Π”ΠΈΠΏΠ»ΠΎΠΌΡ‹, курсовыС, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅...
Брочная ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΡƒΡ‡Ρ‘Π±Π΅

ИсслСдованиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ возмоТности использования этого процСсса для лСчСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ИзмСнСния Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π°Π½Ρ‚ΠΈΠΊΠΎΠ΄ΠΎΠ½Π° Ρ‚Π ΠΠšΠ›ΠΈΠ· ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΅Π΅ Π»ΠΈΠ·ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ, Π½ΠΎ Π½Π΅ ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈΠΌΠΏΠΎΡ€Ρ‚Ρƒ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ. НСкоторыС ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Π΅ вСрсии Ρ‚Π ΠΠšΠ»ΠΈΠ· способны ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π² Π΄Π΅Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ мисацилированной Ρ„ΠΎΡ€ΠΌΠ΅. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ исслСдованиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ искусствСнной систСмы Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π°… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • 1. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
    • 1. 2. ΠŸΡ€Π΅Ρ‚Ρ€Π°Π½ΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² ΠΌΠΈΡ‚ΠΎ-Ρ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΠΈΡ… Ρ‚ранспорт ΠΊ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ повСрхности
    • 1. 3. Вранслокационный комплСкс внСшнСй ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹
    • 1. 4. Вранслоказы Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹
      • 1. 4. 1. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Π±Π΅Π»ΠΊΠΎΠ², содСрТащих ΠΊΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ
      • 1. 4. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² с Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌΠΈ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌΠΈ
      • 1. 4. 3. ОΠ₯А-транслоказа
  • 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
    • 2. 1. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ…
      • 2. 1. 1. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Tetrahymena
      • 2. 1. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ трипаносоматид
    • 2. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ растСний
    • 2. 3. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 2. 4. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…
  • 3. Π‘ΠΎΠ»Π΅Π·Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, обусловлСнныС мутациями Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ Π³Π΅Π½ΠΎΠΌΠ΅
    • 3. 1. Π‘ΠΎΠ»Π΅Π·Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, обусловлСнныС мутациями Π² Π³Π΅Π½Π°Ρ… Ρ‚Π ΠΠš
  • ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования
  • 1. Π¨Ρ‚Π°ΠΌΠΌΡ‹ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ Π»ΠΈΠ½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    • 1. 1. Π¨Ρ‚Π°ΠΌΠΌΡ‹ Escherichia col
    • 1. 2. Π¨Ρ‚Π°ΠΌΠΌΡ‹ Saccharomyces cerevisiae
    • 1. 3. Π›ΠΈΠ½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
  • 3. Π“Π΅Π½Π½ΠΎ-ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 3. 1. ΠžΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π· (Kunkel et al., 1987)
      • 3. 1. 1. Π’Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠ΅ ΡƒΡ€Π°Ρ†ΠΈΠ»-содСрТащих Ρ„Π°Π³ΠΎΠ²
      • 3. 1. 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ½ΠΈΡ‚Π΅Π²ΠΎΠΉ Π”ΠΠš ΠΈΠ· Ρ„Π°Π³ΠΎΠ²Ρ‹Ρ… частиц
      • 3. 1. 3. ЀосфорилированиС ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ²
      • 3. 1. 4. ΠžΡ‚ΠΆΠΈΠ³ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ
      • 3. 1. 5. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ Π”ΠΠš
    • 3. 2. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ E. col
      • 3. 2. 1. ΠœΠ΅Ρ‚ΠΎΠ΄ солСвой трансформации
      • 3. 2. 2. ЭлСктропорация
    • 3. 3. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΎΠ΄Π½ΠΎΠ½ΠΈΡ‚Π΅Π²Ρ‹Ρ… Π”ΠΠš Ρ„Π°Π³ΠΎΠ² для сСквСнирования
    • 3. 4. Π‘Π΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ½ΠΈΡ‚Π΅Π²Ρ‹Ρ… ΠΈ Π΄Π²ΡƒΠ½ΠΈΡ‚Π΅Π²Ρ‹Ρ… Π”ΠΠš
    • 3. 5. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π”ΠΠš Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„Π°Π³ΠΎΠ² ΠΈ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½Ρ‹Ρ… Π”ΠΠš
    • 3. 6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ† для Π’7-транскрипции ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ PCR
      • 3. 6. 1. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½Π°Ρ цСпная рСакция
      • 3. 6. 2. РасщСплСниС Π”ΠΠš рСстриктазой BstNl
    • 3. 7. Π’7- транскрипция
    • 3. 8. АминоацилированиС Π’7-транскриптов Π³Π΅Π½Π°Ρ‚Π ΠΠš
    • 3. 9. Π Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΌΠ΅Ρ‡Π΅Π½ΠΈΠ΅ транскриптов
    • 3. 10. БвязываниС РНК ΠΈ Π’7-транскриптов с pre-MSK
    • 3. 11. Вранспорт Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Ρ… транскриптов Π³Π΅Π½Π° Ρ‚Π ΠΠš Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
      • 3. 11. 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ
      • 3. 11. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ РНК Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
    • 3. 12. Π˜ΠΌΠΏΠΎΡ€Ρ‚ 358-ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Ρ… транскриптов Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 3. 13. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ
    • 3. 14. Western-гибридизация
    • 3. 15. Врансформация Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 3. 16. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарных ΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… РНК
    • 3. 17. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»-Ρ‚Π ΠΠš Π² ΠΊΠΈΡΠ»Ρ‹Ρ… условиях
    • 3. 18. Гибридизация ΠΏΠΎ ΠΠΎΠ·Π΅Ρ€Π½Ρƒ ΠΈ Ρ‚очСчная гибридизация
    • 3. 19. ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ транскрипция ΠΈ Π°ΠΌΠΏΠ»ΠΈΡ„икация
    • 3. 20. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… Ρ‚Π ΠΠš Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
      • 3. 20. 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
      • 3. 20. 2. Π˜ΠΌΠΏΠΎΡ€Ρ‚ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… Ρ‚Π ΠΠš
    • 3. 21. ВрансфСкция ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅
    • 3. 22. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ развСдСния
    • 3. 23. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарной ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΈ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π ΠΠš ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
    • 3. 24. ГистохимичСскоС ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ для опрСдСлСния активности Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌ Π‘ ΠΎΠΊΡΠΈΠ΄Π°Π·Ρ‹
    • 3. 25. ΠžΡ†Π΅Π½ΠΊΠ° скорости поглощСния кислорода ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ
    • 3. 26. БиосинтСз Π±Π΅Π»ΠΊΠ° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • 1. Π’Π»ΠΈΡΡŽΡ‚ Π»ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹ Π°Π½Ρ‚ΠΈΠΊΠΎΠ΄ΠΎΠ½Π° Ρ‚Π ΠΠš1 Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΅Π΅ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ?
    • 1. 1. ΠœΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² Π°Π½Ρ‚ΠΈΠΊΠΎΠ΄ΠΎΠ½Π΅ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚Π ΠΠš
    • 1. 2. ΠœΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² Π°Π½Ρ‚ΠΈΠΊΠΎΠ΄ΠΎΠ½Π΅ Ρ‚Π ΠΠš1 ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… транскриптов с npe-MSK, Π½ΠΎ ΠΏΡ€Π°ΠΊΡ‚ичСски Π½Π΅ ΡΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ся Π½Π° ΠΈΡ… ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΠΈ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ
  • 2. УчаствуСт Π»ΠΈ импортируСмая Ρ‚Π ΠΠšΠ›ΠΈΠ· Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ биосинтСзС Π±Π΅Π»ΠΊΠ°?
    • 2. 1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ‚Π ΠΠšΠ›ΠΈΠ· ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π² ΠΌΠΈΡΠ°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅
    • 2. 2. Ρ‚Π ΠΠš, ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π² ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ участиС Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ биосинтСзС Π±Π΅Π»ΠΊΠ°
    • 2. 3. Π˜ΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ‚Π ΠΠš ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ участиС Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ биосинтСзС Π±Π΅Π»ΠΊΠ° in vivo ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½Ρ‹ ΡΡƒΠΏΡ€Π΅ΡΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ нонсСнс ΠΌΡƒΡ‚Π°Ρ†ΠΈΡŽ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π”ΠΠš
    • 2. 4. Π˜ΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ in vivo ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ‚Π ΠΠš2 способны ΡΡƒΠΏΡ€Π΅ΡΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ нонсСнс ΠΌΡƒΡ‚Π°Ρ†ΠΈΡŽ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π”ΠΠš
  • 3. ΠœΠΎΠ³ΡƒΡ‚ Π»ΠΈ Ρ‚Π ΠΠš ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°?
    • 3. 1. Π”Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²Ρ‹Π΅ Ρ‚Π ΠΠš способны ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°Ρ‚ΡŒ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° in vitro
    • 3. 2. Π”Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²Ρ‹Π΅ Ρ‚Π ΠΠš способны ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°Ρ‚ΡŒ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° in vivo
  • 4. Бпособна Π»ΠΈ импортируСмая Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ лизиновая Ρ‚Π ΠΠš ΡΡƒΠΏΡ€Π΅ΡΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΡƒΡ‚Π°Ρ†ΠΈΡŽ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π”ΠΠš?
  • Π’Π«Π’ΠžΠ”Π«

ИсслСдованиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ возмоТности использования этого процСсса для лСчСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠœΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ — это ΠΎΡ€Π³Π°Π½Π΅Π»Π»Ρ‹, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ энСргиСй Π·Π° ΡΡ‡Π΅Ρ‚ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования (Saraste, 1999). ΠœΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Π”ΠΠš ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ собствСнной систСмой биосинтСза Π±Π΅Π»ΠΊΠ°. Однако большая Ρ‡Π°ΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π·Π°ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½Π° Π² ΡΠ΄Π΅Ρ€Π½ΠΎΠΌ Π³Π΅Π½ΠΎΠΌΠ΅ ΠΈ ΠΈΠΌΠΏΠΎΡ€Ρ‚ируСтся ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² структурныС РНК, Π·Π°ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² ΡΠ΄Ρ€Π΅, Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ для функционирования ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы биосинтСза Π±Π΅Π»ΠΊΠ°. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ пСрСноса Ρ‚Π ΠΠš Ρ‡Π΅Ρ€Π΅Π· ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ этого процСсса сильно Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΡŽΡ‚ ΠΎΡ‚ Π²ΠΈΠ΄Π° ΠΊ Π²ΠΈΠ΄Ρƒ. Π’Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ρƒ Ρ‚рипаносоматид Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ всС Ρ‚Π ΠΠš, Π° Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ пСкарских Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Π° — ΠΎΠ΄Π½Π° ΠΈΠ· Π΄Π²ΡƒΡ… ΠΈΠ·ΠΎΠ°ΠΊΡ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ‹Ρ… Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ‚Π ΠΠš (Schneider and Marechal-Drouard, 2000). Π’ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Ρ‚Π ΠΠš Π½Π΅ ΠΈΠΌΠΏΠΎΡ€Ρ‚ируСтся, ΠΎΠ΄Π½Π°ΠΊΠΎ Π² ΡΡ‚ΠΈ ΠΎΡ€Π³Π°Π½Π΅Π»Π»Ρ‹ ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‚ РНК, входящиС Π² ΡΠΎΡΡ‚Π°Π² Π ΠΠšΠ°Π·Ρ‹Π  ΠΈ MRP, Π° Ρ‚Π°ΠΊΠΆΠ΅ 5S Ρ€Π ΠΠš.

Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ Ρ‡Π°ΡΡ‚ΡŒ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‚Π ΠΠš Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° для обСспСчСния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ трансляции. А Π²ΠΎΡ‚ Ρ€ΠΎΠ»ΡŒ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²ΠΎΠΉ Ρ‚Π ΠΠš остаСтся нСясна. Она Π½Π΅ Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†ΠΈΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ся ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ·ΠΈΠ»-Ρ‚Π ΠΠš-синтСтазой, Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‡Π΅Π³ΠΎ Π±Ρ‹Π»ΠΎ высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ данная Ρ‚Π ΠΠš Π½Π΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ участия Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ биосинтСзС Π±Π΅Π»ΠΊΠ° (Martin et al., 1979). ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ содСрТат ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²ΡƒΡŽ Ρ‚Π ΠΠš, ΡΠΏΠΎΡΠΎΠ±Π½ΡƒΡŽ ΡƒΠ·Π½Π°Π²Π°Ρ‚ΡŒ ΠΎΠ±Π° Π»ΠΈΠ·ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΊΠΎ Π΄ΠΎΠ½Π° AAA ΠΈ AAG.

ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ достаточно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹, Ρ‡Π΅Π³ΠΎ нСльзя ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‚Π ΠΠš. ИсслСдованиС послСдних интСрСсно Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ, Π½ΠΎ ΠΈ Ρ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния. Π”ΠΎ ΡΠ΅Π³ΠΎΠ΄Π½ΡΡˆΠ½Π΅Π³ΠΎ дня Π² ΠΌΠΈΡ€Π΅ Π½Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΠ΅Ρ‚ эффСктивной Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ систСмы для доставки гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ. Π’Π°ΠΊΡƒΡŽ систСму ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² Π³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ для лСчСния ряда Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, обусловлСнных мутациями Π² Π³Π΅Π½Π°Ρ… ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π ΠΠš. Π€Π΅Π½ΠΎΠΌΠ΅Π½ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ прСдставляСт собой Π΅ΡΡ‚Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ систСму адрСсной доставки. Π‘ ΡΡ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния прСдставляСтся особо интСрСсным созданиС искусствСнной систСмы ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π² Π½ΠΎΡ€ΠΌΠ΅ Π½Π΅ ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π ΠΠš.

ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ исслСдованиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ искусствСнной систСмы Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Ρ‚Π ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

Π’ Ρ…ΠΎΠ΄Π΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π°Π½Ρ‚ΠΈΠΊΠΎΠ΄ΠΎΠ½Π° Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ‚Π ΠΠš1 ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ.

2. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, способна Π»ΠΈ импортируСмая Ρ‚Π ΠΠš ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ биосинтСзС Π±Π΅Π»ΠΊΠ°.

3. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… Ρ‚Π ΠΠš ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

Π’Π«Π’ΠžΠ”Π«:

ИзмСнСния Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π°Π½Ρ‚ΠΈΠΊΠΎΠ΄ΠΎΠ½Π° Ρ‚Π ΠΠšΠ›ΠΈΠ· ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΅Π΅ Π»ΠΈΠ·ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ, Π½ΠΎ Π½Π΅ ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈΠΌΠΏΠΎΡ€Ρ‚Ρƒ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ. НСкоторыС ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Π΅ вСрсии Ρ‚Π ΠΠšΠ»ΠΈΠ· способны ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π² Π΄Π΅Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ мисацилированной Ρ„ΠΎΡ€ΠΌΠ΅.

ЦитоплазматичСскиС Ρ‚Π ΠΠš, ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ, способны ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ биосинтСзС Π±Π΅Π»ΠΊΠ°. Π“Π΅Ρ‚Π΅Ρ€ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ (Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Π΅) Ρ‚Π ΠΠš способны ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°Ρ‚ΡŒ Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΊΠ°ΠΊ in vitro, Ρ‚Π°ΠΊ ΠΈ in vivo. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… цитоплазматичСских Ρ‚Π ΠΠš способны ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ участиС Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ биосинтСзС Π±Π΅Π»ΠΊΠ° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Ρ‚Π ΠΠš, ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡ‹, способны частично ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΎΠ±ΡƒΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ Π² Π³Π΅Π½Π΅, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΌ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ‚Π ΠΠš.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π’.Π . ΠΈ Π“ΠΎΠ»ΠΎΠ²Π°Π½ΠΎΠ² Π•.И. 1984 ВозмоТная Ρ€ΠΎΠ»ΡŒ TPHKlLys Π² ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠΈ участков ΠΏΡ€Π΅-мРНК, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… рСгуляторноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для сплайсинга. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология 18:277−285.
  2. Abe Y, Shodai Π’, Muto Π’, Mihara К, Torii Н, Nishikawa S, Endo T, Kohda D. 2000. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100(5):551−60.
  3. Adhya S, Ghosh T, Das A, Bera SK, Mahapatra S. 1997. Role of an RNA-binding protein in import of tRNA into Leishmania mitochondria. J Biol Chem 272(34):21 396−402.
  4. Akashi K, Hirayama J, Takenaka M, Yamaoka S, Suyama Y, Fukuzawa H, Ohyama K. 1997. Accumulation of nuclear-encoded tRNA (Thr) (AGU) in mitochondria of the liverwort Marchantia polymorpha. Biochim Biophys Acta 1350(3):262−6.
  5. Akashi K, Sakurai K, Hirayama J, Fukuzawa H, Ohyama K. 1996. Occurrence of nuclear-encoded tRNAIle in mitochondria of the liverwort Marchantia polymorpha. Curr Genet 30(2):181−5.
  6. Akashi K, Takenaka M, Yamaoka S, Suyama Y, Fukuzawa H, Ohyama K. 1998. Coexistence of nuclear DNA-encoded tRNAVal (AAC) and mitochondrial DNA-encoded tRNAVal (UAC) in mitochondria of a liverwort Marchantia polymorpha. Nucleic Acids Res 26(9):2168−72.
  7. Alfonzo JD, Blanc V, Estevez AM, Rubio MA, Simpson L. 1999. Π‘ to U editing of the anticodon of imported mitochondrial tRNA (Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. Embo J 18(24):7056−62.
  8. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon 1Π‘, Nierlich DP, Roe BA, Sanger F and others. 1981. Sequence and organization of the human mitochondrial genome. Nature 290(5806):457−65.
  9. Aphasizhev R, Senger B, Fasiolo F. 1997. Importance of structural features for tRNA (Met) identity. Rna 3(5):489−97.
  10. Baker KP, Schaniel A, Vestweber D, Schatz G. 1990. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348(6302):605−9.
  11. Bauer MF, Sirrenberg C, Neupert W, Brunner M. 1996. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell
  12. Beasley Π•Πœ, Muller S, Schatz G. 1993. The signal that sorts yeast cytochrome b2 to the mitochondrial intermembrane space contains three distinct functional regions. Embo J 12(6):2303−11.
  13. Bhattacharyya SN, Chatterjee S, Adhya S. 2002. Mitochondrial RNA import in Leishmania tropica: aptamers homologous to multiple tRNA domains that interact cooperatively or antagonistically at the inner membrane. Mol Cell Biol 22(12):4372−82.
  14. Bhattacharyya SN, Mukherjee S, Adhya S. 2000. Mutations in a tRNA import signal define distinct receptors at the two membranes of Leishmania mitochondria. Mol Cell Biol 20(19):7410−7.
  15. Birnboim H C, Doly J. 1979 A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7(6): 1513−23.
  16. Borner GV, Mori M, Janke A, Paabo S. 1996. RNA editing changes the identity of a mitochondrial tRNA in marsupials. Embo J 15(21):5949−57.
  17. Brix J, Dietmeier K, Pfanner N. 1997. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J Biol Chem 272(33):20 730−5.
  18. Brix J, Ziegler GA, Dietmeier K, Schneider-Mergener J, Schulz GE, Pfanner N. 2000. The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J Mol Biol 303(4):479−88.
  19. Chang DD, Clayton DA. 1987. A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. Embo J 6(2):409−17.
  20. Chen DH, Shi X, Suyama Y. 1994. In vivo expression and mitochondrial import of normal and mutated tRNA (thr) in Leishmania. Mol Biochem Parasitol 64(l):121−33.
  21. Chirico WJ, Waters MG, Blobel G. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332(6167):805−10.
  22. Chiu N, Chiu A, Suyama Y. 1975. Native and imported transfer RNA in mitochondria. J Mol Biol 99(l):37−50.
  23. Commans S, Lazard M, Delort F, Blanquet S, Plateau P. 1998. tRNA anticodon recognition and specification within subclass lib aminoacyl-tRNA synthetases. J Mol Biol 278(4):801−13.
  24. Dekker PJ, Ryan MT, Brix J, Muller H, Honlinger A, Pfanner N. 1998. Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol Cell Biol 18(11):6515−24.
  25. Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332(6167): 800−5.
  26. Dietrich A, Marechal-Drouard L, Carneiro V, Cosset A, Small I. 1996a. A single base change prevents import of cytosolic tRNA (Ala) into mitochondria in transgenic plants. Plant J 10(5):913−8.
  27. Dietrich A, Small I, Cosset A, Weil JH, Marechal-Drouard L. 1996b. Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 78(6):518−29. Notes: Using Smart Source Parsing
  28. Dietrich A, Weil JH, Marechal-Drouard L. 1992. Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol 8:115−31. Notes: Using Smart Source Parsing
  29. Doersen CJ, Guerrier-Takada C, Altman S, Attardi G. 1985. Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J Biol Chem 260(10):5942−9.
  30. Donzeau M, Kaldi K, Adam A, Paschen S, Wanner G, Guiard B, Bauer MF, Neupert W, Brunner M. 2000. Tim23 links the inner and outer mitochondrial membranes. Cell 101(4):401−12.
  31. Dorner M, Altmann M, Paabo S, Mori M. 2001. Evidence for Import of a Lysyl-tRNA into Marsupial Mitochondria. Mol Biol Cell 12(9):2688−98.
  32. Eilers M And Schatz G. 1986 Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322:228−232.
  33. Enriquez JA, Chomyn A, Attardi G. 1995b. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA (Lys) and premature
  34. Entelis NS, Kieffer S, Kolesnikova OA, Martin RP, Tarassov IA. 1998. Structural requirements of tRNALys for its import into yeast mitochondria. Proc Natl Acad Sci U S A 95(6):2838−43.
  35. Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA. 2001. 5 S rRNA and tRNA Import into Human Mitochondria. COMPARISON OF IN VITRO REQUIREMENTS. J Biol Chem 276(49):45 642−53.
  36. Entelis NS, Krasheninnikov IA, Martin RP, Tarassov IA. 1996. Mitochondrial import of a yeast cytoplasmic tRNA (Lys): possible roles of aminoacylation and modified nucleosides in subcellular partitioning. FEBS Lett 384(l):38−42.
  37. Fey J, Weil JH, Tomita K, Cosset A, Dietrich A, Small I, Marechal-Drouard L. 2002 Role of editing in plant mitochondrial transfer RNAs. Gene. 286(l):21−4.
  38. Freist W, Gauss DH. 1995. Lysyl-tRNA synthetase. Biol Chem Hoppe Seyler 376(8):451−72.
  39. Fujiki M, Verner K. 1993. Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. J Biol Chem 268(3): 1914−20.
  40. Gartner F, Voos W, Querol A, Miller BR, Craig EA, Cumsky MG, Pfanner N. 1995. Mitochondrial import of subunit Va of cytochrome с oxidase characterized with yeast mutants. J Biol Chem 270(8):3788−95.
  41. Giege R, Puglisi JD, Florentz C. 1993. tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol 45:129−206. Notes: Using Smart Source Parsing
  42. Glick BS, Brandt A, Cunningham K, Muller S, Hallberg RL, Schatz G. 1992. Cytochromes cl and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69(5):809−22.
  43. Glover KE, Spencer DF, Gray MW. 2001. Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem 276(l):639−48.
  44. Goto Y, Nonaka I, Horai S. 1990. A mutation in the tRNA (Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348(6302):651−3.
  45. Gray MW and Boyer PH. 1988 Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond Π’
  46. Biol Sci. 319(1193): 135−47.
  47. Hachiya N, Komiya T, Alam R, Iwahashi J, Sakaguchi M, Omura T, Mihara K. 1994. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J 13(21):5146−54.
  48. Hancock K, Hajduk SL. 1990. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem 265(31):19 208−15.
  49. Hancock K, LeBlanc AJ, Donze D, Hajduk SL. 1992. Identification of nuclear encoded precursor tRNAs within the mitochondrion of Trypanosoma brucei. J Biol Chem 267(33):23 963−71.
  50. Hauser R, Schneider A. 1995. tRNAs are imported into mitochondria of Trypanosoma brucei independently of their genomic context and genetic origin. Embo J 14(17):4212−20.
  51. Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I. 1991. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci US A 88(23): 10 614−8.
  52. Heitzler J, Marechal-Drouard L, Dirheimer G, Keith G. 1992. Use of a dot blot hybridization method for identification of pure tRNA species on different membranes. Biochim Biophys Acta 1129(3):273−7.
  53. Hell K, Herrmann J, Pratje E, Neupert W, Stuart RA. 1997. Oxalp mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett 418(3):367−70.
  54. Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA. 1998. Oxalp, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci U S A 95(5):2250−5.
  55. Hell K, Neupert W, Stuart RA. 2001. Oxalp acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20(6): 1281−8.
  56. Helm M, Brule H, Degoul F, Cepanec C, Leroux JP, Giege R, Florentz C. 1998. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res 26(7): 163 6−43.
  57. Helm M, Florentz C, Chomyn A, Attardi G. 1999. Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu (UUR). Nucleic Acids Res 27(3):756−63.
  58. Hill J., Donald KA., Griffiths DE, Donald G. 1991 DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19(20):5791.
  59. Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N. 1998. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395(6701):516−21.
  60. Honlinger A, Bomer U, Alconada A, Eckerskorn Π‘, Lottspeich F, Dietmeier К, Pfanner N. 1996. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J 15(9):2125−37.
  61. Horwich AL, Kalousek F, Mellman I, Rosenberg LE. 1985. A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. EMBO J 4(5): 1129−35.
  62. Hou YM, Schimmel P. 1988. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333(6169):140−5.
  63. Huang S, Ratliff KS, Schwartz MP, Spenner JM, Matouschek A. 1999. Mitochondria unfold precursor proteins by unraveling them from their N- termini. Nat Struct Biol 6(12): 1132−8.
  64. Hurt EC, Pesold-Hurt B, Schatz G. 1984. The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett 178(2):306−10.
  65. James AM, Wei YH, Pang CY, Murphy MP. 1996. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 318 (Pt 2):401−7.
  66. Janke A, Xu X, Arnason U. 1997. The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc Natl Acad Sci U S A 94(4): 127 681.
  67. Kapushoc ST, Alfonzo JD, Rubio MA, Simpson L. 2000. End processing precedes mitochondrial importation and editing of tRNAs in leishmania tarentolae. J Biol Chem 275(48):37 907−14.
  68. Kazakova HA, Entelis NS, Martin RP, Tarassov IA. 1999. The aminoacceptor stem of the yeast tRNA (Lys) contains determinants of mitochondrial import selectivity. FEBS Lett 442(2−3): 193−7.
  69. Kellems RE, Allison VF, Butow RA. 1975. Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria. J Cell Biol 65(1): 1−14.
  70. Kerscher O, Sepuri NB, Jensen RE. 2000. Timl8p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Mol Biol Cell 11(1):103−16.
  71. King MP, Attardi G. 1988. Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52(6):811−9.
  72. Knox Π‘, Sass Π•, Neupert W, Pines О. 1998. Import into mitochondria, folding and retrograde movement of fumarase in yeast. J Biol Chem 273(40):25 587−93.
  73. Koehler CM, Jarosch E, Tokatlidis K, Schmid K, Schweyen RJ, Schatz G. 1998. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279(5349):369−73.
  74. Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA. 2000 Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289(5486): 1931−3.
  75. Komiya T, Rospert S, Koehler C, Looser R, Schatz G, Mihara K. 1998. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis. EMBO J 17(14):3886−98.
  76. Kumar R, Marechal-Drouard L, Akama K, Small I. 1996. Striking differences in mitochondrial tRNA import between different plant species. Mol Gen Genet 252(4):404-ll.
  77. Kunkel ВА, Roberts JD, Zakour RA. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367−82. Notes: Using Smart Source Parsing
  78. Kunkele KP, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, Walz J, Lill R, Nussberger S, Neupert W. 1998. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93(6): 1009−19.
  79. Kurz M, Martin H, Rassow J, Pfanner N, Ryan MT. 1999. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol Biol Cell 10(7):2461−74.
  80. LeBlanc AJ, Yermovsky-Kammerer AE, Hajduk SL. 1999. A nuclear encoded and mitochondrial imported dicistronic tRNA precursor in Trypanosoma brucei. J Biol Chem 274(30):21 071−7.
  81. Lee CM, Sedman J, Neupert W, Stuart RA. 1999. The DNA helicase, Hmilp, is transported into mitochondria by a C- terminal cleavable targeting signal. J Biol Chem 274(30):20 937−42.
  82. Li K, Smagula CS, Parsons WJ, Richardson JA, Gonzalez M, Hagler HK,
  83. RS. 1994. Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J Cell Biol 124(6):871−82.
  84. Lima BD, Simpson L. 1996. Sequence-dependent in vivo importation of tRNAs into the mitochondrion of Leishmania tarentolae. Rna 2(5):429−40.
  85. Lindsley D and Gallant J. 1993 On the directional specificity of ribosome frameshifting at a «hungry» codon. Proc Natl Acad Sci USA. 90(12): 5469−73.
  86. T. 2000. Targeting of proteins to mitochondria. FEBS Lett 476(1−2):22−6.
  87. Lohan AJ and Wolfe KH. 1998 A subset of conserved tRNA genes in plastid DNA of nongreen plants. Genetics. 150(l):425−33.
  88. Lye LF, Chen DH, Suyama Y. 1993. Selective import of nuclear-encoded tRNAs into mitochondria of the protozoan Leishmania tarentolae. Mol Biochem Parasitol 58(2):233−45.
  89. Magalhaes PJ, Andreu AL, Schon EA. 1998. Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol Biol Cell 9(9):2375−82.
  90. Mahapatra S, Adhya S. 1996. Import of RNA into Leishmania mitochondria occurs through direct interaction with membrane-bound receptors. J Biol Chem 271(34):20 432−7.
  91. Mahapatra S, Ghosh S, Bera SK, Ghosh T, Das A, Adhya S. 1998. The D arm of tRNATyr is necessary and sufficient for import into Leishmania mitochondria in vitro. Nucleic Acids Res 26(9):2037−41.
  92. Marechal-Drouard L, Guillemaut P, Cosset A, Arbogast M, Weber F, Weil JH, Dietrich A. 1990. Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Res 18(13):3689−96.
  93. Martin RP, Dirheimer G. 1983. Two-dimensional polyacrylamide gel electrophoresis in the study of yeast mitochondrial transfer RNA. Mol Biol (Mosk) 17(6):1117−25.
  94. Martin RP, Schneller JM, Stahl AJ, Dirheimer G. 1979. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry 18(21):4600−5.
  95. Masucci JP, Davidson M, Koga Y, Schon EA, King MP. 1995. In vitro analysis of mutations causing myoclonus epilepsy with ragged- red fibers in the mitochondrial tRNA (Lys)gene: two genotypes produce similar phenotypes. Mol Cell Biol 15(5):2872−81.
  96. Matouschek A, Azem A, Ratliff K, Glick BS, Schmid K, Schatz G. 1997. Active
  97. McClain WH, Foss K, Jenkins RA, Schneider J. 1990. Nucleotides that determine Escherichia coli tRNA (Arg) and tRNA (Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc Natl Acad Sci U S A 87(23):9260−4.
  98. McKee EE, Poyton RO. 1984. Mitochondrial gene expression in saccharomyces cerevisiae. I. Optimal conditions for protein synthesis in isolated mitochondria. J Biol Chem 259(14):9320−31.
  99. Mihara K, Omura T. 1996. Cytosolic factors in mitochondrial protein import. Experientia 52(12): 1063−8.
  100. Mireau H, Cosset A, Marechal-Drouard L, Fox TD, Small ID, Dietrich A. 2000. Expression of Arabidopsis thaliana mitochondrial alanyl-tRNA synthetase is not sufficient to trigger mitochondrial import of tRNAAla in yeast. J Biol Chem 275(18):13 291−6.
  101. Moczko M, Ehmann B, Gartner F, Honlinger A, Schafer E, Pfanner N. 1994. Deletion of the receptor MOM 19 strongly impairs import of cleavable preproteins into Saccharomyces cerevisiae mitochondria. J Biol Chem 269(12):9045−51.
  102. Moore M, Harrison MS, Peterson EC, Henry R. 2000. Chloroplast Oxalp homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J Biol Chem 275(3): 1529−32.
  103. Mukherjee S, Bhattacharyya SN, Adhya S. 1999. Stepwise transfer of tRNA through the double membrane of Leishmania mitochondria. J Biol Chem 274(44):31 249−55.
  104. Nameki N, Asahara H, Tamura K, Himeno H, Hasegawa T, Shimizu M. 1995. Similarities and differences in tRNA identity between Escherichia coli and Saccharomyces cerevisiae: evolutionary conservation and divergence. Nucleic Acids Symp Ser 34:205−6.
  105. Nargang FE, Preuss M, Neupert W, Herrmann JM. 2002. The Oxal protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J Biol Chem 277(15):12 846−53.
  106. W. 1997. Protein import into mitochondria. Annu Rev Biochem 66:863 917.
  107. Pfanner N, Geissler A. 2001b. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2(5):339−49.
  108. Preuss M, Leonhard K, Hell K, Stuart RA, Neupert W, Herrmann JM. 2001. Mbal, a novel component of the mitochondrial protein export machinery of the yeast Saccharomyces cerevisiae. J Cell Biol 153(5):1085−96.
  109. Pritchard, А Π•, Seilhamer JJ, Mahalingam R, Sable CL, Venuti SE, Cummings DJ. 1990 Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res. 18(l):173−80.
  110. Prokisch H, Nussberger S, Westermann B. 2002. Protein import into mitochondria of Neurospora crassa. Fungal Genet Biol 36(2):85−90.
  111. Reid GA, Schatz G. 1982. Import of proteins into mitochondria. Extramitochondrial pools and post- translational import of mitochondrial protein precursors in vivo. J Biol Chem 257(21):13 062−7.
  112. Rich A, RajBhandary UL. 1976. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem 45:805−60.
  113. Rojo EE, Guiard B, Neupert W, Stuart RA. 1998. Sorting of D-lactate dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal and energetic requirements. J Biol Chem 273(14):8040−7.
  114. Rojo EE, Stuart RA, Neupert W. 1995. Conservative sorting of FO-ATPase subunit 9: export from matrix requires delta pH across inner membrane and matrix ATP. EMBO J 14(14):3445−51.
  115. Rospert S, Junne T, Glick BS, Schatz G. 1993. Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett 335(3):358−60.
  116. Rubio MA, Liu X, Yuzawa H, Alfonzo JD, Simpson L. 2000. Selective importation of RNA into isolated mitochondria from Leishmania tarentolae. Rna 6(7):988−1003.
  117. Rusconi CP, Cech TR. 1996a. The anticodon is the signal sequence for mitochondrial import of glutamine tRNA in Tetrahymena. Genes Dev 10(22):2870−80.
  118. Rusconi CP, Cech TR. 1996b. Mitochondrial import of only one of three nuclear-encoded glutamine tRNAs in Tetrahymena thermophila. Embo J 15(13):3286−95.
  119. Saracco SA, Fox TD. 2002. Coxl8p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pntlp and Mss2p in the inner membrane. Mol Biol Cell 13(4):1122−31.
  120. M. 1999. Oxidative phosphorylation at the fin de siecle. Science 283(5407): 1488−93.
  121. Schatz G, Dobberstein B. 1996. Common principles of protein translocation across membranes. Science 271(5255): 1519−26.
  122. Schleiff Π•, Turnbull JL. 1998Π°. Characterization of the N-terminal targeting signal binding domain of the mitochondrial outer membrane receptor, Tom20. Biochemistry 37(38): 13 052−8.
  123. Schleiff E, Turnbull JL. 1998b. Functional and structural properties of the mitochondrial outer membrane receptor Tom20. Biochemistry 37(38): 13 043−51.
  124. A. 1996. Cytosolic yeast tRNA (His) is covalently modified when imported into mitochondria of Trypanosoma brucei. Nucleic Acids Res 24(7): 1225−8.
  125. Schneider A, Marechal-Drouard L. 2000. Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol 10(12):509−13.
  126. Schneider A, Martin J, Agabian N. 1994a. A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol Cell Biol 14(4):2317−22.
  127. Schneider A, McNally KP, Agabian N. 1993 Splicing and Π—'-processing of the tyrosine tRNA of Trypanosoma brucei. J Biol Chem. 268(29):21 868−74.
  128. Schneider A, McNally KP, Agabian N. 1994b. Nuclear-encoded mitochondrial tRNAs of Trypanosoma brucei have a modified cytidine in the anticodon loop. Nucleic Acids Res 22(18):3699−705.
  129. Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink J. 2000. YidC, the Escherichia coli homologue of mitochondrial Oxalp, is a component of the Sec translocase. EMBO J 19(4):542−9.
  130. Shi X, Chen DH, Suyama Y. 1994. A nuclear tRNA gene cluster in the protozoan Leishmania tarentolae and differential distribution of nuclear-encoded tRNAs between the cytosol and mitochondria. Mol Biochem Parasitol 65(l):23−37.
  131. Shiba K, Stello T, Motegi H, Noda T, Musier-Forsyth K, Schimmel P. 1997. Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant. J Biol Chem 272(36):22 809−16.
  132. Sherratt HSA, Lightowlers RN, Turnbull DM.1997 in Organelle Disease, edited by Applegarth DA, Dimmick JE, Hall JG. Chapman and Hall, London
  133. Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1): 19−27.
  134. Sirrenberg C, Bauer MF, Guiard B, Neupert W, Brunner M. 1996. Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22.
  135. Sirrenberg Π‘, Endres М, Folsch Н, Stuart RA, Neupert W, Brunner M. 1998. Carrier protein import into mitochondria mediated by the intermembrane proteins TimlO/Mrsll and Timl2/Mrs5. Nature 391(6670):912−5.
  136. Smith CJ, Ley AN, D’Obrenan P, Mitra SK. 1971. The structure and coding specificity of a lysine transfer ribonucleic acid from the haploid yeast Saccharomyces cerevisiae alpha S288C. J Biol Chem 246(24):7817−9.
  137. Sollner T, Griffiths G, Pfaller R, Pfanner N, Neupert W. 1989. MOM19, an import receptor for mitochondrial precursor proteins. Cell 59(6): 1061−70.
  138. Sollner T, Rassow J, Pfanner N. 1991. Analysis of mitochondrial protein import using translocation intermediates and specific antibodies. Methods Cell Biol 34:345−58.
  139. Notes: Using Smart Source Parsing
  140. Y. 1967. The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis. Biochemistry 6(9):2829−39.
  141. Suyama Y, Eyer J. 1967. Leucyl tRNA and leucyl tRNA synthetase in mitochondria of Tetrahymena pyriformis. Biochem Biophys Res Commun 28(5):746−51.
  142. Suyama Y, Hamada J. 1978. The mitochondrial and cytoplasmic valyl tRNA synthetases in Tetrahymena are indistinguishable. Arch Biochem Biophys 191(2):437−43.
  143. Tamura K, Himeno H, Asahara H, Hasegawa T, Shimizu M. 1992. In vitro study of E. coli tRNA (Arg) and tRNA (Lys) identity elements. Nucleic Acids Res 20(9):2335−9.
  144. Tan TH, Bochud-Allemann N, Horn EK, Schneider A. 2002a. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci U S A 99(3): 1152−7.
  145. Tan TH, Pach R, Crausaz A, Ivens A, Schneider A. 2002b. tRNAs in Trypanosoma brucei: genomic organization, expression, and mitochondrial import. Mol Cell Biol 22(11):3707−17.
  146. Tarassov I, Entelis N, Martin RP. 1995a. An intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic tRNA. J Mol Biol 245(4):315−23.
  147. Tarassov I, Entelis N, Martin RP. 1995b. Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and
  148. Tarassov IA, Entelis NS. 1992. Mitochondrially-imported cytoplasmic tRNA (Lys)(CUU) of Saccharomyces cerevisiae: in vivo and in vitro targetting systems. Nucleic Acids Res 20(6): 1277−81.
  149. Tarassov IA, Entelis NS, Martin RP. 1999. Import of tRNA into yeast mitochondria: experimental approaches and possible applications. Lestienne P Heidelberg: Springer, p 303−16.
  150. Varshney U, Lee CP, RajBhandary UL. 1991. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem 266(36):24 712−8.
  151. DC. 1999. Mitochondrial diseases in man and mouse. Science 283(5407): 1482−8.
  152. Wiedemann N, Pfanner N, Ryan MT. 2001. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. Embo J 20(5):951−60.
  153. Wienhues U, Becker K, Schleyer M, Guiard B, Tropschug M, Horwich AL, Pfanner N, Neupert W. 1991. Protein folding causes an arrest of preprotein translocation into mitochondria in vivo. J Cell Biol 115(6):1601−9.
  154. Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K. 2001. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. Embo J 20(17):4794−802.
  155. Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K. 2000. Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA (Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 467(2−3):175−8.
  156. Yermovsky-Kammerer AE, Hajduk SL. 1999. In vitro import of a nuclearlyencoded tRNA into the mitochondrion of Trypanosoma brucei. Mol Cell Biol 19(9):6253−9.
  157. Yoshionari S, Koike T, Yokogawa T, Nishikawa K, Ueda T, Miura K, Watanabe K. 1994. Existence of nuclear-encoded 5S-rRNA in bovine mitochondria. FEBS Lett 338(2): 137−42.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ