Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Основные характеристики и свойства обменного механизма ядерного взаимодействия

РефератПомощь в написанииУзнать стоимостьмоей работы

Электромагнитное взаимодействие — в нем могут принимать участие любые электрически заряженные частицы, а так же фотоны — кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер… Читать ещё >

Основные характеристики и свойства обменного механизма ядерного взаимодействия (реферат, курсовая, диплом, контрольная)

Основные характеристики и свойства обменного механизма ядерного взаимодействия

Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия. Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами — квантами электромагнитного поля.

Теория обменного взаимодействия получила признание после того, как в 1935 г. японский физик Х. Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название р-мезонов (пионов). В настоящее время известны три вида пионов: р+, ри р0.

В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых векторных бозонов W+, Wи Z0, обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие. Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом участвуют векторные бозоны.

Процессы, в которых участвуют различные элементарные частицы, сильно различаются по энергиям и характерным временам их протекания. Согласно современным представлениям, в природе осуществляется четыре вида взаимодействий, которые не могут быть сведены к другим, более простым видам: сильное, электромагнитное, слабое и гравитационное. Эти виды взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие — наиболее интенсивное. Оно обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы — адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка 10-15 м и менее. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие — в нем могут принимать участие любые электрически заряженные частицы, а так же фотоны — кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микрои макромира.

Слабое взаимодействие — определяет ход наиболее медленных процессов, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, в-распад нейтрона, а также безнейтринные процессы распада частиц с большим временем жизни (ф? 10-10 с).

Гравитационное взаимодействие — присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезд, планет и т. п.) с их огромными массами.

В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута И. Е. Таммом и Д. Д. Иваненко. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках.

После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействий тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой.

Физики-теоретики прилагают значительные усилия, чтобы рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения. Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик — гипотетическая частица, названная гравитоном. Однако эта частица до сих пор не обнаружена.

В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология — наука об эволюции Вселенной — предполагает, что Большой взрыв произошел 18 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц? 1019 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014 ГэВ). При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи — нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

Элементарные частицы объединяются в 3 группы:

фотоны;

лептоны;

адроны.

К группе фотонов относится единственная частица — фотон, которая является носителем электромагнитного взаимодействия.

Следующая группа состоит из легких частиц — лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и м-мезон. К лептонам относятся еще ряд частиц. Все лептоны имеют спин ½.

Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две части. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них — положительно и отрицательно заряженные, а также нейтральные р-мезоны с массами порядка 250 электронных масс. Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один з0-мезон. Все мезоны имеют спин, равный нулю.

Вторая подгруппа — барионы — включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны — протоны и нейтроны.

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые частицы — адроны — построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион — из трех антикварков. Мезоны состоят из пар кварк-антикварк.

С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными 2/3 и 1/3 элементарного заряда.

Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц — адронов.

мезон бозон обменный ядерный.

  • 1. Wolfgang Nolting, Anupuru Ramakanth // Quantum Theory of Magnetism. Springer, 2009. — ISBN 9 783 540 854 159. — 752 p.
  • 2. Ахиезер А. И., Барьяхтар В. Г., Пелетминский С. В. // Спиновые волны. М.: Наука, 1967. — 368 с.
  • 3. Блохинцев Д. И. // Основы квантовой механики. М.: Наука, 1967. — 664 с.
  • 4. Ландау Л. Д., Лифшиц Е. М. // Теоретическая физика. М., Физматлит, 2002. — 808 с. — ISBN 5−9221−0057−2 (т. 3) гл. 9 «Тождественность частиц», п. 62 «Обменное взаимодействие», с. 285−290.
  • 5. Жумабеков А. С. // Материалы 50-ой юбилейной международной научной студенческой конференции «Студент и научно-технический прогресс»: Физика неравновесных процессов. 13−19 апреля 2012 г., г. Новосибирск — Новосибирский государственный университет, 2012. — ISBN 978−5-4437−0050−2.
Показать весь текст
Заполнить форму текущей работой