Дипломы, курсовые, рефераты, контрольные...
Срочная помощь в учёбе

Хром. 
Химия элементов

РефератПомощь в написанииУзнать стоимостьмоей работы

Наиболее многочисленными являются комплексы с аминами в качестве лигандов. Среди них обнаружены соединения со всевозможными типами изомерии. Кроме моноядерных комплексов, например2+, могут существовать и полиядерные, в которых два и более атомов металла связаны с помощью гидроксильных мостиков. Состав катионных комплексов Сг (Ш) может изменяться в зависимости от pH, температуры и концентрации… Читать ещё >

Хром. Химия элементов (реферат, курсовая, диплом, контрольная)

Историческая справка Минерал, содержащий хром, был открыт в 1766 г. И. Г. Леманом и назван «сибирским красным свинцом». В настоящее время этот минерал известен под названием крокоит РЬСг04. В 1797 г. французский химик Л. Вокелен выделил металлический хром.

Содержание хрома в земной коре составляет около 8−10″ 3% от общего числа атомов. Важнейшим минералом, служащим сырьем для получения хрома, является хромистый железняк FeO • Сг203.

Металлический хром получают восстановлением его из оксида с помощью алюминия (алюминотермия):

Хром. Химия элементов.

С этой целью используют хромистый железняк. Вначале его сплавляют с содой в присутствии кислорода, и далее образующий хромат натрия восстанавливают углеродом до оксида хрома:

Хром. Химия элементов.

Свойства хрома и его соединений. Хром — белый, с сероватым оттенком блестящий металл, имеющий большую твердость и упругость. При комнатной температуре стоек к воде и воздуху.

В химическом отношении хром как металл является восстановителем. В зависимости от условий реакции он может проявлять переменную степень окисления; устойчивыми являются состояния +2, +3, +6.

При нормальных условиях хром устойчив к кислороду, взаимодействие с которым протекает лишь при нагревании. В этих же условиях хром реагирует и с хлором, серой, азотом, кремнием. Например:

Хром. Химия элементов.

Обычно на поверхности хрома содержится плотный слой оксида Сг203, защищающий металл от дальнейшего окисления. Такая пассивированная поверхность и является причиной того, что при обычных температурах не происходит взаимодействия хрома с азотной кислотой и царской водкой.

С разбавленными соляной и серной кислотами хром реагирует с выделением водорода и образованием солей Сг (П), которые, быстро окисляясь, переходят в соли Сг (Ш): Хром. Химия элементов.

Соединения хрома чаще всего имеют следующее пространственное строение:

Сг (И) —-конфигурация Сг (Ш) — «^-конфигурация.

Октаэдрические структуры: [Сг (Н20)6]2+, [Cr (NH3)6]3+

Cr (IV) — «^-конфигурация.

Тетраэдрические структуры; характерны для соединений, где Cr (IV) связан с органическими радикалами.

Cr (V) — d '-конфигурация Cr (VI) — «/"-конфигурация.

Тетраэдрические структуры; СгО3-, СгО2, Сг03

С кислородом хром образует ряд оксидов, которые в зависимости от степени окисления металла проявляют основные, амфотерные или кислотные свойства.

Оксид хрома (П) СгО обладает основными свойствами. При взаимодействии с НС1 образует СгС12.

Хром. Химия элементов.

Под действием водорода СгО восстанавливается до металлического хрома, при нагревании под действием кислорода воздуха переходит в Сг203.

Оксиду СгО соответствует гидроксид Сг (ОН)., образующийся из СгС12:

Хром. Химия элементов.

Сг (ОН)2 — вещество желтого цвета. Имеет основный характер и в реакциях с кислотами образует соответствующие соли Сг (П).

Ион Сг2+ является настолько сильным восстановителем, что способен вытеснять водород из воды:

Хром. Химия элементов.

Кислородом воздуха Сг (П) легко окисляется, поэтому раствор СгС1:!, например, можно применять для поглощения кислорода:

Хром. Химия элементов.

Водные растворы соединений Сг (П) имеют голубой цвет.

Оксид хрома (Ш) Сг203 относится к амфотерным оксидам.

Его получают прокаливанием оксида хрома (У1), или разложением дихромата аммония, или термическим разложением гидроксида хрома (Ш):

Хром. Химия элементов.

Гидроксид хрома (Ш) Cr (OH);j получается при действии щелочей на соли хрома; при этом Сг (ОН)3 выделяется в виде осадка синевато-серого цвета:

Хром. Химия элементов.

Сг (ОН)3 обладает амфотерными свойствами. Подобно гидроксиду алюминия Сг (ОН)3 взаимодействует с кислотами с образованием солей Сг (Ш), а со щелочами — с образованием хромитов:

Хром. Химия элементов.

Метаили ортохромиты, являющиеся солями соответствующих кислот — НСг02 (метахромистая) и Н3Сг03 (ортохромистая), образуются при сплавлении оксида хрома (Ш) со щелочами или с содой:

Хром. Химия элементов.

Следовательно, Сг (ОН)3 следует рассматривать как амфотерный гидроксид:

Хром. Химия элементов.

Под действием сильных окислителей в щелочной среде соединения хрома (Ш) переходят в соединения хрома (У1) — хроматы:

Хром. Химия элементов.

Для иона Сг3* характерны многочисленные комплексные соединения, в которых, за редким исключением, проявляется координационное число 6. Основной признак этих комплексных соединений — их кинетическая устойчивость в водных растворах.

Гексааква-ион [Сг (Н20)6]3+ сине-фиолетового цвета входит в состав многих кристаллогидратов: CrCl3-6H20, KCr (S04)2 -12Н20 и т. д. Получение этого катионного комплекса можно выразить следующим уравнением:

Хром. Химия элементов.

Состав катионных комплексов Сг (Ш) может изменяться в зависимости от pH, температуры и концентрации, в связи с чем их окраска изменяется от фиолетовой до зеленой. По мере замещения молекул Н20 в комплексном катионе, например, на хлор могут образоваться различные изомерные формы СгС13 • 6Н20:

Хром. Химия элементов.

Наиболее многочисленными являются комплексы с аминами в качестве лигандов. Среди них обнаружены соединения со всевозможными типами изомерии. Кроме моноядерных комплексов, например [Cr (NH3)5Cl]2+, могут существовать и полиядерные, в которых два и более атомов металла связаны с помощью гидроксильных мостиков.

Анионные комплексы — хроматы — разнообразны по своему составу и могут быть получены с помощью следующих реакций:

Хром. Химия элементов.

Окраска анионных комплексов зависит от природы лиганда: [Cr (OH)G]3_ — изумрудно-зеленого цвета, [СгС16]3_ — розово-красного, a [Cr (S04)3]3_ — желтого.

Анионный комплекс [Сг (ОН)6]:1" образует многочисленные соли — гидроксохроматы, устойчивые в твердом состоянии, а в растворах — лишь в сильнощелочной среде.

Безводные соединения Сг (Ш) по структуре и свойствам отличаются от кристаллогидратов. Так, безводная соль СгС13 имеет полимерную слоистую структуру, тогда как СгС13-6Н20 — островную структуру. СгС13 в отличие от СгС13-6Н20 в воде растворяется очень медленно. Соединения Сг (ПТ) в водных растворах обычно гидролизуются, и на первой стадии этого процесса идет образование комплексного иона [Сг (Н20)0Н|3+:

Хром. Химия элементов.

В дальнейшем может происходить полимеризация этих комплексов. Сульфид Cr2S3 и карбонат Сг2(С03)3 характеризуются еще большей неустойчивостью. Так, Cr2S3 и Сг2(С03)3 нельзя получить из водного раствора путем обменных реакций, ибо эти соединения вследствие большей растворимости по сравнению с Сг (ОН)3 полностью гидролизуются:

Хром. Химия элементов.

Оксид хрома (У1) Сг03 представляет собой кристаллическое вещество темно-красного цвета. Он получается действием концентрированной H2S04 на дихроматы:

Хром. Химия элементов.

Сг03 имеет цепочечную структуру, образованную тетраэдрами Сг04.

Сг03 — типичный кислотный оксид. Он легко растворяется в воде с образованием раствора хромовой кислоты Н2Сг04 и двухромовой кислоты 112Сг207, между которыми устанавливается равновесие:

Хром. Химия элементов.

С увеличением разведения равновесие сдвигается в сторону образования НСг04

В щелочных растворах при pH > 7 Сг03 образует тетраэдрический хромат-ион Сг ()4 желтого цвета. В интервале pH от 2 до 6 существуют в равновесии ион НСг04 и оранжево-красный дихромат-ион Сг20| .

При pH < 1 преобладают молекулы Н2Сг04. Система равновесных процессов может быть представлена так:

Хром. Химия элементов.

В щелочной среде протекают такие процессы: Хром. Химия элементов.

Положение равновесия зависит не только от pH, но и от характера катионов, которые могут образовать нерастворимые хроматы (катионы Ва2+, РЬ2+ и Ag* образуют хроматы).

Таким образом, добавление кислот смещает равновесие влево, а прибавление щелочей — вправо:

Хром. Химия элементов.

На этом основано получение хроматов из дихроматов, и наоборот:

Хром. Химия элементов.

Соединения Cr (VI) являются окислителями. В кислой среде дихроматион Сг202 проявляет сильные окислительные свойства, восстанавливаясь до Сг (Ш):

Хром. Химия элементов.

Высокая окислительная активность Cr (VI) проявляется в реакции взаимодействия К2Сг207 с концентрированной НС1 при нагревании:

Хром. Химия элементов.

Эта реакция удобна для получения хлора в небольших количествах. При прекращении нагревания прекращается и выделение хлора. Действием очень сильных восстановителей производные Cr (VI) могут быть восстановлены в нейтральной и слабощелочной средах. Например, взаимодействие с (NH^S протекает при нагревании:

Хром. Химия элементов.

Необходимо отметить, что окислительные свойства Cr (VI) в щелочной среде выражены значительно слабее, чем в кислой. Таким образом, в кислых и щелочных растворах соединения Сг (Ш) и Cr (VI) существуют в разных формах: в кислой среде преобладают ионы Сг3+ или Сг702-, а в щелочной — ионы |Сг (ОН)(.|3 или СЮ2, в связи с чем взаимопревращение соединений Сг (Ш) в Cr (VI) и наоборот протекает в зависимости от реакции среды:

в кислой среде.

Хром. Химия элементов.

в щелочной среде.

Хром. Химия элементов.

Из этого следует, что в кислой среде выражены окислительные свойства Cr (VI), а в щелочной среде — восстановительные свойства Сг (Ш):

Хром. Химия элементов.

Хромовая кислота Н2Сг04 значительно слабее дихромовой кислоты. Так, для Н2СгО, К, = 3 • 10 7, а для Н2Сг207 К, = 2 • 10″ 2.

Н2Сг207 — простейший представитель изополикислот хрома, отвечающих общей формуле яЭ03*тН20 (где п > т) и известных в виде солей иолихроматов. Так, кроме оранжево-красных дихроматов = 1, п = 2) получены темно-красные трихроматы (т = 1, п = 3) и коричнево-красные тстрахроматы (w = 1, п = 4).

Полихроматы образуются при действии кислот на хроматы:

Хром. Химия элементов.

При действии щелочей на растворы иолихроматов происходит обратный процесс с образованием в конечном итоге хроматов.

Больших серий поликислот и полианионов Cr (VI) не образует, что объясняется размерами иона и его тенденцией к образованию кратных связей Сг=0.

Для хрома характерно образование нероксидных соединений при взаимодействии с Н202:

Хром. Химия элементов.

Кроме синего оксид-дипероксида хрома (У1) СгОхром образует соли пероксокислот H2Cr2012, 112Сг208 и Н2Сг06 следующей структуры (рис. 6.1).

Структура пентаиероксодихромовой кислоты H,CrO.

Рис. 6.1. Структура пентаиероксодихромовой кислоты H, Cr2Ol2.

Кислота Н2Сг20|2 образует соли, окрашенные в синий цвет, а П, Сг, 08 — в красный.

Пероксидные соединения хрома устойчивы в эфирном растворе, в водных растворах они нестойки и легко разлагаются с выделением О., и образованием ионов СгОф (в щелочной среде) или соединений Сг (111) (в кислой). Предполагается, что устойчивость оксид-динероксида хрома (У1) Сг05 в эфире обусловлена образованием комплекса, имеющего форму пснтагональной пирамиды с атомом кислорода в вершине (рис. 6.2).

Структура оксид-дипероксида хрома(У1) Сг0 в эфире, где L — молекула эфира или воды.

Рис. 6.2. Структура оксид-дипероксида хрома (У1) Сг03 в эфире, где L — молекула эфира или воды Этот комплекс может быть получен обработкой раствора дихромата пероксидом водорода в кислой среде:

Хром. Химия элементов.

По окрашиванию эфирного слоя в синий цвет можно судить об образовании пероксокомплекса. Эта реакция очень чувствительна и специфична и поэтому широко используется в аналитической химии для обнаружения дихромат-иона.

Качественные реакции на хромат-ион (Сг04~).

Хром. Химия элементов.

Техническое применение хрома общеизвестно: в качестве легирующей добавки хром широко используется для получения высокопрочных сталей, никелевых и медных сплавов. Хроматы и дихроматы широко используются в кожевенной, текстильной, лакокрасочной и фармацевтической промышленности. Хромат свинца РЬСг04 под названием желтый крон применяется для изготовления красок. Дихроматы К2Сг207 и Na2Cr207-2H20, известные под названием хромпиков, применяются в аналитической химии.

Смесь равных объемов насыщенного на холоду раствора К2Сг207 и концентрированной H2S01 называется хромовой смесью и применяется для энергичного окисления.

Все соединения хрома очень ядовиты!

Показать весь текст
Заполнить форму текущей работой