСского вСщСства [Rivkina et al., 2001]. ИспользованиС Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… субстратов (NaH14C03 ΠΈ Na14CH3C02) ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ… ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ ΠΈΡ… ΠΎΡ‚Ρ‚Π°ΠΈΠ²Π°Π½ΠΈΠΈ, Π½ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… Π΄ΠΎ -16.5Β°Π‘ [Rivkina et al., 2002, 2004, 2005]. — ΠŸΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈ мСтаболичСской активности ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Π²-ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ…. Для? ΠΎΡ†Π΅Π½ΠΊΠΈ: повСдСниямСтансодСрТащих ΠΏΠΎΡ€ΠΎΠ΄ ΠΏΡ€ΠΈ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ€Π·Π»ΠΎΡ‚Ρ‹-, β€’Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ.Π·Π½Π°Ρ‚ΡŒ содСрТаниС Π² Π½ΠΈΡ…ΠΌΠ΅Ρ‚Π°Π½Π°' ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ифаспрСдСлСнияг ΠΌΠ΅Ρ‚Π°Ρ‚Π³ΠΎΠ±Ρ€Π°Π·ΡƒΡ‰ΠΈΡ… Π°Ρ€Ρ…Π΅ΠΉ Π² ΠΎΡΠ½ΠΎΠ²Π½Ρ‹Ρ… стратиграфичСских Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Ρ… ΠΌΠ΅Ρ€Π·Π»ΠΎΠΉ-Ρ‚ΠΎΠ»Ρ‰ΠΈ.

Π”ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ описано всСго нСсколько Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ², Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… экотопов: Methanococcoides burtonii [Franzmann et al., 1992], Methanogenium frigidum [Franzmann et al., 1997], Methanomethylovorans hollandica [Lomans et al., 1999], Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π½Π΅ Π²ΡΡ‚Ρ€Π΅Ρ‡Π΅Π½ΠΎ описаний ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π°Ρ€Ρ…Π΅ΠΉ, β€’ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… нСпосрСдствСнно ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния сообщСства ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² ΠΈ ΠΈΡ… Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ….

ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: характСристика сообщСства ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ… Ρ€Π°Π·Π½ΠΎΠ³ΠΎ возраста ΠΈ Π³Π΅Π½Π΅Π·ΠΈΡΠ°.

Π—Π°Π΄Π°Ρ‡ΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹:

β€’ Π’Ρ‹ΡΠ²ΠΈΡ‚ΡŒ присутствиС ТизнСспособных ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… Π°Ρ€Ρ…Π΅ΠΉ Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ… Арктики ΠΈ ΠΠ½Ρ‚Π°Ρ€ΠΊΡ‚ΠΈΠ΄Ρ‹.

β€’ ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ закономСрности распрСдСлСния ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Π² Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ возраста ΠΈ Π³Π΅Π½Π΅Π·ΠΈΡΠ°.

β€’ ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ Π² ΡΠΎΠΎΠ±Ρ‰Π΅ΡΡ‚Π²Π΅ ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ.

ΠžΠ±ΡŠΠ΅ΠΊΡ‚ исслСдования: ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Π΅ осадочныС ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ ΠšΠΎΠ»Ρ‹ΠΌΡΠΊΠΎΠΉ низмСнности ΠΈ Π΄ΠΎΠ»ΠΈΠ½Ρ‹ ΠœΠ°ΠΉΠ΅Ρ€ΡΠ° (Антарктида, Π‘ΡƒΡ…ΠΈΠ΅ Π”ΠΎΠ»ΠΈΠ½Ρ‹).

Научная Π½ΠΎΠ²ΠΈΠ·Π½Π°: Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅:

S ΡΠΎΠΎΠ±Ρ‰Π΅ΡΡ‚Π²ΠΎ ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ исслСдованы с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ микробиологичСских ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-экологичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ².

S ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ гСнСтичСских ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ… ΠšΠΎΠ»Ρ‹ΠΌΡΠΊΠΎΠΉ низмСнности ΠΈ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ срСди Π½ΠΈΡ… порядка Methanosarciriales, β€’f ΠΈΠ· Π΄Ρ€Π΅Π²Π½ΠΈΡ… ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ возраста ΠΈ Π³Π΅Π½Π΅Π·ΠΈΡΠ° Арктики ΠΈ ΠΠ½Ρ‚Π°Ρ€ΠΊΡ‚ΠΈΠ΄Ρ‹ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ ΠΎΠΏΠΈΡΠ°Π½Ρ‹ ТизнСспособныС ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½Ρ‹.

ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ экологии, ΠΊΡ€ΠΈΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, модСлях повСдСния ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄ ΠΏΡ€ΠΈ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹Ρ… климатичСских измСнСниях ΠΈ Π² Π°ΡΡ‚Ρ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ.

ОбъСм ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° диссСртации. ДиссСртация состоит ΠΈΠ· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, пяти Π³Π»Π°Π², Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΏΠΈΡΠΊΠ° Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Она ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π° Π½Π° 103 страницах тСкста, сопровоТдаСтся 27 ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡΠΌΠΈ ΠΈ 12 Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌΠΈ.

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ 180 Π½Π°ΠΈΠΌΠ΅Π½ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΈΠ· Π½ΠΈΡ… 171 — Π½Π° ΠΈΠ½ΠΎΡΡ‚Ρ€Π°Π½Π½ΠΎΠΌ языкС.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ГСнСтичСскиС ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… Π°Ρ€Ρ…Π΅ΠΉ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠ°ΠΊ Π² ΡΠΏΠΈΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ Π² ΡΠΈΠ½ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… отлоТСниях.

2. ЖизнСспособныС ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ Π°Ρ€Ρ…Π΅ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΡΠΏΠΈΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… отлоТСниях, содСрТащих ΠΌΠ΅Ρ‚Π°Π½.

3. ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ ТизнСспособных ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Π² ΡΠΈΠ½ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… осадках, Π½Π΅ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π½, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡ€ΠΈΡΡ‚Π½Ρ‹Ρ… условиях для сохранСния ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… Π°Ρ€Ρ…Π΅ΠΉ Π² Π΄Π°Π½Π½Ρ‹Ρ… отлоТСниях.

4. Π’ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ… ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‚ прСдставитСли порядка Methanosarcinales.

5. Из ΡΠΏΠΈΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ:

β€’ Π³ΠΎΠ»ΠΎΡ†Π΅Π½ΠΎΠ²ΠΎΠ³ΠΎ возраста (3 тыс. Π»Π΅Ρ‚, ΠšΠΎΠ»Ρ‹ΠΌΡΠΊΠ°Ρ Π½ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ) Π²Ρ‹Π΄Π΅Π»Π΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΡˆΡ‚Π°ΠΌΠΌ Methnosarcina mazeii JL01.

β€’ ΠΏΠΎΠ·Π΄Π½Π΅ΠΏΠ»ΠΈΠΎΡ†Π΅Π½ΠΎΠ²ΠΎΠ³ΠΎ возраста (3 ΠΌΠ»Π½. Π»Π΅Ρ‚, ΠšΠΎΠ»Ρ‹ΠΌΡΠΊΠ°Ρ Π½ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ) Π²Ρ‹Π΄Π΅Π»Π΅Π½ ΠΈ ΠΎΠΏΠΈΡΠ°Π½ Π½ΠΎΠ²Ρ‹ΠΉ Π²ΠΈΠ΄ ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ³Π΅Π½ΠΎΠ² Methanobacterium veterum sp. nov. позднСплСйстоцСнового возраста (30 тыс. Π»Π΅Ρ‚, Π΄ΠΎΠ»ΠΈΠ½Π° ΠœΠ°ΠΉΠ΅Ρ€ΡΠ°) Π²Ρ‹Π΄Π΅Π»Π΅Π½Π° ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π° Methanosarcina sp.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π‘.Π‘. ΠœΠ΅Ρ‚Π°Π½ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΈ ΠΈΡ… Ρ€ΠΎΠ»ΡŒ Π² Π±ΠΈΠΎΠ³Π΅ΠΎΡ…имичСском Ρ†ΠΈΠΊΠ»Π΅. АвторСф. дисс. Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡƒΡ‡. ст. ΠΊΠ±Π½. ΠŸΡƒΡ‰ΠΈΠ½ΠΎ, 1984. 33с
  2. Π’.Π€. ΠœΠ΅Ρ‚Π°Π½ΠΎΡ‚Ρ€ΠΎΡ„Π½Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ. Π“Π•ΠžΠ‘ М, 2001.
  3. Π”.А., Π₯Π»Π΅Π±Π½ΠΈΠΊΠΎΠ²Π° Π“. М., ЗвягинцСв Π”. Π“., Π€Π΅Π΄ΠΎΡ€ΠΎΠ²-Π”Π°Π²Ρ‹Π΄ΠΎΠ² Π”.Π“., ΠšΡƒΠ΄Ρ€ΡΠ²Ρ†Π΅Π²Π° Н. Н. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ характСристики ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ осадочных ΠΏΠΎΡ€ΠΎΠ΄ ΠΊΡ€ΠΈΠΎΠ»ΠΈΡ‚ΠΎΠ·ΠΎΠ½Ρ‹ // Изв. АН Π‘Π‘Π‘Π . Π‘Π΅Ρ€. Π“Π΅ΠΎΠ». 1989. № 6. с. 103−115.
  4. Π€. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠ±Ρ‰Π΅ΠΉ*Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. М.: ΠœΠΈΡ€, 1983.
  5. М. Π’. МинССва JI.A. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ. ИЦ «ΠΠΊΠ°Π΄Π΅ΠΌΠΈΡ» М., 2003.
  6. Π•.М., Π‘Π°ΠΌΠ°Ρ€ΠΊΠΈΠ½ Π’. А., Гиличинский Π”. А. ΠœΠ΅Ρ‚Π°Π½ Π² ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅ΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… отлоТСниях ΠšΠΎΠ»Ρ‹ΠΌΠΎ-Π˜Π½Π΄ΠΈΠ³ΠΈΡ€ΡΠΊΠΎΠΉ низмСнности // Π”ΠΎΠΊΠ». РАН. 19 921 Ρ‚. 323. № 3. с. 559−563.
  7. Π•., ΠšΡ€Π°Π΅Π² Π“., ΠšΡ€ΠΈΠ²ΡƒΡˆΠΈΠ½ К., Π›Π°ΡƒΡ€ΠΈΠ½Π°Π²ΠΈΡ‡ΡŽΡ К., Π€Π΅Π΄ΠΎΡ€ΠΎΠ²-Π”Π°Π²Ρ‹Π΄ΠΎΠ² Π”., Π₯ΠΎΠ»ΠΎΠ΄ΠΎΠ² А., Π©Π΅Ρ€Π±Π°ΠΊΠΎΠ²Π° Π’., Гиличинский Π”. ΠœΠ΅Ρ‚Π°Π½ Π² Π²Π΅Ρ‡Π½ΠΎΠΌΠ΅Ρ€Π·Π»Ρ‹Ρ… отлоТСниях сСвСро-восточного сСктора Π°Ρ€ΠΊΡ‚ΠΈΠΊΠΈ // ΠšΡ€ΠΈΠΎΡΡ„Π΅Ρ€Π° Π—Π΅ΠΌΠ»ΠΈ. 2006. 3. Ρ‚. 10. с. 23−41.
  8. Π’., Попов А., Шумский П. ΠŸΠ΅Ρ‚Ρ€ΠΎΠ³Π΅Π½Π΅Π· ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹Ρ… льдов. Изд-Π²ΠΎ" Наука," БибирскоС ΠΎΡ‚Π΄-Π½ΠΈΠ΅, 1986.
  9. Alperin М., Reeburgh- W. Inhibition experiments on anaerobic methane oxidation // Applied and Environmental Microbiology. 1985. 4. Vol. 50.' p. 940.
  10. Amann R., Ludwig W., Schleifer K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation // Microbiology and Molecular Biology Reviews. 1995. 1. Vol. 59. p. 143.
  11. Arkhangelov A., Novgorodova E. Genesis of massive ice at 'ice mountain', yenesei river, western Siberia, according to results of gas analyses // Permafrost and Periglacial Processes. 2006. 2: Vol. 2. p. 167−170.
  12. Baker G., Smiths J., Cowan D. Review and re-analysis of domain-specific 16s primers // Journal of microbiological methods. 2003. 3. Vol. 55. p: 541 555.
  13. Bapteste E., Brochier C., Boucher Y. Higher-level classification of the archaea: Evolution of methanogenesis andmethanogens // Archaea. 2005. 5. Vol. l.p. 353−63.
  14. Bassam B., Caetano-Anoll s G., Gresshoff P. Fast and sensitive silver staining of DNA in polyacrylamide gels // Analytical biochemistry. 1991. 1. Vol. 196. p. 80−83.
  15. Bleicher K., Zellner G., Winter J. Growth of methanogens on cyclopentanol/co2 and specificity of alcohol dehydrogenase // FEMS microbiology letters. 1989. 3. Vol. 59. p. 307−312.
  16. Bonin A., Boone D. The order methanobacteriales // Prokaryotes. 2006. Vol. 3. p. 231−243.
  17. Bracke Jj, Cruden D., Markovetz A. Intestinal microbial flora of the of the american cockroach, periplaneta americana 1 // Applied and Environmental Microbiology. 1979. 5. Vol. 38. p. 945.
  18. Brioukhanov A., Netrusov A., Sordel M., Thauer R., Shima S. Protection of methanosarcina barker! against oxidative stress: Identification5 and characterization of an iron superoxide dismutase // Archives of microbiology. 2000. 3. Vol. 174. p. 213−216.
  19. Bryant M., Wolin E., Wolin M., Wolfe R. Methanobacillus omelianskii, a symbiotic association of two species of bacteria // Archives of microbiology.1967. 1. Vol. 59. p. 20−31.
  20. Bryant M. Microbiology of the rumen // Duke’s physiology of domestic animals. 9th ed. Cornell University Press. Ithaca. NY. 1977. Vol. p. 287-'304.
  21. Bryant M., Boone D. Isolation, and characterization of methanobacterium formicicum mf // International Journal of Systematic: and Evolutionary Microbiology. 1988. 4. Vol. 38. p. 453.
  22. Carpenter E., Lin S., Capone D. Bacterial activity in south pole snow // Applied and Environmental Microbiology. 2000. 10. Vol. 66. p. 4514.
  23. Cicerone R., Oremland R. Biogeochemical> aspects of atmospheric methane // Global Biogeochemical Cycles. 1988. 4. Vol. 2. p. 299−327. '
  24. Coplen T. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances // Pure and Applied Chemistry. 1994. Vol. 66. p. 273−273.
  25. Corradi C., Kolle O., Walter K., Zimov S., Schulze E. Carbon dioxide and methane exchange of a north-east Siberian tussock tundra // Global Change Biology. 2005. 11. Vol. 11. p. 1910−1925.
  26. Daniels L., Fuchs G., Thauer R., Zeikus J- Carbon monoxide oxidation by methanogenic bacteria //Journal of Bacteriology. 1977. 1. Vol. 132. p. 118.
  27. De Ley J., Caffon H., Reinaerts A. The quantitative measurements of hybridization DNA from renaturation rates // Eur J Biochem. 1970. Vol. 12. p. 133−140:
  28. DeLong E., Pace N. Environmental diversity of bacteria and archaea // Systematic Biology. 2001. 4. Vol. 50. p. 470−478.
  29. Edwards C., Hales B., Hall G., McDonald I., Murrell J., Pickup R., Ritchie
  30. D., Saunders J., Simon B., Upton M. Microbiological processes in theterrestrial carbon cycle: Methane cycling in peat // Atmospherict
  31. Environment. 1998. 19. Vol. 32. p. 3247−3255.
  32. Ehhalt D., Prather M., Dentener F., Derwent R., Dlugokencky E., Holland
  33. E., Isaksen I., Katima J., Kirchhoff V., Matson P. Atmospheric chemistry and greenhouse gases, Houghton, JT et al- Cambridge University Press. Cambridge. United Kingdom. 2001.
  34. Ferry J. Methanogenesis: Ecology, physiology, biochemistry & genetics, Springer. 1993.
  35. Forney L., Zhou X., Brown C. Molecular microbial ecology: Land of the one-eyed king // Current opinion in microbiology. 2004. 3. Vol. 7. p. 210 220.
  36. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R. Changes in atmospheric constituents and in radiative forcing // Climate change 2007: The physical science basis. 2007.
  37. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D., Haywood J., Lean J., Lowe D., Myhre G. Changes in atmospheric constituents and in radiative forcing // Climate change. 2007. Vol. 20.
  38. Franzmann P., Springer N., Ludwig W., Conway de Macario E., Rohde M. A methanogenic archaeon from ace lake, antarctica: Methanococcoides burtonii sp. Nov // Systematic and Applied Microbiology. 1992. 4. Vol. 15. pi 573−581.
  39. Friborg T., Christensen T., Hansen B., Nordstroem C., Soegaard H. Trace gas exchange in a high-arctic valley 2. Landscape ch4 fluxes measured and modeled using eddy correlation data // Global Biogeochemical Cycles. 2000. 3. Vol. 14. p. 715−723.
  40. Galagan J., Nusbaum C., Roy A., Endrizzi M., Macdonald P., FitzHugh W., Calvo S., Engels R., Smirnov S., Atnoor D. The genome of m. Acetivorans reveals extensive metabolic and physiological diversity // Genome research.2002. 4. Vol. 12. p. 532.
  41. Galand P., Fritze H., Yrj 1 K. Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen // Environmental Microbiology.2003. 11. Vol. 5. p. 1133−1143.
  42. Galand P., Saarnio S., Fritze H., Yrj 1 K. Depth related diversity of methanogen archaea in finnish oligotrophic fen // FEMS microbiology ecology. 2006. 3. Vol. 42. p. 441−449.
  43. Gans J., Wolinsky M., Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil // Science. 2005. 5739. Vol. 309. p. 1387.
  44. Ganzert L., Jurgens G., Munster U., Wagner D. Methanogenic communities in permafrost-affected- soils of the laptev sea coast, Siberian arctic, characterized by 16s rrna gene fingerprints // FEMS microbiology ecology. 2007. 2. Vol. 59. p. 476−488.
  45. Genney D., Anderson I., Alexander I. Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium // New Phytologist. 2006. 2. Vol. 170. p. 381−390.
  46. Gilichinsky D., Rivkina E., Samarkin V. The ancient viable microorganisms and radiative gases in west beringia permafrost: Research opportunities for paleoecological implications and forecast // Terrestrial Paleoenvironmental
  47. Studies in Beringia (Edwards M, Sher A & Gutry D, eds). 1997. Vol. p.134.145.
  48. Gray N., Head I. Linking genetic identity and function in communities of uncultured bacteria // Environmental Microbiology. 2001. 8. Vol. 3. p. 481 492.
  49. Hansen A., Mitchell D., Wiuf C., Paniker L., Brand T., Binladen J., Gilichinsky D., Ronn R., Willerslev E. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments // Genetics. 2006. 2. Vol. 173. p. 1175.
  50. Head I., Saunders J., Pickup R. Microbial evolution, diversity, and ecology: A decade of ribosomal rna analysis of uncultivated microorganisms // Microbial Ecology. 1998. 1. Vol. 35. p. 1−21.
  51. Hedderich R., Whitman W. Physiology and biochemistry of the methane-producing archaea // The prokaryotes. 2006. Vol. 2. p. 1050−1079.
  52. Higuchi R., Ochman H. Production of single-stranded DNA templates- by exonuclease digestion following the polymerase chain reaction // Nucleic acids research.' 1989. 14. Vol. 17. p. 5865.
  53. Hofmann D-, Butler J, Dlugokencky E, Elkins J., Masarie K., Montzka S., Tans P. The role of carbon dioxide in climate forcing from 1979 to 2004: Introduction of the annual greenhouse gas index // Tellus. 2006. 5. Vol. 58. p. 614−619.
  54. Horn M-, Matthies C., Kusel K., Schramm A., Drake H. ITydrogenotrophic methanogenesis, by moderately acid-tolerant methanogens of a methane-emitting acidic peat// Applied and Environmental Microbiology. 2003. 1. Vol. 69. p. 74.
  55. Hornibrook E., Longstaffe F., Fyfe W. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments // Geochimica et Cosmochimica Acta. 2000. 6. Vol. 64. p. 1013−1027.
  56. Horz H., Rotthauwe J., Lukow T., Liesack W. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by t-rflp analysis of amoa per products // Journal of microbiological methods. 2000. 3. Vol. 39. p. 197−204.
  57. Hugenholtz P., Goebel B., Pace N. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity // Journal of Bacteriology. 1998. 18. Vol. 180. p. 4765.
  58. Hullar M., Kaplan L., Stahl D. Recurring seasonal dynamics of microbial communities in stream habitats // Applied and Environmental Microbiology. 2006. 1. Vol. 72. p. 713.
  59. Hungate R. A roll tube, method for cultivation of strict anaerobes //Methods in microbiology. 1969:'Voli 3: p. 117−132.
  60. Ishii K., Fukui Mi Optimization? of annealing temperature to reduce bias ' caused? by a* primer mismatch in multitemplate pen* // Applied and EnvironmentaliMicrobiology. 2001. 8. Vol. 67. p. 3753.
  61. Jones- W., Leigh J., Mayer F., Woese1 C.,. Wolfe R. Methanococcus jannaschii sp. Nov., an extremely thermophilic methanogen from a submarine hvdrothermal vent // Archives of microbiology. 1983. 4. Vol. 136. p. 254−261. .
  62. Karakashev D., Batstone DJ., Angelidaki. I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors // Appl Environ Microbiol. 2005. 1. Vol. 71. p. 331−8.
  63. Kato M., Field J., Lettinga G. Anaerobe tolerance to oxygen and the potentials of anaerobic and aerobic cocultures for wastewater treatment // Brazilian Journal of Chemical Engineering. 1997. Vol. 14.
  64. Katsiveia E., Moore E., Maroukli D., Str mpl C., Pieper D., Kalogerakis N., Bacterial community dynamics during in-situ- bioremediation of petroleum waste sludge in landfarming sites // Biodegradation. 2005. 2. Vol. 16. p. 169−180.
  65. Kennedy N.,. Edwards S-, Clipson N. Soil bacterial and- fungal community structure across a range of unimproved and: semi-improved upland grasslands //Microbial Ecology. 2005. 3. Vol. 50. p. 463−473. .
  66. Keppler F., Hamilton J-, Bra M., R ckmann T. Methane emissions from terrestrial plants under aerobic conditions // Nature. 2006- 7073. Vol. 439. p. 187−191.
  67. Kiene R., Oremland R., Catena A., Miller L., Capone D. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen // Applied and Environmental Microbiology. 1986. 5. Vol. 52. p. 1037.
  68. Kotelnikova S., Pedersen K. Evidence for methanogenic archaea and homoacetogenic bacteria in deep granitic rock aquifers // FEMS Microbiology Reviews. 2006. 3−4'. Vol. 20: p. 339−349.
  69. Kotsyurbenko O. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems // FEMS microbiology ecology. 2006. 1. Vol. 53. p. 3−13.
  70. Kudo Y., Nakajima T., Miyaki T., Oyaizu H. Methanogen flora of paddy soils in japan // FEMS microbiology ecology. 2006. 1. Vol. 22. p. 39−48.
  71. Kvenvolden K. Methane hydrate—a'major reservoir of carbon in the shallow geosphere? // Chemical Geology. 1988. 1−3. Vol. 71. p. 41−51.
  72. Leybo A., Netrusov A., Conrad R. Effect of hydrogen concentration on the community structure of hydrogenotrophic methanogens studied by t-relp analysis of 16s rrna gene amplicons // Microbiology. 2006. 6. Vol. 75. p. 683−688.
  73. Liesack W., Dunfield P. Biodiversity in soils: Use of molecular methods for its characterization // Encyclopedia of environmental microbiology. John Wiley and Sons. New York. NY. 2002. Vol. p. 528−544.
  74. Little J., Lehman I., Kaiser A. An exonuclease induced" by bacteriophage lambda. I. Preparation of the crystalline enzyme // The Journal of biological chemistry. 1967. 4. Vol. 242. p. 672.
  75. Liu W., Marsh T., Cheng H., Forney L. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16s rrna // Applied and Environmental Microbiology. 1997. 11. Vol. 63. p. 4516.
  76. Liu Y., Whitman W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. // Annals of the New York Academy of Sciences. 2008. Vol. 1125. p. 171−189.
  77. Lord N., Kaplan C., Shank P., Kitts C., Elrod S. Assessment of fungal diversity using terminal restriction fragment (trf) pattern analysis: Comparison of 18s and its ribosomal regions // Christopher L. Kitts. 2002. Vol. p. 16.
  78. Lowe D. Global change: A green source of surprise // Nature. 2006: Vol. 439. p. 148−149.
  79. Ma K., Liu X., Dong X. Methanobacterium beijingense sp. Nov., a novel methanogen isolated from anaerobic digesters // International Journal of Systematic and Evolutionary Microbiology. 2005. 1. Vol. 55. p. 325.
  80. Macario A., Conway D. Thev molecular chaperone system and other antistress mechanisms in archaea // Frontiers in bioscience: a journal and virtual library. 2001. Vol. 6. p. D262.
  81. MacNaughton S., Stephen J., Venosa A., Davis Gi, Chang Y., White D. Microbial population changes during bioremediation of an experimental oil spill // Applied and Environmental Microbiology. 1999. 8. Vol. 65. p. 3566.
  82. Mah R. Isolation and characterization of methanococcus mazei // Current Microbiology. 1980. 6. Vol. 3. p. 321−326.
  83. Mah R., Boone D. Methanosarcina // Bergey’s Manual of Systematic Microbiology (Staley JT, Pfennig N, Murrey RJE & Holt JG, eds). 1987. Vol. p. 2198−2205.
  84. Marmur J., Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature* // Journal of Molecular Biology. 1962. 1. Vol. 5. p. 109−118.
  85. Mathrani I., Boone D., Mah R., Fox G., Lau P. Methanohalophilus zhilinae sp. Nov., an alkaliphilic, halophilic, methylotrophic methanogen // International Journal of Systematic and Evolutionary Microbiology. 1988. 2. Vol. 38. p. 139.
  86. Matthews E., Fung I. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources // Global Biogeochem. Cycles. 1987. 1. Vol. 1. p. 61−86.
  87. Meure C., Etheridge D., Tmdinger C., Steele P., Langenfelds R., Van Ommen T., Smith A., Elkins J. Law dome co, ch and no ice core records extended to 2000 years bp // Geophys. Res. Lett. 2006. Vol. 33. p. L14810.
  88. Mikaloff Fletcher S., Tans P., Bruhwiler L., Miller J., Heimann M. Ch4 sources estimated from atmospheric observations of ch4 and its c-13/c~12 isotopic ratios: 1. Inverse modeling of source processes // Global Biogeochemical Cycles. 2004. 4. Vol. 18.
  89. Miller T., Wolin M. A serum bottle modificationof the hungate technique for cultivating obligate anaerobes // Applied Microbiology. 1974/Vol. p. 985 987.
  90. Mintie A., Heichen R., Cromack Jr K., Myrold D., Bottomley P. Ammonia-oxidizing bacteria along meadow-to-forest transects in. the oregon cascade mountains // Applied and Environmental Microbiology. 2003. 6. Vol. 69. p. 3129.
  91. Mohanty S., Bodelier P., Floris V., Conrad R. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils // Applied and Environmental Microbiology. 2006. 2. Vol. 72. p. 1346.
  92. Morita R. Psychrophilic bacteria // Microbiology and Molecular Biology. Reviews. 1975. 2. Vol. 39. p. 144.
  93. Ngatchou Djao O.D. Anaerobic microbial communities from two iron-rich sediments of the lakes monoun and merseburg. Braunschweig. Techn. Univ. 2009.
  94. Nocker A., Burr M., Camper A. Genotypic microbial community profiling: A* critical technical review // Microbial Ecology. 2007. 2. Vol. 54. p. 276 289.
  95. Noll M., Matthies D., Frenzel P., Derakshani M., Liesack W. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient // Environmental Microbiology. 2005. 3. Vol. 7. p. 382−395.
  96. Oremland R. Methanogenic activity in plankton samples and fish intestines: A mechanism for in situ methanogenesis in oceanic surface waters // Limnology and Oceanography. 1979. Vol. p. 1136−1141.
  97. Oremland R., Des Marais D. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in big soda lake, nevada: An alkaline, meromictic lake // Geochimica et Cosmochimica Acta. 1983. 12. Vol. 47. p. 2107−2114.
  98. Ovreas L. Population and community level approaches for analysing microbial diversity in natural environments // Ecology Letters. 2003. 3. Vol. 3.p. 236−251.
  99. Patel G., Sprott G. Methanosaeta concilii gen. Nov., sp. Nov.(«methanothrix concilii») and methanosaeta thermoacetophila nom. Rev., comb. Nov // International Journal of Systematic and Evolutionary Microbiology. 1990. 1. Vol. 40. p. 79.
  100. Paterek J., Smith P. Methanohalophilus mahii gen- Nov., sp. Nov., a methylotrophic halophilic, methanogen7/ International-Journal ofSystematic andEvolutionary-'Microbiology. 1988−1. Vol:38'. p. 122. .
  101. Perez-Jimenez J., Kerkliof L. Phylogeograpliy of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrab) // Applied and Environmental Microbiology. 2005. 2. Vol- 71. p. 1004.
  102. Perez-Piqueres A., Edel-Hermann V., Alabouvette G.,. Steinberg C. Response of soil microbial communities to compost: amendments // Soil Biology and Biochemistry. 2006- 3- Vol- 38: pi 460−4701
  103. Powell G. Interpreting gas kinetics of batch cultures // Biotechnology Letters. 1983. 7. Vol. 5. p. 437−440.
  104. Prather Mi, Ehhalt D., Dentener. F., Derwent R., Dlugokencky E., Holland E., Isaksen I., Katima J., Kirchhoff. V., Matson P: Atmospheric chemistry and greenhouse gases // Glimate change. 2001. Vol. p. 239−287.
  105. Price P. A habitat for psychrophiles in deep antarctic ice // Proceedings of the National Academy of Sciences of the United States of America. 2000. 3. Vol. 97. p. 1247.
  106. Price P., Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival // Proceedings of the National Academy of Sciences of the United States of America. 2004. 13. Vol. 101. p. 4631.
  107. Price P. Microbial genesis, life and death in glacial ice // Canadian journal of microbiology. 2009. 1. Vol. 55. p. 1−11.
  108. Prosser J: Molecular and functional diversity in soil micro-organisms // Plant and Soil. 2002. 1. Vol. 244. p. 9−17.
  109. Ramakrishnan B., Lueders T., Conrad R., Friedrich M. Effect of soil aggregate size on methanogenesis and archaeal community structure in anoxic rice field soil // FEMS microbiology ecology. 2006. 3. Vol. 32. p. 261−270.
  110. Rappe M, Giovannoni S. The uncultured microbial majority // Annual Review of Microbiology. 2003. 1. Vol. 57. p. 369−394.
  111. Reynolds E. The use of lead citrate at highph as an electron-opaque stain? in electron microscopy // Journal of Cell Biology. 1963. 1. Vol. 17. p. 208.
  112. Rich J., Heichen R., Bottomley P., Cromack Jr K., Myrold D. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils // Applied and Environmental Microbiology. 2003. 10. Vol. 69. p. 5974.
  113. Rivkina E., Gilichinsky D., Wagener S., Tiedje J., McGrath J. Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments // Geomicrobiology Journal. 1998. 3. Vol. 15. p. 187 193.
  114. Rivkina E., Friedmann E., McKay C., Gilichinsky D. Metabolic activity of permafrost bacteria below the freezing point // Applied and Environmental Microbiology. 2000. 8. Vol. 66. p. 3230.
  115. Rivkina E., Gilichinsky D. Metabolic activity of permafrost microorganisms // The bridge between big bang and biology / book autli. Giovannelli F. 2001.
  116. Rivkina E., Laurinavichus K., Gilichinsky D., Shcherbakova V. Methane generation in permafrost sediments // Dokl Biol Sci. 2002. Vol. 383. p. 179 181.
  117. Rivkina E., Laurinavichius K., McGrath J., Tiedje J., Shcherbakova- V., Gilichinsky D. Microbial life in permafrost // Advances in Space Research. 2004. 8. Vol. 33. p. 1215−1221.98-- .
  118. Sambrook J., Russell David W. Molecular cloning: A-laboratory manual. Vol. 1. 1989. β€’
  119. Schink B. Zeikus J. Microbial methanol formation: A major end product of pectin metabolism // Current Microbiology. 1980. 6. Vol. 4. p.387−389.
  120. Schink B., Lupton F., Zeikus J. Radioassay for hydrogenase activity in viable cells and documentation of aerobic- hydrogen-consuming bacteria living in extreme environments,// Applied and Environmental Microbiology. 1983.5. Vol. 45. p. 1491.
  121. Schmidt M., Prieme A., Stougaard P. Bacterial diversity in permanently cold and alkaline ikaite columns from greenland // Extremophiles. 2006. 6. Vol. 10: p. 551−562.
  122. Schoell M. Multiple origins of methane in the earth // Chemical Geology. 1988: 1−3- Vol. 71., p: 1−10.
  123. Schwieger F., Tebbe C. A new approach to utilize pcr-single-strandconformation polymorphism-for 16s rrna, gene-based microbial community analysis // Applied and. Environmental:Microbiology. 1998: 12. Vol. 64. p- 4870.
  124. Sekiguchi H., Tomioka N., Nakahara T., Uchiyama H. A single band does not always, represent, single bacterial strains in denaturing gradient gel99. electrophoresis analysis // Biotechnology Letters. 2001. 15. Vol. 23. p. 12 051 208.
  125. Sessitsch A., Weilharter A., Gerzabek M., Kirchmann H., Kandeler E. Microbial' populationstructures in soil’particle size fractions-of a long-tenn fertilizer field* experiment // Applied, and Environmental' Microbiology. 2001.9. Vol. 67. p. 4215.
  126. Shi T., Reeves R., Gilichinsky D., Friedmann E. Characterization of viable bacteria, from Siberian permafrost, by 16s rdna β€’ sequencing // Microbial Ecology. 1997. 3. Vol- 33. p. 169−179.'
  127. Sizova M., Panikov N., Tourova T., .Flanagan P. Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a sphagnum peat bog // FEMS microbiology ecology. 2006. 3. Vol. 45. p.. 301−315.
  128. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K., Tignor M., Miller H. Ipcc, 2007: Summary for policymakers // Climate change. Cambridge Univ Pr. 2007.
  129. Sprott G., Beveridge T. Microscopy // Methanogenesis. Chapman & Hall. New York. NY. 1993. Vol. p. 81−127.
  130. Stephen J., Chang Y., Macnaughton S., Whitaker S., Hicks C., Leung K., Flemming C., White D. Fate of a metal-resistant inoculum in contaminated and pristine soils assessed by denaturing gradient gel electrophoresis //
  131. Environmental toxicology and chemistry. 1999. 6. Vol. 18. p. 1118−1123.<
  132. Suzuki M., Giovannoni S. Bias caused by template annealing in the amplification of mixtures of 16s rrna genes by per // Applied 'and Environmental Microbiology. 1996. 2. Vol. 62. p. 625.
  133. Tamura K., Dudley J., Nei M., Kumar S. Mega4: Molecular evolutionary genetics analysis (mega) software version 4.0 // Molecular biology and evolution. 2007. 8. Vol. 24. p. 1596.
  134. Tan Z., Hurek T., Reinhold-Hurek B. Effect of n-fertilization, plant genotype and environmental conditions on nifh gene pools in roots of rice // Environmental Microbiology. 2003. 10. Vol. 5. p. 1009−1015.
  135. Thies J. Soil 'microbial community analysis using terminal restriction fragment length polymorphisms // Soil Science Society of America Journal! 2007. 2. Vol. 71. p. 579.
  136. Tiedje J., Asuming-Brempong S., N sslein K., Marsh T., Flynn S. Opening-the black box of. soil microbial diversity // Applied Soil Ecology. 1999. 2. Vol. 13. p. 109−122.
  137. Torsvik V., Goksoyr J., Daae F. High’diversity in DNA of soil bacteria // Applied and Environmental Microbiology. 1990. 3. Vol. 56. p. 782*.
  138. Torsvik V., Ovreas L., Thingstad T. Prokaryotic diversity—magnitude, dynamics, and controlling factors // Science. 2002. 5570. Vol. 296. p. 1064.
  139. Tyler, S. The global methane budget // Microbial production and consumption- of greenhouse gases: Methane, nitrogen oxides, and halomethanes / book auth. Rogers J. Whitman W. Washington D.C., American Society for Microbiology. 1991.
  140. Vishnivetskaya T., Kathariou S, McGrath J., Gilichinsky D., Tiedje J. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments // Extremophiles. 2000. 3. Vol. 4. p. 165−173.
  141. Vorobyova E., Soina V., Gorlenko M., Minkovskaya N., Zalinova N., Mamukelashvili A., Gilichinsky D., Rivkina E., Vishnivetskaya T. The deep cold biosphere: Facts and hypothesis // FEMS Microbiology Reviews. 2006. 3−4. Vol. 20. p. 277−290.
  142. Walter K., Zimov S., ChantonJ., Verbyla D, Chapin F. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming // Nature. 2006. 7107. Vol. 443. p. 71−75.
  143. Weber S., Lueders T., Friedrich M., Conrad R. Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil // FEMS microbiology ecology. 2006. 1. Vol. 38. p. 11−20.
  144. W., Barns S., Pelletier D., Lane D. 16s ribosomal DNA amplification for phylogenetic study // Journal of Bacteriology. 1991. 2. Vol. 173. p. 697.
  145. Whalen S., Reeburgh W. A methane flux time series for tundra enviromnents // Global Biogeochemical Cycles. 1988. 4. Vol. 2. p. 399−409.
  146. Willerslev E, Hansen A., Rbnn Ri, Brand T., Barnes Ii, Wiuf Ci, Gilichinsky D-, Mitchell D., Cooper A. Long-term persistence of bacterial DNA // Current Biology. 2004. 1. Vol. 14. p. R9-R10.
  147. Wintzingerode F.,. G beli U". Stackebrandt E. ^ Determinations of microbial .1 diversity in- environmental’samples: Pitfalls of- pcr-based? rrnai analysis- H FEMS Microbiology Reviews. 2006. 3. Vol. 21. p. 213−229.
  148. R. 1776−1996: Alessandro volta’s combustible air. 220 years after volta’s experiments, the microbial formation of methane approaches: an understanding // ASM News. 1996. Vol. 62. p. 529−534.
  149. Worakit S., Boone D., Mah R., Abdel-Samie M., El-Halwagi M. Methanobacterium alcaliphilum sp. Nov., an h2-utilizing methanogen that grows at high ph values // International Journal of Systematic and Evolutionaiy Microbiology. 1986. 3. Vol. 36. p. 380.
  150. Wright Ji, Chuvillin E., Dallimore S., Yakushev V., Nixon F. Methane hydrate formation and dissociation in fine sands at temperatures near 0 Β°C // Proceedings of the 7th international Conference on Permafrost, p. 11 471 153.
  151. Zhilina T., Zavarzin G. Extremely halophilic, methylotrophic, anaerobic bacteria // FEMS Microbiology Letters. 1990. 3−4. Vol. 87. p. 315−321.
  152. Zinder S. Physiological ecology of methanogens // Methanogenesis: ecology, physiology, biochemistry and genetics. 1993. Vol. p. 128−206.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ