Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° эффСктивной систСмы гСнСтичСской трансформации мягкой ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹: Triticum aestivum L

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

На Π·Π΅ΠΌΠ½ΠΎΠΌ ΡˆΠ°Ρ€Π΅ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρƒ Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎ ΡƒΠ±ΠΈΡ€Π°ΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ с 230 ΠΌΠ»Π½. Π³Π°. ΠŸΡ€ΠΈ этом сбор Π·Π΅Ρ€Π½Π° составляСт ΡΠ²Ρ‹ΡˆΠ΅ 500 ΠΌΠ»Π½. Ρ‚. Благодаря достиТСниям Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ срСднСмировая ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π½Π΅ΡƒΠΊΠ»ΠΎΠ½Π½ΠΎ растСт ΠΈΠ· Π³ΠΎΠ΄Π° Π² Π³ΠΎΠ΄. Однако ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ роста уроТайности ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡŒΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π³ΠΎΡ€Π°Π·Π΄ΠΎ мСньшС скорости роста насСлСния Π·Π΅ΠΌΠ»ΠΈ. По Π΄Π°Π½Π½Ρ‹ΠΌ Π‘ АО ΠΊ 2030 Π³ΠΎΠ΄Ρƒ оТидаСтся ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ насСлСния… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π“Π»Π°Π²Π° 1. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
    • 1. 1. Π˜ΡΡ‚ΠΎΡ€ΠΈΡ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹
    • 1. 2. ΠšΡƒΠ»ΡŒΡ‚ΡƒΡ€Π° Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ in vitro
      • 1. 2. 1. ИспользованиС ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π² Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ сСлСкции
      • 1. 2. 2. РСгСнСрация растСний ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈΠ· ΡΠΎΠΌΠ°Ρ‚ичСских Ρ‚ΠΊΠ°Π½Π΅ΠΉ
    • 1. 3. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ гСнСтичСской трансформации ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹
      • 1. 3. 1. БаллистичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ пСрСноса Π³Π΅Π½ΠΎΠ²
      • 1. 3. 2. ΠΠ³Ρ€ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ пСрСноса Π³Π΅Π½ΠΎΠ²
      • 1. 3. 3. Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ пСрСноса Π³Π΅Π½ΠΎΠ²
      • 1. 3. 4. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… конструкций, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… для трансформации ΠΎΠ΄Π½ΠΎΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€
    • 1. 4. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Π³Π΅Π½Π½ΠΎ-ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Π΅ направлСния ΠΏΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡŽ сортов ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹
      • 1. 4. 1. ΠŸΡ€ΠΈΠ΄Π°Π½ΠΈΠ΅ устойчивости ΠΊ Π³Ρ€ΠΈΠ±Π½Ρ‹ΠΌ заболСваниям
      • 1. 4. 2. ΠŸΡ€ΠΈΠ΄Π°Π½ΠΈΠ΅ устойчивости ΠΊ Π²ΠΈΡ€ΡƒΡΠ½Ρ‹ΠΌ заболСваниям
      • 1. 4. 3. ΠŸΡ€ΠΈΠ΄Π°Π½ΠΈΠ΅ устойчивости ΠΊ Π²Ρ€Π΅Π΄ΠΈΡ‚Слям
      • 1. 4. 4. ΠŸΡ€ΠΈΠ΄Π°Π½ΠΈΠ΅ устойчивости ΠΊ Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄Π°ΠΌ
      • 1. 4. 5. ΠŸΡ€ΠΈΠ΄Π°Π½ΠΈΠ΅ устойчивости ΠΊ Π·Π°ΡΡƒΡ…Π΅
      • 1. 4. 6. Π£Π»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ качСства Π·Π΅Ρ€Π½Π°
    • 1. 5. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° наслСдования Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ²
      • 1. 5. 1. Вранскрипционная инактивация Π³Π΅Π½ΠΎΠ²
      • 1. 5. 2. ΠŸΠΎΡΡ‚Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ†ΠΈΠΎΠ½Π½Π°Ρ инактивация Π³Π΅Π½ΠΎΠ²
      • 1. 5. 3. ΠŸΡƒΡ‚ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, связанных с Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ наслСдованиСм пСрСносимых Π³Π΅Π½ΠΎΠ²

Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° эффСктивной систСмы гСнСтичСской трансформации мягкой ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹: Triticum aestivum L (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠŸΡˆΠ΅Π½ΠΈΡ†Π° являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π² ΠΌΠΈΡ€Π΅ ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚авляСт собой основной ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ питания Π² 43 странах ΠΌΠΈΡ€Π°.

Как ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ ΠΏΡˆΠ΅Π½ΠΈΡ†Π°, ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ…Π»Π΅Π±Π½Ρ‹ΠΌ Π·Π»Π°ΠΊΠ°ΠΌ, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ прСимущСствами. Она ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Π°, ΠΊΠ°Π»ΠΎΡ€ΠΈΠΉΠ½Π°, Π΅Π΅ Π»Π΅Π³ΠΊΠΎ Ρ…Ρ€Π°Π½ΠΈΡ‚ΡŒ, Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ Π² Π²Ρ‹ΡΠΎΠΊΠΎΠΎΡ‡ΠΈΡ‰Π΅Π½Π½ΠΎΠ΅ ΡΡ‹Ρ€ΡŒΠ΅. Π‘Ρ€Π΅Π΄ΠΈ большого разнообразия ΠΏΠΎΠ΄Π²ΠΈΠ΄ΠΎΠ² ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ (22 ΠΏΠΎΠ΄Π²ΠΈΠ΄Π°), наибольшСС распространСниС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: ΠΏΡˆΠ΅Π½ΠΈΡ†Π° мягкая (Triticum aestivum L.), ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ посСва ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 95% ΠΎΡ‚ Π²ΡΠ΅ΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ занятой ΠΏΡˆΠ΅Π½ΠΈΡ†Π΅ΠΉ, ΠΈ ΠΏΡˆΠ΅Π½ΠΈΡ†Π° твСрдая {Π’. durum), Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‰Π°Ρ ΠΌΠ΅Π½Π΅Π΅ 5% ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ (Patnaik ΠΈ Khurana, 2001). ΠŸΡˆΠ΅Π½ΠΈΡ†Π° мягкая являСтся основным ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠΌ ΠΏΡ€ΠΈ производствС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² Ρ…Π»Π΅Π±Π°, Π±ΡƒΠ»ΠΎΡ‡Π΅ΠΊ, ΠΏΠ΅Ρ‡Π΅Π½ΡŒΡ, бисквитов ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² питания. ВвСрдая ΠΏΡˆΠ΅Π½ΠΈΡ†Π° ΠΈΠ΄Π΅Ρ‚ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡ‚Π²ΠΎ высококачСствСнных ΠΌΠ°ΠΊΠ°Ρ€ΠΎΠ½Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ. Π—Π°Ρ€ΠΎΠ΄Ρ‹ΡˆΠΈ, ΠΎΡ‚Ρ€ΡƒΠ±ΠΈ ΠΈ ΡΠΎΠ»ΠΎΠ΄ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ ΠΏΡˆΠ΅Π½ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ².

Помимо Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΈΡ‰Π΅Π²ΠΎΠ³ΠΎ значСния, ΠΏΡˆΠ΅Π½ΠΈΡ†Π° являСтся Π²Π°ΠΆΠ½ΠΎΠΉ ΠΊΠΎΡ€ΠΌΠΎΠ²ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ, особСнно Π² ΠΏΡ‚ицСводствС, благодаря высокому ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π±Π΅Π»ΠΊΠ° (Π’Π°Π±Π». 1). ΠŸΡˆΠ΅Π½ΠΈΡ‡Π½Π°Ρ солома ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² ΠΆΠΈΠ²ΠΎΡ‚новодствС Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° Π³Ρ€ΡƒΠ±ΠΎΠ³ΠΎ ΠΊΠΎΡ€ΠΌΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ примСняСтся Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ подстилки.

ΠŸΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ΅ использованиС Π·Π΅Ρ€Π½Π° ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΡ€Π°Ρ…ΠΌΠ°Π»Π° для изготовлСния клСйстСра, спирта, масла ΠΈ ΠΊΠ»Π΅ΠΉΠΊΠΎΠ²ΠΈΠ½Ρ‹. Π‘ΠΎΠ»ΠΎΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована для получСния Π³Π°Π·Π΅Ρ‚Π½ΠΎΠΉ Π±ΡƒΠΌΠ°Π³ΠΈ, ΠΊΠ°Ρ€Ρ‚ΠΎΠ½Π°, ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ² искусства.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, использованиС ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎ ΠΈ ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ всС Π²ΠΈΠ΄Ρ‹ Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΡ просто Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ.

Π’Π°Π±Π»ΠΈΡ†Π° 1. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ химичСский состав ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈ Ρ‚Ρ€Π΅Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π΅Π΅ ΠΏΠΎΠΌΠΎΠ»Π°, %*.

ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ ΠŸΡˆΠ΅Π½ΠΈΡ†Π° ΠœΡƒΠΊΠ°, ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅.

ЦСльноС Π·Π΅Ρ€Π½ΠΎ Волько Π·Π°Ρ€ΠΎΠ΄Ρ‹Ρˆ 72% 80%.

Π‘Ρ‹Ρ€ΠΎΠΉ Π±Π΅Π»ΠΎΠΊ 13,3 26,6 11,8 12,0.

Π–ΠΈΡ€ 2,0 10,9 1,2 1,3.

ΠœΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ вСщСства 1,7 4,3 0,46 0,65.

ΠšΠ»Π΅Ρ‚Ρ‡Π°Ρ‚ΠΊΠ° 2,3 2,5 0,40 0,50.

Π”Ρ€. ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Ρ‹ 68,7 44,2 74,1 73,6.

Π’ΠΎΠ΄Π° 12,0 11,5 12,0 12,0.

— Π¨ΠžΠ, 1965 Π³.

На Π·Π΅ΠΌΠ½ΠΎΠΌ ΡˆΠ°Ρ€Π΅ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρƒ Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎ ΡƒΠ±ΠΈΡ€Π°ΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ с 230 ΠΌΠ»Π½. Π³Π°. ΠŸΡ€ΠΈ этом сбор Π·Π΅Ρ€Π½Π° составляСт ΡΠ²Ρ‹ΡˆΠ΅ 500 ΠΌΠ»Π½. Ρ‚. Благодаря достиТСниям Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ срСднСмировая ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π½Π΅ΡƒΠΊΠ»ΠΎΠ½Π½ΠΎ растСт ΠΈΠ· Π³ΠΎΠ΄Π° Π² Π³ΠΎΠ΄. Однако ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ роста уроТайности ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡŒΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π³ΠΎΡ€Π°Π·Π΄ΠΎ мСньшС скорости роста насСлСния Π·Π΅ΠΌΠ»ΠΈ. По Π΄Π°Π½Π½Ρ‹ΠΌ Π‘ АО ΠΊ 2030 Π³ΠΎΠ΄Ρƒ оТидаСтся ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ насСлСния ΠΏΠ»Π°Π½Π΅Ρ‚Ρ‹ Π΄ΠΎ 8 ΠΌΠΈΠ»Π»ΠΈΠ°Ρ€Π΄ΠΎΠ². Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ ΡƒΠΆΠ΅ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ 21-Π³ΠΎ Π²Π΅ΠΊΠ° чСловСчСство столкнСтся с Ρ€ΡΠ΄ΠΎΠΌ Π½ΠΎΠ²Ρ‹Ρ… трудностСй, для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹. Основная ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°, ΠΎΠΆΠΈΠ΄Π°ΡŽΡ‰Π°Ρ чСловСчСство Π² Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΠ΅ дСсятилСтия — ΠΏΡ€ΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡŒΡΡ‚Π²Π΅Π½Π½Π°Ρ. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ соврСмСнного с/Ρ… производства Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚ΡŒ постоянно растущиС потрСбности чСловСчСства. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π²Π°Π»ΠΎΠ²ΠΎΠ³ΠΎ сбора с/Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, Ρ€Π°Π½Π΅Π΅ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Π²ΡˆΠ΅Π΅ΡΡ Π·Π° ΡΡ‡Π΅Ρ‚ роста посСвных ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ, Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½ΠΈΠΉ дСнь Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·-Π·Π° ограничСнности ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ ΠΏΠ°Ρ…ΠΎΡ‚Π½Ρ‹Ρ… зСмСль, Π° Ρ‚Π°ΠΊΠΆΠ΅ вслСдствиС Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΡƒΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… зСмСль. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡŒΡΡ‚Π²Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уроТайности основных ΠΏΡ€ΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡŒΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€, Π² Ρ‡ΠΈΡΠ»Π΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… — ΠΏΡˆΠ΅Π½ΠΈΡ†Π°.

ΠŸΡˆΠ΅Π½ΠΈΡ†Π° относится ΠΊ Π²Ρ‹ΡΠΎΠΊΠΎΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½Ρ‹ΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°ΠΌ. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ сорта ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ способны Π΄Π°Π²Π°Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ ста Ρ†Π΅Π½Ρ‚Π½Π΅Ρ€ΠΎΠ² с ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Π΅ΠΊΡ‚Π°Ρ€Π° ΠΏΡ€ΠΈ соблюдСнии всСх Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… агротСхничСских ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠ². Π’Π°ΠΊ Π² Π‘ША Π² 1964 Π³ΠΎΠ΄Ρƒ сорт ΠΎΠ·ΠΈΠΌΠΎΠΉ мягкой ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π“Π΅ΠΉΠ½Π΅ ΠΏΡ€ΠΈ ΠΎΡ€ΠΎΡˆΠ΅Π½ΠΈΠΈ Π΄Π°Π» 142 Ρ†/Π³Π°. Однако срСдняя ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π² ΠΌΠΈΡ€Π΅ Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 23 Ρ†/Π³Π°, Ρ‡Ρ‚ΠΎ ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ΡΡ сильной ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ нСблагоприятным Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ биотичСского ΠΈ Π°Π±ΠΈΠΎΡ‚ичСского происхоТдСния. Из Π°Π±ΠΈΠΎΡ‚ичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² слСдуСт Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ нСдостаток Π²Π»Π°Π³ΠΈ ΠΈ Π·Π°ΡΠΎΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‡Π², Π° ΠΈΠ· Π±ΠΈΠΎΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΡ…Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΠΉ ΡƒΡ€ΠΎΠ½ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΡΡŽΡ‚ Π³Ρ€ΠΈΠ±Π½Ρ‹Π΅ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΈ Π²Ρ€Π΅Π΄ΠΈΡ‚Π΅Π»ΠΈ.

Усилиями Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ сСлСкции ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ сорта ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ с ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ высокой ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ ΠΊ Ρ‚Π΅ΠΌ ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹ΠΌ нСблагоприятным Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² Ρ†Π΅Π»ΠΎΠΌ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ уроТайности ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈ Π΅Π΅ ΡƒΡΡ‚ойчивости, стоит ΠΏΠΎ-ΠΏΡ€Π΅ΠΆΠ½Π΅ΠΌΡƒ остро. НСкоторыС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ классичСской сСлСкции Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ»ΠΈ ΠΎΡ‡Π΅Π½ΡŒ слоТно. Π’Π°ΠΊ Π½Π° ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ сорта ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Π΅ сСлСкционныС ΠΏΡ€ΠΈΠ΅ΠΌΡ‹, затрачиваСтся 6−8 Π»Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ быстрой смСнС расового состава Π²ΠΎΠ·Π±ΡƒΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ Ρ€Π΅Π·ΠΊΠΎ сниТаСт ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π³Π΅Π½Π½ΠΎ-ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ΄Π°Ρ‚ΡŒ Ρ€Π°ΡΡ‚Π΅Π½ΠΈΡŽ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ Ρ†Π΅Π»ΠΎΠΌΡƒ ряду ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π³Ρ€ΠΈΠ±Π½Ρ‹Ρ… ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΎΠ², Ρ‚Π΅ΠΌ самым, повысив ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ ΡƒΠΆΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сортов. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, особыС Π½Π°Π΄Π΅ΠΆΠ΄Ρ‹ Π²ΠΎΠ·Π»Π°Π³Π°ΡŽΡ‚ΡΡ Π½Π° Π³Π΅Π½Π½ΡƒΡŽ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΡŽ, которая, ΠΏΠΎ ΡΡƒΡ‚ΠΈ, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ сСлСкции ΠΏΠΎ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡŽ Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ² ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ… растСний, Π½ΠΎ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Π΅Ρ‚ Ρ‚Π΅Ρ… ΠΆΠ΅ Ρ†Π΅Π»Π΅ΠΉ Π±ΠΎΠ»Π΅Π΅ эффСктивным ΠΈ Π±Ρ‹ΡΡ‚Ρ€Ρ‹ΠΌ ΠΏΡƒΡ‚Π΅ΠΌ. Однако Π³Π»Π°Π²Π½Ρ‹ΠΌ прСимущСством Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ растСний являСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ²Π½ΠΎΡΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ пСрСнСсти с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ сСлСкции.

Π’ Π½Π°ΡΡ‚оящСС врСмя ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ трансгСнныС Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ с Π½ΠΎΠ²Ρ‹ΠΌΠΈ хозяйствСнно-Ρ†Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΡƒ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° трансформации Π±Ρ‹Π» использован амСриканский ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ сорт Π’ΠΎΠ¬Π£ΠͺΠΊΠ΅, ΡƒΡ‚Ρ€Π°Ρ‚ΠΈΠ²ΡˆΠΈΠΉ практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Π›ΠΈΡˆΡŒ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… исслСдованиях Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ трансгСнныС растСния ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ числа коммСрчСских сортов ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½ΠΎΠΉ сСлСкции. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ трансформации ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни опрСдСляСтся Π³Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠΌ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° эффСктивной Π³Π΅Π½ΠΎΡ‚ΠΈΠΏ-нСзависимой систСмы трансформации отСчСствСнных сортов ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹.

Π’Π«Π’ΠžΠ”Π«.

1. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° эффСктивная систСма трансформации отСчСствСнных сортов ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹.

2. ΠŸΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ условия Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ растСний Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… сортов ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ ΠΈΠ· Π½Π΅Π·Ρ€Π΅Π»Ρ‹Ρ… Π·Π°Ρ€ΠΎΠ΄Ρ‹ΡˆΠ΅ΠΉ.

3. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° систСма Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ сСлСкции трансгСнных Ρ‚ΠΊΠ°Π½Π΅ΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ долю нСтрансгСнных ΠΏΠΎΠ±Π΅Π³ΠΎΠ² срСди ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Π½Ρ‚ΠΎΠ².

4. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ расщСплСния Ρ€Π΅ΠΏΠΎΡ€Ρ‚Π΅Ρ€Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² gfp ΠΈ gus Π² ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΈ Π’) 28-ΠΌΠΈ нСзависимых трансгСнных Π»ΠΈΠ½ΠΈΠΉ ΠΈ Π² ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΈ.

13-Ρ‚ΠΈ Π»ΠΈΠ½ΠΈΠΉ сортов Андрос ΠΈ ΠΠΎΡ€ΠΈΡ, ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ наслСдования Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Π»ΠΈΠ½ΠΈΠΉ соотвСтствуСт однолокусной гСнСтичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ наслСдования ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ².

5. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ трансгСнныС растСния ΠΏΡˆΠ΅Π½ΠΈΡ†Ρ‹ сортов Андрос ΠΈ ΠΠΎΡ€ΠΈΡ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΈΡ… ΠΎΡ†Π΅Π½ΠΊΠ° Π² ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… условиях, показавшая Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Π³Π΅Ρ€Π±ΠΈΡ†ΠΈΠ΄Π° «Π‘аста».

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π .Π“. Биология ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Ρ‹ΡΡˆΠΈΡ… растСний ΠΈ Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° ΠΈΡ… ΠΎΡΠ½ΠΎΠ²Π΅. М.: Π€Π‘Πš-ΠŸΠ Π•Π‘Π‘, 1999 — Π‘. 84−85
  2. Π“. Π’. Π“Π΅Π½Π΅Ρ‚ΠΈΠΊΠ°. М.: «ΠšΠΎΠ»ΠΎΡ», 1977. — Π‘. 266−275
  3. Π­.Π‘., Андрианов Π’. М. ΠŸΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹ Π°Π³Ρ€ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ Π³Π΅Π½Π΅Ρ‚ичСская инТСнСрия. М.: Наука, 1985. — Π‘. 79−96.
  4. Ainsley P.J., Aryan A.P. Efficient plant regeneration system for immature embryos of triticale (x Triticosecale Wittmack) // Plant Growth Regulators 1998. — V.24. — P.23−30.
  5. Altpeter F., Diaz I., McAuslane H., Gaddour K., Carbonero P., Vasil I.K. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor Π‘Ρ‚Π΅ II Molecular Breeding 1999. — V.5. — P.53−63.
  6. Altpeter F., Vasil V., Srivastava V., Vasil I.K. Integration and expression of the high-molecular-weight glutenin subunit lAxl gene into wheat // Nature Biotechnol 1996. — V.14. — P. l 155 -1159.
  7. Altpeter F., Vasil V., Srivastava V., Stoger E., Vasil I.K. Accelerated production of transgenic wheat (Triticum aestivum L.) plants // Plant Cell Reports 1996. -V.16. -P.12−17.
  8. Alvarez M.L., Guelman S., Haiford N.G., Lustig S., Reggiardo M.I., Ryabushkina N., Shewry P., Stein J., Vallejos R.H. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits // Theor Appl Genet 2000. — V.100. -P.319−327.
  9. Barro F., Cannell M.E., Lazzeri P.A., Barcelo P. The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants // Theor Appl Genet 1998. — V.97. — P.684−695.
  10. Benkirane H., Sabounji K., Chlyah A., Chlyah H. Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat // Plant Cell, Tissue and Organ Culture 2000. — V.61. — P. 107−113.
  11. Bennett M.D., Leitch I.J. Nuclear DNA amounts in Angiosperms // Ann. Bot. -1995 V.76. — P. 113−176.
  12. Bieri S., Potrykus I., Fiitterer J. Expression of active barley seed ribosome-inactivating protein in transgenic wheat // Theor Appl Genet 2000. — V.100. -P.755−763.
  13. Borrelli G.M., Lupotto E., Locatelli F., Wittmer G. Long-term optimized embryogenic cultures in durum wheat (Triticum durum Desf.) // Plant cell reports 1991. — V. 10. — N.6−7. — P.296−299.
  14. Bourdon V., Harvey A., Lonsdale D.M. Introns and their positions affect the translational activity of mRNA in plant cells // EMBO Rep. 2001. — V.2. — N.5. -P. 394−398.
  15. Brinch-Pedersen H., Olesen A., Rasmussen S.K., Holm P.B. Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase // Molecular Breeding 2000. — V.6. — P. 195−206.
  16. Brisibe E.A., Gajdosova A., Olesen A., Andersen S.B. Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat // J Exp Bot. 2000. — V.51. — N.343. — P. 187−96.
  17. Brown C., Brooks F. J., Pearson D., Mathias R.J. Control of embryogenesis and organogenesis in immature wheat embryo callus using increased medium osmolarity and abscisic acid // Journal of Plant Physiology 1989. — V.133. -P.727−733.
  18. Callis J., Fromm M., Walbot V. Introns increase gene expression in cultured maize cells // Genes Dev. 1987. — V.l. — P. 1183−1200.
  19. Campbell B.T., Baenziger P. S., Mitra A., Sato S., Clemente T. Inheritance of multiple transgenes in wheat // Crop Science 2000. — V.40. — P. 1133−1141.
  20. Cannell M.E., Doherty A., Lazzeri P.A., Barcelo P. A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability // Theor. Appl. Genet. 1999. — V.99. — P.772−784.
  21. Carman J., Jefferson N., Campbell W. Induction of embryogenic Triticum aestivum L. calli. II Quantification of organic addenda and other culture variable effects I I Plant Cell, Tissue and Organ Culture 1989. — V.12. — P.97−110.
  22. Caswell K. L., Leung N. L., Chibbar R. N. An efficient method for in vitro regeneration from immature inflorescence explants of Canadian wheat cultivars // Plant Cell, Tissue and Organ Culture 2000. — V.60. — P.69−73.
  23. Chan M., Cheng H., Ho S., Tong W., Xu S. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/ /?-glucuronidase gene // Plant Molecular Biology -1993. V.22. — P.491−506.
  24. Chareonpornwattana S., Thara K.V., Wang L., Datta S.K., Panbangred W., Muthukrishnan S. Inheritance, expression, and silencing of a chitinase transgene in rice // Theor Appl Genet 1999. — V.98. — P.371−378.
  25. Chen D.F., Dale P.J. A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems // Transgenic Research 1992. — V.l. — P.93−100.
  26. Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C.M., Duncan D.R., Conner T.W., Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens II Plant. Physiol. 1997. — V. l 15. — P.971−980.
  27. Chibbar R.N., Kartha K.K., Leung N., Qureshi J., Caswell K. Transient expression of marker genes in immature zygotic embryos of spring wheat (Triticum aestivum L.) through microprojectile bombardment // Genome 1991. — V.34. — P.453−460.
  28. Chiu W.L., Niwa Y., Zeng W., Hirano T., Kobayashi H., Sheen J. Engineered GFP as a vital reporter in plants // Curr. Biol. 1996. — V.6. — P.325−330.
  29. Christensen A.H., Quail P.H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants // Transgenic Res 1996. — V.5. — P.213−218.
  30. Christou P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment // Euphytica -1995.-V.85.-P. 13−27.
  31. Christou P., McCabe D.E., Swain W.F. Stable transformation of soybean callus by DNA coated particles // Plant Physiol. 1988. — V.87. — P.671−674.
  32. Chu C.C., Wang C.C., Sun C.S., Hsu C., Yin K.C., Chu C.Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources // Scientia Sinica 1975. — V. l8. — P.659−668.
  33. Chugh A., Khurana P. Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread and emmer wheat by particle bombardment // Plant Cell, Tissue and Organ Culture 2003. — V.74. — P.151−161.
  34. Close K. R, Ludeman L.A. The effect of auxin-like plant growth regulators and osmotic regulation on induction of somatic embryogenesis from elite maize inbreds // Plant Sci. 1987. — V.52. — P.81−89.
  35. De Block M., Debrouwer D., Moens T. The development of a nuclear male sterility system in wheat. Expression of the barnasegene under the control of tapetum specific promoters // Theor Appl Genet 1997. — V.95. — P. 125−131.
  36. Delporte F., Mostade 0., Jacquemin J.M. Plant regeneration through callus initiation from thin mature embryo fragments of wheat // Plant Cell Tiss. Org. Cult. 2001. — V.67. — P.73−80.
  37. Demeke T., Hucl P., Baga M., Caswell K., Leung N., Chibbar R.N. Transgene inheritance and silencing in hexaploid spring wheat // Theor. Appl. Genet. 1999. — V.99.-P.947−953.
  38. Dixon R.A., Harrison M. Activation, structure and organization of genes involved in microbial defence in plants // Adv Genet 1990. — V.28. — P. 165−234.
  39. Donath M., Mendel R., Cerff R., Martin W. Intron-dependent transient expression of the maize GapAl gene // Plant Mol Biol. 1995. -V.28. — P.667−676.
  40. Dunstan D.I., Short K.C., Thomas E. The anatomy of secondary morphogenesis in cultured scutellum tissue of Sorghum bicolor II Protoplasma 1978. — V.97. -P.251−260.
  41. Elliot A.R., Campbell J.A., Brettell I.S., Grof P.L. Agrobacterium-mQdiated transformation of sugarcane using GFP as a screenable marker // Aust. J. Plant. Physiol. 1998. — V.25. — P.739−743.
  42. Fennel S., Bohoroba N., Crossa J., Hoisington D., Van-Ginkel M. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats // Theor Appl Genet 1996. — V.92. — P. 163−169.
  43. Fernandez S., Michaux-Ferrier N., Coumans M. The embryogenic response of immature embryo cultures of durum wheat (Triticum durum Desf.): histology and improvement by AgN03 // Plant Growth Regulation 1999. — V.28. — P. 147−155.
  44. Finer J.J., Vain P., Jones M.W., McMullen M.D. Development of the particle inflow gun for DNA delivery to plant cells // Plant Cell Reports 1992. — V. 11. — P.232−238.
  45. Fire A., Xu S., Montgomery M., Kostas S., Driver S. et al. Potent and specifi c genetic interference by double-stranded RNA in Caenorhabditis elegans I I Nature 1998. — V.391. — P.806—811.
  46. Folling L., Olesen A. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment // Plant Cell Rep 2001. -V.20.-P.629−636.
  47. Fu X., Kohli A., Twyman R.M., Christou P. Alternative silencing effects involve distinct types of non-spreading cytosine methylation at a three-gene, single-copy transgenic locus in rice // Mol Gen Genet 2000. — V.263. — P. 106−118. O Springer-Verlag.
  48. Fueng C., Mumma R.O., Hamilton R.H. Metabolism of 2,4-dichlorophenoxyacetic acid. VI. Biological properties of amino acid conjugates // J. Agr. Food Chem. 1974. — V.22. — P.307−309.
  49. Galiba G., Erdei L. Dependence of wheat callus growth, differentiation and mineral content on carbohydrate supply // Plant Sci. 1986. — V.45. — P.65−70.
  50. Ghorbel R., Juarez J., Navarro L., Pena L. Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants // Theor. Appl. Genet. 1999. — V.99. — P.350−358.
  51. Haccius B. Question of unicellular origin of nonzigotic embryos in callus culture // Phytomorphology 1978. — V.28. — P.74−81.
  52. Hadi M. Z., McMullen M.D., Finner J.J. Transformation of 12 different plasmids into soybean via particle bombardment // Plant Cell Reports 1996. — V.15. -P.500−503.
  53. Hammond J., McGarvey P., Yusibov V. Plant biotechnology: new products and applications Eds., New York, Springer, pp. 95−115 (2000)
  54. Harper B.K., Mabon S.A., Leffel S.M., Halfhill M.D., Richards H.A., Moyer
  55. K.A., Stewart C.N. Jr. Green fluorescent protein as a marker for expression of a second gene in transgenic plants // Nat. Biotechnol. 1999. — V.17. — P.1125−1129.
  56. Hart J.H. Role of phytostilbenes in decay and disease resistance // Annu Rev Phytopathol 1981. — V.19. — P.437−458.
  57. Haseloff J., Amos B. GFP in plants // Trends Genet. -1995 V. l 1. -P.328−329.
  58. He D.G., Yang Y.M., Scott K.J. A comparison of scutellum callus and epiblast callus induction in wheat: the effect of genotype, embryo age and medium // Plant Sci. 1988. — V.57. — P.225−233.
  59. He D.G., Mouradev A., Yang Y.M., Mouradeva E., Scott K.J. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts // Plant Cell Reports 1994. — V. 14. — P. 192−196.
  60. He G.Y., Lazzeri P.A. Analysis and optimization of DNA delivery into wheat scutellum and tritordeum inflorescence explants by tissue elctroporation // Plant Cell Reports 1998. — V. 18. — P.64−70.
  61. Hiei Y., Ohta S., Komari T., Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA // Plant Journal 1994. — V.6. — P.271−282.
  62. Hu W., Cheng C-L. Expression of Aequorea green fluorescent protein in plant cells // FEBS Lett 1995. — V.369. — P.331−334.
  63. Hu C.-Y., Chee P.P., Chesney R.H. et al. Intrinsic GUS-like activities in seed plants // Plant Cell Rep. 1990. — V.9. — P. 1−5.
  64. Jones L., Ratcliff F., Baulcombe D.C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Metl for maintenance // Curr. Biol. 2001. — V. 11. — P. 1−20.
  65. Jordan M.C. Green fluorescent protein as a visual marker for wheat transformation // Plant Cell Reports 2000. — V.19. — P. 1069−1075.
  66. Kass S.U., Pruss D., Wolffe A.P. How does DNA methylation repress transcription? // Trends Genet 1997. — V.13. — P.444−449.
  67. Kavi Kishor P.B., Reddy G.M. Retention and revival of regenerating ability by osmotic adjustment in long-term cultures of four varieties of rice // Plant Physiol. -1986.-V.126.-P.49−54.
  68. Khanna H.K., Daggard G.E. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium // Plant Cell Rep 2003. -V.21. — P.429−436.
  69. Khurana P., Sehgal A., Chugh A. Transgene interactions in transgenics // In: Srivastava, P. S., ed. Plant Tissue Culture and Molecular Biology-Applications and Prospects. Narosa Publishing House, New Delhi, India. 1998 — P.728−750.
  70. Klein T.M., Jones T.J. Methods of genetic transformation: the gene gun // In: Vasil IK (ed) Molecular Improvement of Cereal Crop 1999. — P.21−42. Kluwer Academic, London
  71. Klein T.M., Harper E.C., Svab Z., Sanford J.C., Fromm M.E., Maliga P. Stable genetic transformation of intact Nicotiana cell by the particle bombardment process // Proc Natl Acad Sci USA 1988. — V.85. — P.8502−8505.
  72. Klein T.M., Wolf E.D., Wu R., Sanford J.C. High-velocity microprojectiles for delivering nucleic acids into living cells // Nature 1987. — V.327. — P.70−73.
  73. Kloti A., Iglesias V.A., Wijnn J., Burkhardt P.K., Datta S.K., Potrykus I. Gene transfer by electroporation into intact scutellum cells of wheat embryos // Plant Cell Reports 1993. — V.12. — P.671−675.
  74. Koltin Y. Viruses of fungi and simple eukariotes // Mycology Series 1988. -V.7. — (eds Koltin Y., and Leibowitz M J.) P.209−242 (Marsel Dekker, New York, NY, 1988).
  75. Korber-Grohne U. (1988) Nutzpflanzen in Deutschland Kulturgeschichte und Biologie. Theiss Verlag, Stuttgart, Germany.
  76. Koziel M.G., Carozzi N.B., Desai N. Optimizing expression of transgenes with an emphasis on post-transcriptional events // Plant Mol. Biol. 1996. — V.32. -P.393−405.
  77. Krysiak C., Mazu’s B., Buchowicz J. Generation of DNA double-strand breaks and inhibition of somatic embryogenesis by tungsten microparticles in wheat // Plant Cell, Tissue and Organ Culture 1999. — V.58. — P.163−170.
  78. Kumpatla S.P., Teng W., Bucholz W.G., Hall T.C. Epigenetic transcriptional silencing and 5-azacytidine mediated reactivation of a complex transgene in rice // Plant Physiol. -1997. V. l 15. — P.361−373.
  79. Leckband G., Lorz H. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance // Theoretical and Applied Genetics 1998. — V.96. — P.1004−1012.
  80. Lee B., Murdoch K., Topping J., Kreis M., Jones M.G.K. Transient gene expression in aleurone protoplasts isolated from developing caryopses of barley and wheat // Plant Molecular Biology 1989. — V.13. — P.21−29.
  81. Leffel S.M., Mabon S.A., Stewart C. N Jr. Applications of green fluorescent protein in plants // Biotechniques -1997. V.23. — P.912−918.
  82. Li Z., Upadhyaya N.M., Meena S., Gibbs A J., Waterhouse P.M. Comparison of promoters and selectable marker genes for use in Indica rice transformation // Molecular Breeding 1997. — V.3. — P. 1−14.
  83. Limanton-Grevet A., Jullien M. Agrobacterium-mQdmtQd transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants // Mol. Breed. 2001. — V.7. — P. 141−150.
  84. Linacero R., Lopez-Bilbao M.G., Romero C., Laurie D.A., Vazquez A.M. Genotypic differences in polyembryo formation and somatic embryogenesis increment in wheat (Triticum aestivum L.), following 2,4-D treatment // Euphytica 1996. — V.89. — P.345−348.
  85. Liu H.S., Jan M.S., Chou C.K., Chen P.H., Ke H.J. Is green fluorescent protein toxic to the living cells // Biochem. Biophys. Res. Commun. 1999. — V.260. -P.712−717.
  86. Loeb T.A., Reynolds T.L. Transient expression of the uidA gene in pollen embryoids of wheat following microprojectile bombardment // Plant Science -1994. V.104. -P.81−91.
  87. Lonsdale D.M., Lindup S., Moisan J., Harvey A. Using firefly luciferase to identify the transition from transient to stable expression in bombarded wheat scutellar tissue // Physiologia Plantarum 1998. — V.102. — P.447−453.
  88. Lorz H., Becker D., Liitticke S. Molecular wheat breeding by direct gene transfer // Euphytica 1998. — V.100. — P.219−223.
  89. Lorz H., Backer B., and Schell J. Gene transfer to cereal cells mediated by protoplast transformation // Molecular and General Genetics 1985. — V.199. -P. 178−192.
  90. Luhrs R., Lorz H. Plant regeneration in vitro from embryogenic cultures of spring- and winter-type barley {Hordeum vulgare L.) // Theor Appl Genet 1987. — V.82. — P.74−80.
  91. Mahalakshmi A., Chugh A., Khurana P. Exogenous DNA uptake via cellular perneabilization and expression of foreign gene in wheat zygotic embryos // Plant Biotechnogy 2000. — V.17. — P.235−240.
  92. Mahalakshmi A., Maheshwari S.C., Khurana P. High frequency divisions in leaf base protoplasts of wheat (Triticum aestivum L.) // Journal of Plant Biochemistry and Biotechnology 1993. — V.2. — P.61−65.
  93. Mathias R.T., Boyd L.A. Cefotaxime stimulates callus growth embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L) // Plant Sci -1986. V.46. — P.217−223.
  94. Matzke M.A., Matzke A.J.M., Eggleston W.B. Paramutation and transgene silensing: a common response to invasive DNA // Trends Plant Sci 1996. — V.l. -P.382−388.
  95. Matzke M.A., Matzke A.J.M. How and why do plants inactivate homologous (trans)genes? // Plant Physiol. 1995. — V.107. — P.679−685.
  96. McElroy D., Zhang W., Ca J., Wu R. Isolation of and efficient Actin promoter for use in rice transformation // Plant Cell 1990. — V.2. — P. 163−171.
  97. Mentewab A., Letellier V., Marque C., Sarrafi A. Use of anthocyanin biosynthesis stimulatory genes as marker for the genetic transformation of haploid embryos and isolated microspores in wheat // Cereal Res Commun 1999. -V.27. -P.l-2.
  98. Meyer P. Variation of transgene expression in plants // Euphytica 1995. -V.85. -P.359−366.
  99. Mlynarova L., Keizer L.C.P., Stiekema W.J., Nap J.P. Approaching the lower limits of transgene variability // Plant Cell 1996. — V.8. — P.1589−1599.
  100. Mohanty A., Sarma N.P., Tyagi A.K. Agrobacterium-mQdiatQd high frequency transformation of an elite indica rice varity Pusa Basmati 1 and transmission of the transgenes to R2 progeny // Plant Sci. 1999. — V.147. — P.127−137.
  101. Molinier J., Himber C., Hahne G. Use of green fluorescent protein for detection of transformed shoots and homozygous offspring // Plant Cell Rep 2000. — V.19. -P.219−223.
  102. Mooney P.A., Goodwin P.B. Adherence of Agrobacterium tumefaciens to the cells of immature wheat embryos // Plant Cell Tissue Organ Culture 1991. -V.25.-P.199−208.
  103. Moore T.C. Biochemistry and physiology of plant hormones // Springer, Berlin Heidelberg New York, 1989.- P.330.
  104. Muller E., Lorz H., Liitticke S. Variability of transgene expression in clonal cell lines of wheat // Plant Sci. 1996. — V. l 14. — P.71−82.
  105. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant 1962. — V.15. — P.473−497.
  106. Murray F., Brettell R., Matthews P., Bishop D., Jacobsen J. Comparison of Agrobacterium-mediatQd transformation of four barley cultivars using the GFP and GUS reporter genes // Plant Cell Rep 2004. — V.22. — P.397−402.
  107. Nehlin L., Moller C., Bergman P., Glimelius K. Transient ?-gus and gfp gene expression and viability analysis of microprojectile bombarded microspores of Brassica napus L. I IJ Plant Physiol 2000. — V. 156. — P. 175−183.
  108. Niedz R.P., Sussman M.R., Satterlee J.S. Green fluorescent protein: an in vivo reporter of plant gene expression // Plant Cell Reports 1995. — V.14. — P.403−406.
  109. Nissen P. Stimulation of somatic embryogemesis by ethylene: Effects of modulators of ethylene biosynthesis and action // Physiol Plant 1994. — V.92. -P.397−403.
  110. Oard J.H., Paige D., Dvorak J. Chimeric gene expression using maize intron in cultured cells of bread wheat // Plant Cell Reports 1989. — V.8. — P.156−160.
  111. O’Kennedy M.M., Burger J.T., Botha F.C. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase // Plant Cell Rep 2004. — V.22. — P.684−690.
  112. Orshinsky B.R., Sadasivaiah R.S. Effect of plant growth conditions, plating density, and genotype on the anther culture response of soft white spring wheat hybrids // Plant Cell Reports 1997. — V.16. — P.758−762.
  113. Ozias-Akins P., Vasil I.K. Plant regeneration from cultured embryos and inflorescence of Triticum aestivum (wheat): Evidence for somatic embryogenesis // Protoplasma 1982. — V. l 10. — P.95−105.
  114. Palauqui J., Elmayan T., Pollien J., Vaucheret H. Systemic acquired silencing: Transgene specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions // EMBO J -1997. V.16. — P.4738−4745.
  115. Papenfus J.M., Carman J.G. Enhanced regeneration from wheat callus cultures using dicamba and kinetin // Crop Sci. 1987. — V.27. — P.588−593.
  116. Pastori G.M., Wilkinson M.D., Steele S.H., Sparks C.A., Jones H.D., Parry M.A.J. Age-dependent transformation frequency in elite wheat varieties // J. of Experimental Botany 2001. -V.52. -N.357. — P.857−863.
  117. Patnaik D., Khurana P. Wheat biotechnology: A minireview // Electronic J of Biotechnology 2001. — V.4. — N.2. — P. 1−29.
  118. Pawlowski W.P., Somers D.A. Transgene inheritance in plants genetically engineered by microprojectile bombardment // Mol. Biotechnol. 1996. — V.6. -P.17−30.
  119. Pawlowski W.P., Torbert K.A., Rines H.W., Somers D.A. Irregular patterns of transgene silencing in allohexaploid oat // Plant Mol Biol 1998. — V.38. -P.597−607.
  120. Punja Z.K. Genetic engineering of plants to enhance resistance to fungal pathogens-a review of progress and future prospects // Can. J. Plant Pathol. -2001. V.23. -P.216−235.
  121. Rasco-Gaunt S., Riley A., Barcelo P., Lazzeri P.A. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues // Plant Cell Reports 1999a. — V.19. — P. 118−127.
  122. Razin A. CpG methylation, chromatin structure and gene silencing- the three way interaction // EMBO Journal 1998. — V.7. — P.4905−4908.
  123. Redway F.A., Vasil V., Lu D., Vasil I.K. Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.) // Theor. Appl. Genet. 1990. — V.79. — P.609−617.
  124. Rethmeier N., Seurinck J., Van Montagu M., Cornelissen M. Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process // Plant J. 1997. — V.12. — P.895−899.
  125. Rhodes C., Pierce D., Mettler I., et.al. Genetically transformed maize plants from protoplasts // Sci. 1988. — V.240. — P.204−207.
  126. Rogers S., Bendich A. Extraction of total cellular DNA from plants, algae and fungi // Gelvin S., Schiperoort R. Plant Molecular Biology Manual. A Kluwer Academic Publishers. Dordrecht, Boston, London. — 1995. — Section 7−1.
  127. Rooke L., Bekes F., Fido R., Barro F., Gras P., Tatham A. S., Barcelo P., Lazzeri P., Shewry P. R. Overexpression of a gluten protein in pransgenic wheat results in greatly increased dough strength // Journal of Cereal Science 1999. -V.30.-P.115−120.
  128. Rose A.B., Beliakoff J.A. Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing // Plant Physiology. 2000. -V.122. -P.535−542.
  129. Russell D.A., Fromm M.E. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice // Transgenic Res 1997. — V.6. -P.157−168.
  130. Russell J.A., Roy M.K., Sanford J.C. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation // Plant Physiol. 1992. — V.98. -P.1050—1056.
  131. Sanford J.C. The biolistic process // Trends Biotechnol. 1988. — V.6. — P.299−302.
  132. Schoffl F., Schroder G., Kliem M., Rieping M. An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in transgenic tobacco plants // Transgenic Res 1993.- V.2. -P.93−100.
  133. Scott A., Woodfield D., White D.W.R. Allelic composition and genetic background effects on transgene expression and inheritance in white clover // Mol Breed 1998. — V.4. — P.47990.
  134. Sears R.G., Deckard E.L. Tissue culture variability in wheat: callus induction and plant regeneration // Crop Sci 1982. — V.22. — P.546−550.
  135. Sela-Buurlage M.B.B., Ponstein A.S., Bres-Vloemans S.A., Melchers L.S., van den Elzen P.J.M., Cornelissen B.J.C. Only specific tobacco (Nico tabacum) chitinases and b-l, 3-glucanases exhibit antifungal activity // Plant Physiol 1993.- V.101.-P.857−863.
  136. Sheen J., Hwang S.B., Niwa Y., Kobayashi H., Galbraith D.W. Green fluorescent protein as a new vital marker in plant cells // Plant J 1995. — V.8. -P.777−784.
  137. Shewry P.R., Lazzery P. Molecular approaches to wheat quality improvement // Chemistry and Industry 1997. — V.21. — P.559−562.
  138. Shirsat A.H., Wilford N., Cray R.R.D. Gene copy number and levels of expression in transgenic plants of a seed-specific gene // Plant Sei 1989. — V.61.- P.75−80.
  139. Simpson G.G., Filipowicz W. Splicing of precursors to mRNA in higher plants: mechanism, regulation and subnuclear organization of the spliceosomal machinery // Plant Mol. Biol. 1996. — V.32. — P. l^l.
  140. Sitte P., Ziegler H., Ehrendorfer F., Bresinsky A. Lehrbuch der Botanik fur Hochschulen // Gustav Fischer Verlag, Stuttgart, Jena, New York, 33. Auflage, -1991. -P.514−115.
  141. Sivamani E., Brey Ch.W., Talbert L.E., Young M.A., Dyer W.E., Kaniewski W.K., Qu R. Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene // Transgenic Research 2002. — V. l 1. -P.31−41.
  142. Sivamani E., Brey Ch.W., Talbert L.E., Dyer W.E., Qu R. Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (Nib) gene // Molecular Breeding 2000. — V.6. — P.469−477.
  143. Smith H.A., Swaney S.L., Parks T.D., Wernsmann E.A., Dougherty W.G. Transgenic plant virus resistance mediated by un- translatable sense RNAs: expression, regulation, and fate of nonessential RNAs // Plant Cell 1994. — V.6.1. P.1441—1453.
  144. Sorokin A.P., Ke X.Y., Chen D.F., Elliott M.C. Production of fertile transgenic wheat plants via tissue electroporation // Plant Science 2000. — V. l56. — P.227−233.
  145. Srivastava V., Anderson O.D., Ow D.W. Singlecopy transgenic wheat generated through the resolution of complex integration patterns // Proceedings in National Academy of Science of the United States of America 1999. — V.96. — P. lll 17— 11 121.
  146. Srivastava V., Vasil V., Vasil I.K. Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.) // Theor. Appl. Genet.1996.-V.92.-P.1031−1037.
  147. Stark-Lorenzen P., Nelke B., Ha" nler G., Mu" hlbach H.P., Thomzik J.E. Transfer of a stilbene synthase gene to rice (Oryza sativa L.) // Plant Cell Rep1997. V.16. -P.668−673.
  148. Stewart C. N Jr. The utility of green fluorescent protein in transgenic plants // Plant Cell Rep. 2001. — V.20. — P.376−382.
  149. Stewart C.N. Jr. Monitoring transgenic plants using in vivo markers // Nat Biotechnol 1996. -V.14. — P.682 Cell Rep — V.14. — P.403106.
  150. Stoger E., Williams S., Keen D., Christou P. Molecular characteristics of transgenic wheat and the effect on transgene expression // Transgenic Research1998.- V.7. P.463−471.
  151. Takano M., Egawa H., Ikeda J-E., Wakasa K. The structures of integration sites in transgenic rice // Plant J. 1997. — V. 11. — P.353−361.
  152. Takumi S., Murai K., Mori N., Nakamura C. Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transposase gene // Theoretical and Applied Genetics 1999. — V.98. — P.947−953.
  153. Takumi S., Shimada T. Variation in transformation frequencies among six common wheat cultivate through particle bombardment of scutellar tissues // Genes Genet Syst- 1997. V.72. — P.63−69.
  154. Thomas M.R., Scott KJ. Plant regeneration by somatic embryogenesis from callus initiated from immature embryos and immature inflorescences of Hordeum vulgarQ //J. Plant Physiol. 1985. — V. 121. — P. 159−169.
  155. Topfer R., Gronenborn B., Schell J., Steinbiss H.H. Uptake and transient expression of chimeric genes in seed-derived embryos // Plant Cell. 1989. — V.l. -N.1.-P.133−139.
  156. Uze M., Potrykus I., Sautter C. Single-stranded DNA in the genetic transformation of wheat (Triticum aestivum L.): transformation frequency and integration pattern // Theor Appl Genet 1999. — V.99. — P .487−495.
  157. Vain P., Flament P., Soudain P. Role of ethylene in embryogenic callus initiation and regeneration in Zea mays L. // J Plant Physiol 1989. — P.537−540. N?
  158. Vasil I.K., Anderson O.D. Genetic engineering of wheat glutein // Journal? -1997. V.2. — N.8. — P.292−297.
  159. Vasil V., Castillo A.M., Fromm M.E., Vasil I.K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus // Biotechnology 1992. — V.10. — P.667−674.
  160. Vasil V., Brown S.M., Re D., Fromm M.E., Vasil I.K. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat // Biotechnology 1991. — V.9. — P.743−747.
  161. Vasil V., Srivastava V., Castillo A.M., Fromm M.E., Vasil, I.K. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos // Biotechnology 1993. — V. 11. — P. 1553−1558.
  162. Voinnet O. RNA silencing as a plant immune system against viruses // Trends in Genetics 2001 — V. l7. — N.8. — P.449−459.
  163. Walters D.A., Vetsch C.S., Potts D.E., Lundquist R.C. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants // Plant Mol. Biol. 1992. — V.18. — P. 189−200.
  164. Wang Y.C., Klein T.M., Fromm M., Cao J., Sanford J.C., Wu R. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment // Plant Molecular Biology 1988. — V. 11. — P .433139.
  165. Watanabe Y., Ogawa T., Takahashi H., Ishida I., Takeuchi Y., Yamamoto M., Okada Y. Resistance against multiple viruses in plant mediated by a double stranded-RNA specific ribonuclease // FEBS Letters 1995. — V.372. — P. 165 168.
  166. Webb K.J., Morris P. Methodologies of plant transformation. In: Plant genetic manipulations for crop protection // Biotechnology in Agricultural series 1992 -N.7. — Gatehouse (Ed.). — CAB International-P.7−43.
  167. Weeks J.T., Anderson O.D., BlechI A.E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum) II Plant Physiol -1993. V.102. -P.1077−1084.
  168. Wernicke W., Brettel. R., Wakizuka T., Potrycus I. Adventitious embryoid and root formation from rice leaves // Z. Pfllazenphysiol. 1981. — V.103. — P.361−365.
  169. Werr W., Lorz H. Transient gene expression in a Gramineae cell line // Molecular and General Genetics 1986. — V.202. — P.471175.
  170. Wheeller A.W. Changes in growth-substances contents during growth of wheat grains // Ann Appl Biol -1972. V.72. — P.327−334.
  171. Wilmink A., Dons J. Selective agents and marker genes for use in transformation of monocotyledonous plants // Plant Mol Biol Rep 1993. — V. l 1. -P.165−185.
  172. Witrzens B., Brettell R.I.S., Murray F.R., McElroy D., Li Z., Dennis E.S. Comparison of three selectable marker genes for transformation of wheat bymicroprojectile bombardment // Australian J. Plant Physiol. 1998. — V.25. -P.39—44.
  173. Woolston C.J., Barker R., Gunn H., Boulton M.I., Mullineaux P.M. Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA // Plant Molecular Biology 1988. — V. l 1. — P.35−43.
  174. Xu Y., Yu H., Hall T.C. Rice triosephosphate isomerase gene 59 sequence directs b-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice // Plant Physiol. 1994. — V.106. — P.459−467.
  175. Yang S.F., Hoffman N.E. Ethylene biosynthesis and its regulation in higher plants //Ann. Rev. Plant Physiol. 1984. -V.35. — P. 155−189.
  176. Yu H., Kumar P. P. Post-transcriptional gene silencing in plants by RNA // Plant Cell Rep 2003. — V.22. — P. 167−174.
  177. Zaghmout O.M.F. Transformation of protoplasts and intact cells from slowly growing embryogenic callus of wheat (Triticum aestivum L.) // Theoretical and Applied Genetics 1994. — V.89. — P.577−582.
  178. Zeller F., Friebe B. Evolution und zuchtung des saatweizens (Triticum aestivum L.) // Biologie in unserer Zeit 1991. — V.5. — P.248−254.
  179. Zhang L., French R., Langenberg W.G.,. Mitra A. Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease // Transgenic Research 2001. — V. 10. — P. 13−19.
  180. Zhang S-H., Lawton M.A., Hunter T., Lamb C.J. Atpkl, a novel ribosomal protein kinase gene from Arabidopsis: I. Isolation, characterization, and expression // J. Biol. Chem. 1994. — V.269. — P.17 586−17 592.
  181. Zhou H., Stiff C.M., KonzakC.F. Stably transformed callus of wheat by electroporation- induced direct gene transfer // Plant Cell Reports 1993. — V.12. -P.612−616.
  182. Zhu Z., Sun B., Liu C., Xiao G., Li X. Transformation of wheat protoplasts mediated by cationic liposome and regeneration of transgenic plantlets // Chinese Journal of Biotechnology 1993.-V.9.-P.257−261.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ