Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Разработка математического обеспечения автоматизированной системы испытаний на основе моделирования двигателей внутреннего сгорания

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Исходя из поставленной цели, работа имеет следующую структуру: В первой' главе проводится краткийобзор применяемого математического обеспечения АСИ ДВС. Кратко рассмотрены виды испытанийдвигателей. Испытания относятся к числу наиболее ответственныхтрудоемких этапов жизненного цикла ДВС., На этом этапе осуществляется^ окончательная оценка конструкции, определяется ее соответствие техническим… Читать ещё >

Содержание

  • Глава 1. Современные методы моделирования режимов работы двигателя внутреннего сгорания и разработки автоматизированной системы испытаний
    • 1. 1. Математическое обеспечение АСИ ДВС
    • 1. 2. Математическое моделирование ДВС
    • 1. 3. Виды испытаний и их назначение
      • 1. 3. 1. Опытно-конструкторские испытания
      • 1. 3. 2. Серийные испытания
      • 1. 3. 3. Эксплуатационные испытания
    • 1. 4. Обзор испытательных стендов
    • 1. 5. Методы исследования двигателей
      • 1. 5. 1. Стационарные исследования двигателей
      • 1. 5. 2. Динамические исследования
    • 1. 6. Анализ данных обзора и постановка задачи
    • 1. 7. Выводы по главе
  • Глава 2. Формализация технологического процесса испытаний двигателей
    • 2. 1. Разработка информационного обеспечения систем испытаний ДВС
    • 2. 2. Декомпозиция техпроцесса испытаний
      • 2. 2. 1. Получение модели перемещения рейки топливного насоса для
        • 2. 2. 1. 1. Получение модели перемещения рейки топливного насоса для ДВС без наддува
        • 2. 2. 1. 2. Получение модели рейки топливного насоса для ДВС с независимым автономным турбонаддувом
        • 2. 2. 1. 3. Получение математической модели изменения нагрузки для ДВС без наддува
        • 2. 2. 1. 4. Получение математической модели изменения нагрузки для ДВС с, независимым автономным турбонаддувом
    • 2. 3. Выводы по главе
  • Глава 3. Получение параметров расчетных моделей
    • 3. 1. Определение области устойчивости ДВС в области одного параметра
    • 3. 2. Определение области устойчивости ДВС с автономным турбонаддувом в области двух параметров
    • 3. 3. Получение коэффициентов математической модели ДВС с наддувом по экспериментальной кривой
      • 3. 3. 1. Определение коэффициентов дифференциального уравнения ДВС с независимым автономным турбонаддувом
      • 3. 3. 2. Аппроксимация переходной характеристики решением дифференциального уравнения второго порядка
    • 3. 4. Выводы по главе
  • Глава 4. Имитационное моделирование испытаний ДВС
    • 4. 1. Разработка структурной схемы имитационной модели
    • 4. 2. Проверка адекватности полученной модели
    • 4. 3. Получение характеристик по выходным данным модели
    • 4. 4. Выбор и расчет исполнительного механизма
    • 4. 5. Выводы по главе

Разработка математического обеспечения автоматизированной системы испытаний на основе моделирования двигателей внутреннего сгорания (реферат, курсовая, диплом, контрольная)

Создание конкурентоспособных двигателей внутреннего сгорания (ДВС) предполагает применение перспективных способов повышения качества управления, экспериментальную доводку двигателя, сокращение сроков разработки и подготовки его серийного выпуска.

Улучшение параметров двигателей возможно лишь при тщательном изучении происходящих в них процессов, так как легкодоступные резервы улучшения их конструкции практически уже исчерпаны.

В связи с этим приобрело особую значимость исследование двигателей на переходных и неустановившихся режимах с использованием специальных стендов, созданных для этих целей, так как оценка конструкции, определение ее соответствия технологическим и общим требованиям времени в конечном итоге принадлежит этим исследованиям и значительно сокращает время и продолжительность доводочных работ.

С помощью математического моделирования (ММ) можно проанализировать протекание отдельных рабочих процессов и всего рабочего цикла, прогнозировать основные показатели и характеристики двигателя. Модель не может быть полностью адекватна объекту и отражает лишь определенные его свойства, представляющие интерес для целей конкретного исследования [1, 11, 12].

На всех стадиях жизненного цикла двигатели подвергаются различного рода испытаниям, объем и трудоемкость которых, как показывает практика, непрерывно возрастают. И это вполне объяснимо: улучшить их параметров можно лишь при тщательном изучении происходящих в них процессов, так как легкодоступные резервы совершенствования их конструкции уже практически исчерпаны. Но такое скрупулезное изучение возможно только с помощью математического моделирования. Именно оно позволяют проанализировать протекание отдельных рабочих процессов и всего рабочего цикла, прогнозировать основные показатели и свойства двигателя, представляющие интерес для целей конкретного исследования: Причем делать все это желательно с помощью автоматизированной системы испытаний (АСИ) [1,2].

Однако здесь есть определенные проблемы. Главная из них? сложность создания программного обеспечения для АСИ. Дело в том, что системы> испытаний функционируют в реальном масштабе времени, следовательно, имеют временные ограниченияна реакцию и' обработку разнообразных входных сигналов и ситуаций. Во-вторых, они должны одновременно реализовывать различные циклограммы управления агрегатами объекта испытаний (двигателя) и стендового оборудования. В-третьих, программный комплекс АСИ должен обеспечивать выполнение достаточно большого числа разнообразных исследовательских, доводочных и серийных испытаний многих типов и модификаций ДВС. Наконец, если АСИ задать режимы испытаний в виде требуемых характеристик, которыми в нашем случае являются выходные параметры двигателя, то она сама должна выработать управляющие воздействия.

Как видим, требований, предъявляемых к АСИ ДВС, достаточно много. Выполнить их без разработки модели объекта управления, очевидно, невозможно: иначе параметры АСИ ДВС просто не настроить.

Работа базируется на основе достижений в области системного анализа, формализации и алгоритмизации технологии испытаний, развития методов графического отображения информации. Следует отметить, что благодаря работам Адгамова Р. И., Берхеева М. М., Дмитриева С. В., Заляева И. А., Кожевникова Ю. В., Красных В. Л., Моисеева B.C., Хайруллина А. Х. и др. в области автоматизированных систем испытаний заложен фундамент организации подобных систем в области двигателестроения.

В процессе работы над автоматизированной системой испытаний двигателя реальной необходимостью становится определение математической модели двигателя, которая необходима для настройки параметров АСИ ДВС. Знание математической модели ДВС обеспечивает возможность учета динамических свойств двигателя при разработке системы автоматического управления и системы автоматического регулирования. Кроме того, эти уравнения могут быть использованы для управления режимами работы ДВС с помощью ЭВМ в ходе стендовых испытаний.

С помощью математического моделирования можно проанализировать протекание отдельных рабочих процессов и всего рабочего цикла, прогнозировать основные показатели и характеристики двигателя.

Модели строятся в виде систем дифференциальных, интегральных, алгебраических уравнений, сеток и др. при этом модель не может быть полностью адекватна объекту и отражает лишь определенные его свойства, представляющие интерес для целей конкретного исследования.

Сложность создания программного обеспечения автоматизированной системы испытаний двигателей связана с функционированием систем в реальном масштабе времени и наличием временных ограничений на реакцию и обработку разнообразных входных сигналов и ситуаций, а также с необходимостью одновременной реализации различных циклограмм управления агрегатами объекта испытаний) и стендового^ оборудования. С другой стороны, программный комплекс АСИ двигателей должен обеспечить выполнение достаточно большого многообразия исследовательских, доводочных и серийных испытаний многочисленных типов и модификаций ДВС [1,3].

Хочу выразить благодарность к.т.н., доценту Зубкову Е. В., с которым совместно были получены решения обратной задачи по нахождению > управляющих воздействий.

Объектом диссертационного исследования является автоматизированная система испытаний двигателей внутреннего сгорания.

Предметом исследования является алгоритм управления двигателем внутреннего сгорания в составе автоматизированной системы испытаний.

Целью диссертационной работы является повышение эффективности системы настройки АСИ ДВС на произвольные технологии испытаний на базе их представления в виде графических моделей и математического моделирования ДВС.

Исходя из поставленной цели, работа имеет следующую структуру: В первой' главе проводится краткийобзор применяемого математического обеспечения АСИ ДВС. Кратко рассмотрены виды испытанийдвигателей. Испытания относятся к числу наиболее ответственныхтрудоемких этапов жизненного цикла ДВС., На этом этапе осуществляется^ окончательная оценка конструкции, определяется ее соответствие техническим' и технологическим параметрам. Двигатели представляют собой сложные' технические системы. На всех стадиях жизненного цикла они подвергаются различного рода испытаниям, — объем и трудоемкость которых, как, показывает практика, непрерывно возрастают. Одно из наиболее эффективных решений по* удовлетворению данных требований — применение на испытательных стендах автоматизированных систем испытаний двигателей. АСИ позволяет повысить качество и эффективность конструкторских разработок, сократить сроки* доводки и усовершенствования двигателей при снижении себестоимости проведения-стендовых испытаний. Объектом управления является испытательный стенд с установленным двигателем и технологическим оборудованием, обеспечивающим проведение испытания. В зависимости от вида испытаний может изменяться как состав взаимодействующего с АСИ-оборудования, так и технология проведения испытания. Большинство систем автоматизации испытаний разрабатывалось ¦ по индивидуальным заказам, и каждая из таких АСИ, практически являлось уникальной системой. Наряду с ними, на предприятиях машиностроения, используются АСИ ДВС, разработанные на базе типовых, серийно выпускаемых измерительно-вычислительных комплексов (ИВК). Также в этой главе приводится анализ данных обзора испытаний и производится постановка задачработы. Проанализировав используемые с настоящее время методики проведения испытаний, сделан вывод, что такая задача в настоящее время рассмотрена поверхностно и еще не нашла практического применения, так как используемое для испытаний оборудование не позволяет применять эту технологию. Поставленная задача приводит к определению математических зависимостей, описывающих ДВС, относительно управляемой величины — перемещения рейки топливного насоса. Решение этого уравнения-даст зависимость частоты вращения вала от перемещения рейки топливного насоса. Во второй главе проводится формализация технологического процесса-испытаний двигателей. Целью оценки технического состояния' двигателя, является определение значений’структурных параметров, непосредственно1 характеризующих техническое состояние двигателя, его узлов и деталей. Определение необходимого и достаточного количества параметров, которые позволяли бы достоверно оценивать техническое состояние двигателя в целом, его систем, механизмов и отдельных деталей, основывается на анализе физических процессов, протекающих в двигателе, и закономерностях их развития. Для настройки АСИ двигателей предлагается использовать графический интерфейс, включающий в себя интегрированную среду программирования, основанную на. базе данных графических модулей операций, по принципу FBD-блоков SCADA-систем. Графический элемент технологии несет в себе параметры настройки. Для определения количества и типов графических элементов технологии и реальный технологический процесс разбивается на совокупность технологических операций, т. е. проводится его декомпозиция, выделяются типовые операции, и определяется графическая форма их представления в системе. В качестве одной из элементарных операций предложена, для подробного рассмотрения, математическая модель ДВС, которая обеспечивает возможность учета динамических свойств двигателя при разработке системы автоматического управления и системы автоматического регулирования.

Если АСИ задать режимы испытаний в виде требуемых характеристик, которыми в нашем случае являются выходные параметры двигателя, то система сама должна выработать управляющие воздействия. Это1 невозможно без разработки модели объекта управления, которая необходима для настройки параметров АСИ ДВС.

В результате вычислений получены соотношения, позволяющие управлять объектом по двум входным параметрам: перемещению рейки топливного насоса высокого давления (ТНВД), а также изменению нагрузки на валу двигателя. Третья глава посвящена получению параметров расчетных моделей. Рассмотрено получение параметров расчетных моделей. В результате вычислений определены области устойчивости полученных выше математических моделей по одному и двум комплексным параметрам, а. также определена область изменения исследуемых параметров.

Для получения параметров математической модели ДВС были взяты данные испытаний. В процессе проведения экспериментального испытания двигателя КамАЗ 740.60 были получены данные, которые снимались по ГОСТ 8670–80 на стенде КИ-15 711−01 и использовались для построения характеристик одного из этапов испытаний ДВС. Испытания двигателя проводились по международному стандарту 1585 в стационарных режимах.

Параметры моделей ДВС получены с помощью аппроксимации переходной характеристики решением дифференциального уравнения второго порядка с запаздыванием. В четвертой главе рассмотрено имитационное моделирование испытаний две.

Структурная схема построена в системе «Моделирование в технических устройствах» (МВТУ 3.6), разработанной МГТУ им. Н. Э. Баумана, позволяет исследовать систему управления одновременно по двум входным параметрам. Если АСИ задать режимы испытаний в виде требуемых характеристик, которыми в нашем случае являются выходные параметры двигателя, то система сама должна выработать управляющие воздействия.

Таким образом, модель АСИ позволяет легко проводить аналогию с работой объекта испытаний. Задав необходимые начальные параметры работы можно исследовать различные режимы работы двигателя в реальном времени, а также анализировать влияние многих факторов, таких как нагрузка, температура, состав топлива, влияющих на работу двигателя.

На основании приведенных выше исследований разработано устройство, обеспечивающее перемещение рейки ТНВД.

Реверс шагового двигателя производится путем изменения последовательности коммутации токов в обмотках, приводящего к изменению направления вращения магнитного поля, на обратное. ¦ В приложении приведены акт результаты испытаний двигателей внутреннего сгорания.

4.5. Выводы по главе.

1. По математической модели двигателя внутреннего сгорания с автономным газотурбинным наддувом построена его имитационная модель в виде передаточной функции.

2. Построена структурная схема, позволяющая провести имитацию испытаний ДВС по двум входным воздействиям, соответствующим реальным условиям.

3. Получена динамическая характеристика, имитирующая экспериментальную с максимальной погрешностью 6%.

4. Получена статическая характеристика, имитирующая экспериментальную с максимальной погрешностью 8%.

5. По обратной модели построена переходная характеристика, в которой выходные параметры являются входными воздействиями.

6. Выбран исполнительный механизм для реализации решения обратной задачи. Цель изобретения — сократить время на подготовку испытания дизеля с обеспечением высокой точности и плавности управления частотой вращения.

7. Построенная модель АСИ позволяет легко проводить аналогию с работой объекта испытаний. Задав необходимые начальные параметры работы можно исследовать различные режимы работы двигателя в реальном времени, а также анализировать влияние многих факторов, таких как нагрузка, температура, состав топлива, влияющих на работу двигателя.

Заключение

.

Проведенные в диссертационной работе исследования показали, что сложная экономическая ситуация последних лет, когда создание нового оборудования и внедрение его в производство ставит предприятие в трудные финансовые условия, а также жесткая конкуренция в современном производстве, которая характеризуется постоянно растущей номенклатурой выпускаемых изделий, ставит необходимостью иметь быстро перенастраиваемое, более точное и значительно более дешевое оборудование по сравнению с зарубежными аналогами.

В результате внедрения теоретически и экспериментально обоснованных методов и алгоритмов управления АСИ ДВС решена задача быстрой настройки стенда на различные режимы испытаний.

Из этого следует, что поставленная цель повышения эффективности АСИ ДВС путем оперативной настройки на любые режимы испытаний достигнута за счет представления отдельных составляющих испытаний в виде графических образов и математического моделирования.

В процессе выполнения диссертационной работы получены следующие основные результаты работы:

1. В работе исследованы методы построения математической модели двигателя внутреннего сгорания, как объекта, управляемого по частоте вращения коленчатого вала. Выявлены их основные недостатки в процессе моделирования.

2. В качестве задающих параметров предложено использовать графические элементы, представляющие собой моменты разгона, постоянного хода или торможения, которые представляют собой нижний уровень процесса декомпозиции.

3. Для более точной настройки ДВС на необходимый режим испытаний предложена методика решения обратной задачи, которая позволяет, используя выходную частотную зависимость, получить входные управляющие параметры для обеспечения заданного режима работы двигателя. Изменяя величину перемещения рейки ТНВД можно задавать и контролировать выходной параметр, то есть частоту вращения коленчатого вала.

4″. Прямая задача проверена на имитационной модели, которая отражает математическую модель ДВС в виде передаточной функции и с погрешностью в 6% моделирует экспериментальную переходную характеристику относительно перемещения рейки топливного насоса, что соответствует 10 об/мин. А также с погрешнрстью в 8% моделирует нагрузочную характеристику дизеля, что соответствует 14 об/мин.

5. Решение обратной задачи использовано в имитационной модели,-, отражающей в качестве управляющих воздействий частоту вращения вала двигателя, а на выходе модели получено соответственно перемещение рейки ТНВД.

6. Практически задача перемещения рейки реализовано предложенным способом управления частотой вращения дизеля при использовании передачи винт — гайка и шагового двигателя, отличается тем, что улучшает качество регулирования, реализуется простой конструкцией и характеризуется пониженной стоимостью.

Показать весь текст

Список литературы

  1. Математическое обеспечение автоматизированных систем исследований и испытаний двигателей внутреннего сгорания / P. JL Биктимиров, И. X. Садыков, А. X. Хайруллин. — М.: Машиностроение, 1995.-256 е.: ил.
  2. Ч., Хенсон Р., Численное решение задач методом наименьших квадратов. М.: Наука 1986.
  3. В. И. Двигатель внутреннего сгорания как регулируемый, объект. М.: Машиностроение. 1978. 472 с.
  4. В. И. Автоматическое регулирование двигателей внутреннего сгорания. М.: Машиностроение. 1979. 616 с.
  5. В. И. Автоматическое регулирование и управление двигателей внутреннего сгорания: Учебник для студентов вузов. Обучающихся по специальности «Двигатели внутреннего сгорания». 5-е изд., перераб. И доп. -М.: Машиностроение. 1980.-416 е.: ил.
  6. Двигатели внутреннего сгорания. В 3 кн. Кн. 1. Теория рабочих процессов: Учебник для вузов/В.Н. Луканин, М. Г. Шатров, Т.Ю.
  7. Кричевская и др.- Под ред. В. Н. Луканина и М. Г. Шатрова. — 2-е изд., перераб. И доп. — М.: Высш. шк., 2005. 414 е.: ил.
  8. Автоматизированные испытания в авиастроении /Адгамов Р.И., Бехреев М. М., Заляев И. А. и др. М.: Машиностроение, — 1989.- 232 с.
  9. Основы систем автоматизированного проектирования / Бехреев М. М., Заляев И. А., Кожевников Ю. В. и др. Под. ред. Ю. В. Кожевникова. — Казань: Изд-во КГУ, 1988. 253 с.
  10. Ю.Захаров В. Н. Интеллектуальные системы управления: основные понятия и определения //Теория и системы управления. — 1997. № 3. — С.138−145.
  11. В.А. Основы теории автомобильных двигателей и автомобиля: учебное пособие. М.: ИД «ФОРУМ»: ИНФРА-М, 2007. — 368 е.: ил. -(Профессиональное образование).
  12. И.М., Менский Б. М. Линейные автоматические системы (элементы теории, методы расчета и справочный материал). 2-е изд., перераб. и доп. — М.: Машиностроение, 1982.- 504 е., ил.
  13. Автомобильные двигатели / Под ред. М. С. Ховаха. М.: Машиностроение, 1977. 591 с.
  14. Ю.Л. Планирование решений в динамических проблемных средах на основе систем баз данных и знаний // Управляющие системы и машины. 1991. — № 7. — С. 94−100
  15. Д.А. Ситуационное управление. Новый виток развития //Теория и системы управления. 1995. — № 5. — С. 152−159
  16. А. А., Титов В. К., Новогранов Б. Н. Основы теории автоматического регулирования и управления. М.: Высшая школа, 1977. 520 с.
  17. Управление техническими объектами на автомобильном транспорте: Учеб. Пособие / Под ред. А. А. Мельникова. Пенза: ПГАСА, 2000. -343 с.
  18. Теория автоматического управления техническими объектами автомобилей и тракторов: Учеб. Пособие для студ. высш. учеб. заведений / А. А. Мельников. — М.: Издательский центр «Академия», 2003.-280 с.
  19. В.Е., Рось А. А. Совершенствование технологии разработки программного обеспечения АСУ на основе концепций баз знаний //Управляющие системы и машины. 1989. — № 6. — С. 22−28
  20. И.В., Ковалев A.JL, Лизенко С. Л. Графический интерфейс представления алгоритмов и программ //Управляющие системы и машины. 1988. — № 4. — С. 42−47.
  21. С.Е., Зотов Н. С., Имаев Д. Х. и др. Теория автоматического управления: Учебник / Под ред. В. Б. Яковлева. М.: Высшая школа. 2003.-576 с.
  22. Интеллектуальные системы автоматического управления / Под ред. И. М. Макакрова, В. М. Лохина. М.: Физматлит, 2001. — 576 с.
  23. Методы классической и современной теории управления: Учебник в 3-х. / Под ред. Н. Д. Егупова. М.: Изд-во МГТУ, 2000. Т.1. — 748 с. Т.2. -736 с. Т.З. — 748 с.
  24. М.М., Елсуков B.C., Пятина О. Н. Теория автоматического управления: Учеб. пособие для вузов/Под ред. д-ра техн. наук. проф. В .И. Лачина. Новочеркасск: ООО НПО «Темп», 2005. — 352 с.
  25. Современная прикладная теория управления: 4.1. Оптимизационный подход в теории управления / Под ред. А. А. Колесникова. Таганрог: Изд-во ТРТУ, 2000. — 400 с.
  26. B.C., Хайруллин А. Х. Методы моделирования режимов работы двигателя внутреннего сгорания и разработки автоматизированной системы испытаний.// Экономические и технические системы: Online журнал, 2004. — № 7. http ://www.kampi.ru/sets
  27. B.C. Моделирование ДВС в рамках автоматизированной системы испытаний. // Проблемы исследования и проектирования машин: Сборник статей IV Международной научно-технической конференции. Пенза: Приволжский Дом знаний, 2008. С. 8−12.
  28. Зб.Зубков Е. В., Макушин А. А., Бахвалова B.C. Моделирование режимов работы ДВС с целью получения их переходных характеристик// Автомобильная промышленность. Москва: Машиностроение. 2009. -№ 5. С 37−39.
  29. В.И. Автоматическое регулирование и управление двигателей внутреннего сгорания. М., 1989. 415 с.
  30. В. И., Волков А. А. Дифференциальное уравнение топливо-подающей аппаратуры дизеля. Известия ВУЗов. &bdquo-Машиностроение", № 6,1972.
  31. В. И., Данилов Ф. М. О применении линейных дифференциальных уравнений для расчетов переходных процессов двигателей внутреннего сгорания. Известия ВУЗов «Машиностроение», № 2, 1967.
  32. В. И., Кузьмин П. К. Расчет переходных процессов системы автоматического регулирования дизеля с турбонаддувом с учетом нелинейных характеристик. Известия ВУЗов, Машиностроение, № 10, 1969.
  33. Стенды для исследования двигателей при неустановившихся нагрузках. 2002 г. Казань, изд. «Фэн», 237с
  34. В. А., Попов Е. П. Теория автоматического регулирования. М., Наука, 1965.
  35. ГОСТ 18 509–88. Двигатели тракторные и комбайновые. Методы стендовых испытаний. М.: Изд-во стандартов, 1988.
  36. Н. X. Теория двигателей внутреннего сгорания. Машиностроение. Л., 1974.
  37. Н.С., Ковригин А. И., Шкрабак B.C., Соминич А. В. Неустановившиеся режимы поршневых и газотурбинных двигателей автотракторного типа. JL, Машиностроение, 1974.
  38. В. А. Инженерные методы расчета и исследования динамических систем. JL, Энергия, 1975.
  39. Ю. И. Имитационное моделирование. Теория и технология // СПб.: Корона-Принт, 2004. — 384 с.
  40. JIoy А. М., Кельтом В. Д. Имитационное моделирование. 3-е издание // СПб.: Питер, Киев: BHV, 2004. 847 с.
  41. . Я, Моделирование систем. — М.: Высшая школа, 1985.
  42. Е.В., Макушин А. А., Бахвалова B.C. Моделирование режимов работы ДВС с целью получения их переходных характеристик// Автомобильная промышленность. Москва: Машиностроение. 2009. -№ 5. С 37−39.
  43. ГОСТ 7.1−84. Библиографическое описание документа. Общие требования и правила составления. М. Изд-во стандартов, 1984. -78с.
  44. ГОСТ 7.12−93. Библиографическая запись. Сокращение слов на русском языке. Обшие требования и правила. М. Изд-во стандартов, 1995. — 17с.
  45. ГОСТ 7.11−78. Сокращение слов и словосочетаний на иностранных европейских языках в библиографическом описании. М., Изд-во стандартов, 1986.-239с.
  46. В. Теория технических систем. Пер. с нем. М.: 1987, 202с.
  47. Математическое моделирование технологических процессов и метод обратных задач в машиностроении /А.Н. Тихонов, В. Д. Кальнел, В. Б. Гласко. М.: Машиностроение, 1990. — 252с.: ил.
  48. B.C., Хайруллин А. Х. Разработка математического обеспечения автоматизированных систем испытаний ДВС.// Экономические и технические системы: Online журнал, 2009. № 5. http://www.kampi.ru/sets.
  49. Е.Э. Основы теории автоматического управления. Часть 1: Линейные непрерывные системы управления: Учебное пособие/. Екатеринбург: УГТУ-УПИ, 2000. 214с.
  50. Современные системы управления/ Р. Дорф, Р.Бишоп. Пер. с англ. Б. И. Копылова.- М.: Лаборатория базовых знаний, 2002. — 832с.: ил.
  51. Е.И. Теория автоматического управления: Учебник для вузов. СПб.: БХВ-Петербург, 2007. 560 с. (Допущено Министерством образования и науки в качестве учебника для студентов вузов).
  52. И.В. Теория автоматического управления. Линейные системы: Учебное пособие для вузов. СПб.: Питер, 2005. 336 с. (Рекомендовано УМО по университетскому политехническому образованию в качестве учебного пособия).
  53. Теория автоматического управления: Учебник для вузов /С.Е.Душин, Н. С. Зотов, Д. Х. Имаев и др.- Под ред. В. Б. Яковлева. М.: Высшая школа, 2003. 567 с. (Допущено Министерством образования РФ в качестве учебника).
  54. Е.А. Основы теории автоматического управления. Частотные методы анализа и синтеза систем: Учебное пособие для вузов. СПб.:
  55. БХВ-Петербург, 2004. 640 с. (Допущено УМО по университетскому политехническому образованию в качестве учебного пособия).
  56. .Я., Энрайт П.Дж. Классические методы автоматического управления. СПБ 2004. 640с.
  57. X., Сиван Р. Линейные оптимальные системы управления. — М.: Мир, 1977. -650 е.: ил.
  58. Ким Д. П. Теория автоматического управления. Т1. Линейные системы М.: Изд. физ. мА. лит., 2003. 288с.
  59. Теория автоматического управления. Часть II / Под ред. А. В. Нетушила.-М.: Высшая школа, 1972. -432 е.: ил.
  60. Теория автоматического управления / Под ред. Воронова А. А. М.: Высшая школа, 1986. 4.2. 504 с. 20. Мирошник И. В. Теория автоматического управления. Нелинейные и оптимальные системы. СПБ, 2004. 272с.
  61. Ту Юлиус Т. Цифровые и импульсные системы автоматического управления: Пер. с англ.- М.: Машиностроение, 1964. — 703 е.: ил.
  62. Е.П. Теория нелинейных систем автоматического регулирования и управления. -М.: Наука, 1979. -256 е.: ил
  63. Ю.Н. Управление конечномерными линейными объектами. -М.: Наука, 1976. -424 с.
  64. А.А. Устойчивость, управляемость, наблюдаемость.-М.:Наука, 1979.-335с.: ил. 77.0стрём К., Виттенмарк Б. Системы управления с ЭВМ: Пер. с англ. -М.: Мир, 1987.-480 е.: ил.
  65. Г. К. Проектирование систем управления / Г. К. Гудвин, М. Э. Сальгадо. М.: БИНОМ. Лаборатория знаний, 2004. — 911 с. ил.
  66. Современная теория управления / Под ред. К. Т. Леондеса. -М.: Наука, 1970.-512 е.: ил.
  67. Методы классической и современной теории автоматического управления: Учебник в 5-и тт.- 2-е изд., перераб. и доп. Т4: Теория оптимизации систем автоматического управления / под ред. К.А.
  68. Пупкова и Н. Д. Егупова. М.: Издательство МГТУ им. Н. Э. Баумана, 2004. 744с.
  69. А.В., Бортаковский А. С. Теория управления в примерах и задачах: Учебное пособие. М.: Высшая школа, 2003. 583 с. (Рекомендовано УМО по образованию в области авиации, ракетостроения и космоса в качестве учебного пособия).
  70. И.П., Тарасик В. П. Теория и проектирование автоматических систем: Учебник для студентов вузов. М.: Машиностроение, 1996. 480 с.
  71. Теория автоматического управления / Под ред. Нетушила А. В. М.: Высшая школа, 1968. 4.1. 424 с.
  72. Е.П. Теория линейных систем автоматического регулирования и управления. М.: Наука, 1989. 304 с.
  73. Я.З. Основы теории автоматических систем. М.: Наука, 1977. 560 с.
  74. Сборник задач по теории автоматического регулирования и управления / Под ред. Бесекерского В. А. 5-е изд., перераб. и доп. М.: Наука, 1978. 512 с.
  75. П., Рой Р., Клоуз С. Пространство состояний в теории управления. Пер. с англ. М.: Наука, 1970. 620 с.
  76. Ту Ю. Т. Современная теория управления. Пер. с англ. М.: Машиностроение, 1971. 472 с.
  77. Математические основы автоматического регулирования / Под ред. Чемоданова Б. К. 2-е изд. М.: Высшая школа, 1977. Т.1. 368 с.
  78. Математические основы автоматического регулирования / Под ред. Чемоданова Б. К. 2-е изд. М.: Высшая школа, 1977. Т.2. 518 с.
  79. Рей У. Методы управления технологическими процессами. Пер. с англ. М.: Мир, 1983.368 с.
  80. Теория управления. Терминология. Вып. 107. М.: Наука, 1988. 56 с.
  81. С.Е., Зотов Н. С., Имаев Д. Х., Кузьмин Н. Н., Яковлев В. Б. Теория автоматического управления. Учеб. для ВУЗов. //Под ред. В. Б. Яковлева.-М.: Высшая школа. 2003.-567 с.
  82. Ш. Е. Идентификация в системах управления. — М.: Энергоатомиздат, 1987.— 81 с.
  83. А.Г. Оценка сверху показателей качества переходных процессов в системах автоматического управления // Проблемы моделирования в энергетике, науч.-тех. журнал' Ин-та проблем моделирования НАН Украины. К.: Наук, думка, 1998, № 1 — 3−12
  84. А.И. /Основы теории управления/М.: Физмалит, 2004.99./Экономико-математическое моделирование/ под.ред. Дрогобыцкого И. Н. М.: «Экзамен», 2004.
  85. В.Н., Колмановский Б. В., Носов В. Р. /Математическая теория конструирования систем управления/ М.: Высшая школа, 2003 (3-е издание).
  86. А.В., Максимцов М. М. /Исследование систем управления/ -М.: ЮНИТИ-ДАНА, 2000.
  87. В. А., Попов Е. П. /Теория систем автоматического управления/. М.: Высш. шк., 2003.
  88. Е.А. /Основы теории автоматического управления. Частотные методы анализа и синтеза систем/ БХВ-Петербург, 2004.
  89. А.В., Бортаковский А. С. /Теория управления в примерах и задачах/ М.: Высшая школа, 2003.
  90. Ч., Харбор Р. /Системы управления с обратной связью/ М.:
  91. Лаборатория базовых знаний, 2001.122
Заполнить форму текущей работой